

Introduction to Modern
Cryptography

Chapman & Hall/CRC Cryptography and Network Security
Series

Introduction to Modern Cryptography Jonathan Katz and Yehuda Lindell

Series Editors: Douglas R. Stinson and Jonathan Katz

Secret History: The Story of Cryptology, Second Edition
Craig P. Bauer

Data Science for Mathematicians
Nathan Carter

Discrete Explorations
Craig P. Bauer

Cryptography: Theory and Practice, Fourth Edition
Douglas R. Stinson and Mary P. Paterson

Cryptology: Classical and Modern, Second Edition
Richard Klima and Neil Sigmon

Group Theoretic Cryptography
Maria Isabel Gonzalez Vasco and Rainer Steinwandt

Advances of DNA Computing in Cryptography
Suyel Namasudra and Ganesh Chandra Deka

Mathematical Foundations of Public Key Cryptography
Xiaoyun Wang, Guangwu Xu, Minggiang Wang, Xianmeng Meng

Guide to Pairing-Based Cryptography
Nadia El Mrabet and Marc Joye

https://www.crcpress.com/Chapman--HallCRC-Cryptography-and-Network-Security-Series/book-
series/CHCRYNETSEC

https://www.crcpress.com
https://www.crcpress.com

Introduction to Modern
Cryptography

Third Edition

Jonathan Katz and Yehuda Lindell

Third edition published 2021
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

© 2021 Jonathan Katz and Yehuda Lindell

First edition published by Taylor and Francis 2007 Second edition published by Taylor and Francis
2014

CRC Press is an imprint of Taylor & Francis Group, LLC

The right of Jonathan Katz and Yehuda Lindell to be identified as authors of this work has been
asserted by him/her/them in accordance with sections 77 and 78 of the Copyright, Designs and
Patents Act 1988.

Reasonable efforts have been made to publish reliable data and information, but the author and pub-
lisher cannot assume responsibility for the validity of all materials or the consequences of their use.
The authors and publishers have attempted to trace the copyright holders of all material reproduced
in this publication and apologize to copyright holders if permission to publish in this form has not
been obtained. If any copyright material has not been acknowledged please write and let us know so
we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.
com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA
01923, 978-750-8400. For works that are not available on CCC please contact mpkbookspermis-
sions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are
used only for identification and explanation without intent to infringe.

ISBN: 780815354369 (hbk)
ISBN: 9781351133036 (ebk)

Typeset in Computer Modern font
by KnowledgeWorks Global Ltd.

Visit the companion website/eResources:[insert CW/eResources URL

mailto:mpkbookspermissions@tandf.co.uk
http://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
http://www.copyright.com

To Jill, Abigail, and Rena
– JK

To Yael, Yehonatan, Itamar,
Orel, Shirel, and Noam

– YL

http://taylorandfrancis.com

Contents

Preface xv

I Introduction and Classical Cryptography

1 Introduction 1
1.1 Cryptography and Modern Cryptography 1
1.2 The Setting of Private-Key Encryption 2
1.3 Historical Ciphers and Their Cryptanalysis 6
1.4 Principles of Modern Cryptography 14

1.4.1 Principle 1 – Formal Definitions 15
1.4.2 Principle 2 – Precise Assumptions 18
1.4.3 Principle 3 – Proofs of Security 20
1.4.4 Provable Security and Real-World Security 20

References and Additional Reading 21
Exercises . 21

2 Perfectly Secret Encryption 23
2.1 Definitions . 24
2.2 The One-Time Pad . 31
2.3 Limitations of Perfect Secrecy 33
2.4 *Shannon’s Theorem . 34
References and Additional Reading 36
Exercises . 36

II Private-Key (Symmetric) Cryptography 41

3 Private-Key Encryption 43
3.1 Computational Security . 43

3.1.1 The Concrete Approach 44
3.1.2 The Asymptotic Approach 45

3.2 Defining Computationally Secure Encryption 51
3.2.1 The Basic Definition of Security (EAV-Security) . . . 52
3.2.2 *Semantic Security . 56

3.3 Constructing an EAV-Secure Encryption Scheme 60
3.3.1 Pseudorandom Generators 60
3.3.2 Proofs by Reduction 64
3.3.3 EAV-Security from a Pseudorandom Generator 65

vii

viii

3.4 Stronger Security Notions . 70
3.4.1 Security for Multiple Encryptions 70
3.4.2 Chosen-Plaintext Attacks and CPA-Security 72
3.4.3 CPA-Security for Multiple Encryptions 74

3.5 Constructing a CPA-Secure Encryption Scheme 75
3.5.1 Pseudorandom Functions and Permutations 76
3.5.2 CPA-Security from a Pseudorandom Function 80

3.6 Modes of Operation and Encryption in Practice 84
3.6.1 Stream Ciphers . 85
3.6.2 Stream-Cipher Modes of Operation 87
3.6.3 Block Ciphers and Block-Cipher Modes of Operation . 88
3.6.4 *Nonce-Based Encryption 96

References and Additional Reading 99
Exercises . 99

4 Message Authentication Codes 105
4.1 Message Integrity . 105

4.1.1 Secrecy vs. Integrity 105
4.1.2 Encryption vs. Message Authentication 106

4.2 Message Authentication Codes (MACs) – Definitions 108
4.3 Constructing Secure Message Authentication Codes 114

4.3.1 A Fixed-Length MAC 114
4.3.2 Domain Extension for MACs 116

4.4 CBC-MAC . 120
4.4.1 The Basic Construction 120
4.4.2 *Proof of Security . 123

4.5 GMAC and Poly1305 . 128
4.5.1 MACs from Difference-Universal Functions 128
4.5.2 Instantiations . 131

4.6 *Information-Theoretic MACs 133
4.6.1 One-Time MACs from Strongly Universal Functions . 134
4.6.2 One-Time MACs from Difference-Universal Functions 137
4.6.3 Limitations on Information-Theoretic MACs 139

References and Additional Reading 140
Exercises . 140

5 CCA-Security and Authenticated Encryption 145
5.1 Chosen-Ciphertext Attacks and CCA-Security 145

5.1.1 Padding-Oracle Attacks 146
5.1.2 Defining CCA-Security 149

5.2 Authenticated Encryption 151
5.2.1 Defining Authenticated Encryption 151
5.2.2 CCA Security vs. Authenticated Encryption 153

5.3 Authenticated Encryption Schemes 154
5.3.1 Generic Constructions 154

ix

5.3.2 Standardized Schemes 161
5.4 Secure Communication Sessions 162
References and Additional Reading 164
Exercises . 164

6 Hash Functions and Applications 167
6.1 Definitions . 167

6.1.1 Collision Resistance 168
6.1.2 Weaker Notions of Security 170

6.2 Domain Extension: The Merkle–Damg̊ard Transform 170
6.3 Message Authentication Using Hash Functions 172

6.3.1 Hash-and-MAC . 172
6.3.2 HMAC . 175

6.4 Generic Attacks on Hash Functions 177
6.4.1 Birthday Attacks for Finding Collisions 178
6.4.2 Small-Space Birthday Attacks 179
6.4.3 *Time/Space Tradeoffs for Inverting Hash Functions . 182

6.5 The Random-Oracle Model 187
6.5.1 The Random-Oracle Model in Detail 188
6.5.2 Is the Random-Oracle Methodology Sound? 192

6.6 Additional Applications of Hash Functions 195
6.6.1 Fingerprinting and Deduplication 195
6.6.2 Merkle Trees . 196
6.6.3 Password Hashing . 198
6.6.4 Key Derivation . 199
6.6.5 Commitment Schemes 200

References and Additional Reading 202
Exercises . 203

7 Practical Constructions of Symmetric-Key Primitives 207
7.1 Stream Ciphers . 208

7.1.1 Linear-Feedback Shift Registers 209
7.1.2 Adding Nonlinearity 211
7.1.3 Trivium . 212
7.1.4 RC4 . 213
7.1.5 ChaCha20 . 216

7.2 Block Ciphers . 217
7.2.1 Substitution-Permutation Networks 219
7.2.2 Feistel Networks . 226
7.2.3 DES – The Data Encryption Standard 228
7.2.4 3DES: Increasing the Key Length of a Block Cipher . 235
7.2.5 AES – The Advanced Encryption Standard 238
7.2.6 *Differential and Linear Cryptanalysis 240

7.3 Compression Functions and Hash Functions 246
7.3.1 Compression Functions from Block Ciphers 246

x

7.3.2 MD5, SHA-1, and SHA-2 249
7.3.3 The Sponge Construction and SHA-3 (Keccak) 250

References and Additional Reading 254
Exercises . 255

8 *Theoretical Constructions of Symmetric-Key Primitives 261
8.1 One-Way Functions . 262

8.1.1 Definitions . 262
8.1.2 Candidate One-Way Functions 265
8.1.3 Hard-Core Predicates 266

8.2 From One-Way Functions to Pseudorandomness 267
8.3 Hard-Core Predicates from One-Way Functions 269

8.3.1 A Simple Case . 270
8.3.2 A More Involved Case 270
8.3.3 The Full Proof . 274

8.4 Constructing Pseudorandom Generators 277
8.4.1 Pseudorandom Generators with Minimal Expansion . 277
8.4.2 Increasing the Expansion Factor 279

8.5 Constructing Pseudorandom Functions 284
8.6 Constructing (Strong) Pseudorandom Permutations 289
8.7 Assumptions for Private-Key Cryptography 293
8.8 Computational Indistinguishability 296
References and Additional Reading 298
Exercises . 299

III Public-Key (Asymmetric) Cryptography 303

9 Number Theory and Cryptographic Hardness Assumptions 305
9.1 Preliminaries and Basic Group Theory 306

9.1.1 Primes and Divisibility 307
9.1.2 Modular Arithmetic 309
9.1.3 Groups . 311
9.1.4 The Group Z∗N . 315
9.1.5 *Isomorphisms and the Chinese Remainder Theorem . 317

9.2 Primes, Factoring, and RSA 322
9.2.1 Generating Random Primes 323
9.2.2 *Primality Testing . 325
9.2.3 The Factoring Assumption 331
9.2.4 The RSA Assumption 331
9.2.5 *Relating the Factoring and RSA Assumptions 334

9.3 Cryptographic Assumptions in Cyclic Groups 336
9.3.1 Cyclic Groups and Generators 336
9.3.2 The Discrete-Logarithm/Diffie–Hellman Assumptions 339
9.3.3 Working in (Subgroups of) Z∗p 342
9.3.4 Elliptic Curves . 345

xi

9.4 *Cryptographic Applications 354
9.4.1 One-Way Functions and Permutations 355
9.4.2 Collision-Resistant Hash Functions 357

References and Additional Reading 359
Exercises . 360

10 *Algorithms for Factoring and Computing Discrete Loga-
rithms 365
10.1 Algorithms for Factoring . 366

10.1.1 Pollard’s p− 1 Algorithm 367
10.1.2 Pollard’s Rho Algorithm 368
10.1.3 The Quadratic Sieve Algorithm 369

10.2 Generic Algorithms for Computing Discrete Logarithms . . . 372
10.2.1 The Pohlig–Hellman Algorithm 374
10.2.2 The Baby-Step/Giant-Step Algorithm 376
10.2.3 Discrete Logarithms from Collisions 377

10.3 Index Calculus: Computing Discrete Logarithms in Z∗p . . . 378
10.4 Recommended Key Lengths 380
References and Additional Reading 381
Exercises . 382

11 Key Management and the Public-Key Revolution 385
11.1 Key Distribution and Key Management 385
11.2 A Partial Solution: Key-Distribution Centers 387
11.3 Key Exchange and the Diffie–Hellman Protocol 389
11.4 The Public-Key Revolution 396
References and Additional Reading 398
Exercises . 399

12 Public-Key Encryption 401
12.1 Public-Key Encryption – An Overview 401
12.2 Definitions . 404

12.2.1 Security against Chosen-Plaintext Attacks 405
12.2.2 Multiple Encryptions 407
12.2.3 Security against Chosen-Ciphertext Attacks 412

12.3 Hybrid Encryption and the KEM/DEM Paradigm 415
12.3.1 CPA-Security . 419
12.3.2 CCA-Security . 424

12.4 CDH/DDH-Based Encryption 425
12.4.1 El Gamal Encryption 426
12.4.2 DDH-Based Key Encapsulation 430
12.4.3 *A CDH-Based KEM in the Random-Oracle Model . 432
12.4.4 *Chosen-Ciphertext Security and DHIES/ECIES . . . 434

12.5 RSA-Based Encryption . 436
12.5.1 Plain RSA Encryption 436

xii

12.5.2 Padded RSA and PKCS #1 v1.5 441
12.5.3 *CPA-Secure Encryption without Random Oracles . . 443
12.5.4 OAEP and PKCS #1 v2 447
12.5.5 *A CCA-Secure KEM in the Random-Oracle Model . 451
12.5.6 RSA Implementation Issues and Pitfalls 455

References and Additional Reading 458
Exercises . 459

13 Digital Signature Schemes 463
13.1 Digital Signatures – An Overview 463
13.2 Definitions . 465
13.3 The Hash-and-Sign Paradigm 467
13.4 RSA-Based Signatures . 468

13.4.1 Plain RSA Signatures 468
13.4.2 RSA-FDH and PKCS #1 Standards 470

13.5 Signatures from the Discrete-Logarithm Problem 475
13.5.1 Identification Schemes and Signatures 475
13.5.2 The Schnorr Identification/Signature Schemes 480
13.5.3 DSA and ECDSA . 483

13.6 Certificates and Public-Key Infrastructures 485
13.7 Putting It All Together – TLS 491
13.8 *Signcryption . 493
References and Additional Reading 495
Exercises . 495

14 *Post-Quantum Cryptography 499
14.1 Post-Quantum Symmetric-Key Cryptography 500

14.1.1 Grover’s Algorithm and Symmetric-Key Lengths . . . 500
14.1.2 Collision-Finding Algorithms and Hash Functions . . . 501

14.2 Shor’s Algorithm and its Impact on Cryptography 502
14.3 Post-Quantum Public-Key Encryption 504
14.4 Post-Quantum Signatures . 509

14.4.1 Lamport’s Signature Scheme 510
14.4.2 Chain-Based Signatures 513
14.4.3 Tree-Based Signatures 517

References and Additional Reading 522
Exercises . 523

15 *Advanced Topics in Public-Key Encryption 525
15.1 Public-Key Encryption from Trapdoor Permutations 525

15.1.1 Trapdoor Permutations 526
15.1.2 Public-Key Encryption from Trapdoor Permutations . 527

15.2 The Paillier Encryption Scheme 529
15.2.1 The Structure of Z∗N2 530
15.2.2 The Paillier Encryption Scheme 532

xiii

15.2.3 Homomorphic Encryption 537
15.3 Secret Sharing and Threshold Encryption 539

15.3.1 Secret Sharing . 539
15.3.2 Verifiable Secret Sharing 541
15.3.3 Threshold Encryption and Electronic Voting 543

15.4 The Goldwasser–Micali Encryption Scheme 545
15.4.1 Quadratic Residues Modulo a Prime 545
15.4.2 Quadratic Residues Modulo a Composite 548
15.4.3 The Quadratic Residuosity Assumption 552
15.4.4 The Goldwasser–Micali Encryption Scheme 553

15.5 The Rabin Encryption Scheme 556
15.5.1 Computing Modular Square Roots 556
15.5.2 A Trapdoor Permutation Based on Factoring 561
15.5.3 The Rabin Encryption Scheme 565

References and Additional Reading 566
Exercises . 567

Index of Common Notation 571

Appendix A Mathematical Background 575
A.1 Identities and Inequalities . 575
A.2 Asymptotic Notation . 575
A.3 Basic Probability . 576
A.4 The “Birthday” Problem . 581
A.5 *Finite Fields . 584

Appendix B Basic Algorithmic Number Theory 587
B.1 Integer Arithmetic . 589

B.1.1 Basic Operations . 589
B.1.2 The Euclidean and Extended Euclidean Algorithms . 590

B.2 Modular Arithmetic . 591
B.2.1 Basic Operations . 592
B.2.2 Computing Modular Inverses 592
B.2.3 Modular Exponentiation 593
B.2.4 *Montgomery Multiplication 595
B.2.5 Choosing a Uniform Group Element 597

B.3 *Finding a Generator of a Cyclic Group 599
B.3.1 Group-Theoretic Background 599
B.3.2 Efficient Algorithms 601

References and Additional Reading 602
Exercises . 602

References 603

Index 619

http://taylorandfrancis.com

Preface

The goal of our book remains the same as in the first edition: to present the
core paradigms and principles of modern cryptography to a general audience
with a basic mathematics background. We have designed this book to serve as
a textbook for undergraduate- or graduate-level courses in cryptography (in
computer science, electrical engineering, or mathematics departments), as a
general introduction suitable for self-study (especially for beginning graduate
students), and as a reference for students, researchers, and practitioners.

There are numerous other cryptography textbooks available today, and the
reader may rightly ask whether another book on the subject is needed. We
would not have written this book—nor worked on revising it for the second
and third editions—if the answer to that question were anything other than an
unequivocal yes. What, in our opinion, distinguishes our book from others is
that it provides a rigorous treatment of modern cryptography in an accessible
and introductory manner.

Our focus is on modern (post-1980s) cryptography, which is distinguished
from classical cryptography by its emphasis on definitions, precise assump-
tions, and rigorous proofs of security. We briefly discuss each of these in turn
(these principles are explored in greater detail in Chapter 1):

� The central role of definitions: A key intellectual contribution of
modern cryptography has been the recognition that formal definitions
of security are an essential first step in the design of any cryptographic
primitive or protocol. The reason, in retrospect, is simple: if you don’t
know what it is you are trying to achieve, how can you hope to know
when you have achieved it? As we will see in this book, cryptographic
definitions of security are quite strong and—at first glance—may appear
impossible to achieve. One of the most amazing aspects of cryptography
is that efficient constructions satisfying such strong definitions can be
proven to exist (under rather mild assumptions).

� The importance of precise assumptions: As will be explained in
Chapters 2 and 3, many cryptographic constructions cannot currently be
proven secure unconditionally. Security, instead, generally relies on some
widely believed (though unproven) assumption(s). The modern crypto-
graphic approach dictates that any such assumptions must be clearly
stated and unambiguously defined. This not only allows for objective
evaluation of the assumptions but, more importantly, enables rigorous
proofs of security (as described next).

xv

xvi

� The possibility of proofs of security: The previous two principles
serve as the basis for the idea that cryptographic constructions can be
proven secure with respect to clearly stated definitions of security and
relative to well-defined cryptographic assumptions. This concept is the
essence of modern cryptography, and is what has transformed the field
from an art to a science.

The importance of this idea cannot be overemphasized. Historically,
cryptographic schemes were designed in a largely heuristic fashion, and
were deemed to be secure if the designers themselves could not find
any attacks. In contrast, modern cryptography advocates the design
of schemes with formal, mathematical proofs of security in well-defined
models. Such schemes are guaranteed to be secure (with respect to a
certain security definition) unless the underlying assumption is false.
By relying on long-standing assumptions, it is thus possible to obtain
schemes that are extremely unlikely to be broken.

A unified approach. The above principles of modern cryptography are rel-
evant not only to the “theory of cryptography” community. The importance
of precise definitions is, by now, widely understood and appreciated by de-
velopers and security engineers who use cryptographic tools to build secure
systems, and rigorous proofs of security have become one of the requirements
for cryptographic schemes to be standardized.

Changes in the Third Edition

In preparing the third edition, we have continued to integrate a more prac-
tical perspective without sacrificing a rigorous approach. This is reflected in
a number of changes and additions as compared to the second edition:

� We have divided our treatment of symmetric-key encryption into two
parts: Chapter 3 deals with security against “passive” attacks (i.e.,
CPA-security), while Chapter 5 addresses “active” attacks (i.e., CCA-
security and authenticated encryption). Besides breaking up what was
previously a long chapter, this also allows us to introduce message au-
thentication codes before discussing active attacks against encryption
schemes.

� With an eye toward symmetric-key schemes used in practice, we have
improved our coverage of stream ciphers and stream-cipher modes of
operation (Sections 3.6.1 and 3.6.2); added a treatment of nonce-based
encryption (Section 3.6.4); and incorporated material about standard-
ized schemes such as GMAC and Poly1305 (Section 4.5) as well as GCM,
CCM, and ChaCha20-Poly1305 (Section 5.3.2).

� With similar motivation, we have added sections on the ChaCha20
stream cipher and SHA-3 to Chapter 7. As part of our discussion about
SHA-3, we also describe the sponge construction.

xvii

� We have further increased our coverage of elliptic-curve cryptography
(Section 9.3.4), including a discussion of elliptic curves used in practice.

� Our treatment of TLS in Section 13.7 has been updated to reflect the
latest version (TLS 1.3).

� Reflecting recent trends, we have added a chapter (Chapter 14) describ-
ing the impact of quantum computers on cryptography, and providing
examples of “post-quantum” encryption and signature schemes.

For those currently using the first edition of our book, as well as for reference,
we also summarize the changes/additions we have already made in the second
edition (all of which remain here):

� We have increased our coverage of stream ciphers, including stream-
cipher modes of operation as well as stream-cipher design principles
and examples of stream ciphers used in practice.

� We have emphasized the importance of authenticated encryption and
secure communication sessions in Sections 5.2–5.4.

� We have moved our treatment of hash functions into its own chapter
(Chapter 6), and have added a section on hash-function design principles
and widely used constructions (Section 7.3). We have also improved our
treatment of generic attacks on hash functions, including a discussion
of rainbow tables (Section 6.4.3).

� We have included several important attacks on cryptographic imple-
mentations that arise in practice, including chosen-plaintext attacks on
chained-CBC encryption (Section 3.6.3), timing attacks on MAC verifi-
cation (Section 4.2), and padding-oracle attacks on CBC-mode encryp-
tion (Section 5.1.1).

� After much deliberation, we have decided to introduce the random-
oracle model earlier in the book (Section 6.5). This has several benefits,
including allowing for an integrated treatment of standardized public-
key encryption and signature schemes in Chapters 12 and 13.

� We have strengthened our coverage of elliptic-curve cryptography (Sec-
tion 9.3.4) and have added a discussion of its impact on recommended
key lengths (Section 10.4).

� In the chapter on public-key encryption, we introduce the KEM/DEM
paradigm as a form of hybrid encryption (see Section 12.3). We also
cover DHIES/ECIES in addition to the RSA PKCS #1 standards.

� In the chapter on digital signatures, we now describe the construction of
signatures from identification schemes using the Fiat–Shamir transform,
with the Schnorr signature scheme as a prototypical example. We have

xviii

also improved our coverage of DSA/ECDSA. We include brief discus-
sions of SSL/TLS and signcryption, both of which serve as culminations
of material covered up to that point.

� In the “advanced topics” chapter, we have amplified our treatment of
homomorphic encryption, and have added sections on secret sharing and
threshold encryption.

Beyond the above, we have also edited the entire book to make extensive
corrections as well as smaller adjustments, including more worked examples,
to improve the exposition. Several additional exercises have also been added.

Guide to Using This Book

This section is intended primarily for instructors seeking to adopt this book
for their course, though the student picking up this book on his or her own
may also find it a useful overview.

Required background. We have structured the book so the only formal
prerequisite is a course on discrete mathematics. Even here we rely on very
little: we only assume familiarity with basic (discrete) probability and mod-
ular arithmetic. Students reading this book are also expected to have had
some exposure to algorithms, mainly to be comfortable reading pseudocode
and to be familiar with big-O notation. Many of these concepts are reviewed
in Appendix A and/or when first used in the book.

Notwithstanding the above, the book does use definitions, proofs, and ab-
stract mathematical concepts, and therefore requires some mathematical ma-
turity. In particular, the reader is assumed to have had some exposure to
proofs, whether in an upper-level mathematics course or a course on discrete
mathematics, algorithms, or computability theory.

Suggestions for course organization. The core material of this book,
which we recommend should be covered in any introductory course on cryp-
tography, consists of the following (in all cases, starred sections are excluded;
more on this below):

� Introduction and Classical Cryptography: Chapters 1 and 2 discuss clas-
sical cryptography and set the stage for modern cryptography.

� Private-Key (Symmetric) Cryptography: Chapter 3–5 provide a thor-
ough treatment of private-key encryption and message authentication,
and Chapter 6 covers hash functions and their applications. (Section 6.6
could be skipped if that material will not be used later.)

We also highly recommend covering at least part of Chapter 7, which
deals with symmetric-key primitives used in practice; in our experience
students really enjoy this material, and it makes the abstract ideas they

xix

have learned in previous chapters more concrete. Although we do con-
sider this core material, it is not used in the remainder of the book and
so can be safely skipped if desired.

� Public-Key Cryptography: Chapter 9 gives a self-contained introduction
to all the number theory needed for the remainder of the book. The
material in The public-key revolution, including Diffie–Hellman key ex-
change, is described in Chapter 11. Chapters 12 and 13 go into detail
about public-key encryption and digital signatures; those pressed for
time can pick and choose what to cover appropriately.

We are typically able to cover most of the above in a one-semester (35-hour)
undergraduate or Masters-level course (omitting some proofs and skipping
some topics, as needed) or, with some changes to add more material on the-
oretical foundations, in the first three-quarters of a one-semester PhD-level
course. Instructors with more time available can proceed at a more leisurely
pace or incorporate additional topics, as discussed below.

Those wishing to cover additional material, in either a longer course or a
faster-paced graduate course, will find that the book is structured to allow
flexible incorporation of other topics as time permits (and depending on the
interests of the instructor). Specifically, the starred (*) sections and chapters
may be covered in any order, or skipped entirely, without affecting the overall
flow of the book. We have taken care to ensure that none of the core (i.e.,
unstarred) material depends on any of the starred material and, for the most
part, the starred sections do not depend on each other. (When they do, this
dependence is explicitly noted.)

We suggest the following from among the starred topics for those wishing
to give their course a particular flavor:

� Theory: A more theoretically inclined course could include material
from Section 3.2.2 (semantic security); Chapter 8 (one-way functions
and hard-core predicates, and constructing pseudorandom generators,
functions, and permutations from one-way permutations); Section 9.4
(one-way functions and collision-resistant hash functions from number-
theoretic assumptions); Section 12.5.3 (RSA encryption without random
oracles); and Section 15.3 (cryptographic protocols).

� Mathematics: A course directed at students with a strong mathemat-
ics background—or being taught by someone who enjoys this aspect
of cryptography—could incorporate Section 4.6 (information-theoretic
MACs in finite fields); some of the more advanced number theory from
Chapter 9 (e.g., the Chinese remainder theorem, the Miller–Rabin pri-
mality test, and more on elliptic curves); and all of Chapter 10 (algo-
rithms for factoring and computing discrete logarithms).

In either case, a selection of advanced public-key schemes from Chapters 14
and 15 could also be included.

xx

Feedback and Errata

Our goal in writing this book was to make modern cryptography accessible
to a wide audience beyond the “theoretical computer science” community. We
hope you will let us know if we have succeeded! The many enthusiastic emails
we have received in response to our first and second editions have made the
whole process of writing this book worthwhile.

We are always happy to receive feedback. We hope there are no errors
or typos in the book; if you do find any, however, we would greatly ap-
preciate it if you let us know. You can email your comments and errata
to jkatz2@gmail.com and lindell@biu.ac.il; please put “Introduction to
Modern Cryptography” in the subject line. A list of known errata will be
maintained at http://www.cs.umd.edu/~jkatz/imc.html.

Acknowledgments

We continue to be grateful to all those who have sent us comments, sugges-
tions, and corrections for the book. We would like to thank, in particular, Jack
Aaron, Rounak Agarwal, Ionut Ambrosie, Dan Bernstein, Jeremiah Blocki,
David Cash, Claude Crépeau, Dana Dachman-Soled, Daniel Escudero, Pooya
Farshim, Rolf Haenni, Imededdine Jerbi, Ali El Kaafarani, Zach Kissel, An-
gelique Faye Loe, Wilde Luo, Tal Malkin, Alejandro Mardones, Kurt Pan,
Greg Plaxton, Kyle Andrew Porter, Christian Schaffner, Jim Tallent, Hanh
Tang, Markus Triska, and Rui Xue for their feedback on the second edition.

Finally, we thank our wives and children for all their support during the now
over a decade(!) we have spent working on this project.

http://www.cs.umd.edu
mailto:lindell@biu.ac.il
mailto:jkatz2@gmail.com

Part I

Introduction and Classical
Cryptography

http://taylorandfrancis.com

Chapter 1

Introduction

1.1 Cryptography and Modern Cryptography

The Concise Oxford English Dictionary (9th ed.) defines cryptography as
“the art of writing or solving codes.” This is historically accurate, but does not
capture the current breadth of the field or its modern scientific foundations.
The definition focuses solely on the codes that have been used for centuries to
enable secret communication. But cryptography nowadays encompasses much
more than this: it deals with mechanisms for ensuring integrity, techniques
for exchanging secret keys, protocols for authenticating users, electronic vot-
ing, cryptocurrency, and more. Without attempting to provide a complete
characterization, we would say that modern cryptography involves the study
of mathematical techniques for securing digital information, systems, and dis-
tributed computations against adversarial attacks.

The dictionary definition also refers to cryptography as an art. Until late in
the 20th century cryptography was, indeed, largely an art. Constructing good
codes, or breaking existing ones, relied on creativity and a developed sense of
how codes work. There was little theory to rely on and, for a long time, no
working definition of what constitutes a good code. Beginning in the 1970s
and 1980s, this picture of cryptography radically changed. A rich theory
began to emerge, enabling the rigorous study of cryptography as a science
and a mathematical discipline. This perspective has, in turn, influenced how
researchers think about the broader field of computer security.

Another very important difference between classical cryptography (say, be-
fore the 1980s) and modern cryptography relates to its adoption. Historically,
the major consumers of cryptography were military organizations and gov-
ernments. Today, cryptography is everywhere! If you have ever authenticated
yourself by typing a password, purchased something by credit card over the
Internet, or downloaded a verified update for your operating system, you have
used cryptography. And, more and more, programmers with relatively little
experience are being asked to “secure” the applications they write by incor-
porating cryptographic mechanisms.

In short, cryptography has gone from a heuristic set of techniques for ensur-
ing secret communication for a few niche applications to a science that helps
secure systems more generally for ordinary people around the world.

1

2 Introduction to Modern Cryptography

Goals of this book. Our goal is to make the basic principles of modern
cryptography accessible to students of computer science, electrical engineer-
ing, or mathematics; to professionals who want to incorporate cryptography
in systems or software they are developing; and to anyone with a basic level
of mathematical maturity who is interested in understanding this fascinating
field. After completing this book, the reader should appreciate the secu-
rity guarantees common cryptographic primitives are intended to provide; be
aware of standard (secure) constructions of such primitives; and be able to
perform a basic evaluation of new schemes based on their proofs of security
(or lack thereof) and the mathematical assumptions underlying those proofs.
It is not our intention for readers to become experts—or to be able to de-
sign new cryptosystems—after finishing this book, but we have attempted to
provide the terminology and foundational material needed for the interested
reader to subsequently study the more advanced literature in this field.

This chapter. The focus of this book is the formal study of modern cryp-
tography, but we begin in this chapter with a more informal discussion of
“classical” cryptography. Besides allowing us to ease into the material, our
treatment in this chapter will also serve to motivate the more rigorous ap-
proach we will be taking in the rest of the book. Our intention here is not to
be exhaustive and, as such, this chapter should not be taken as a representa-
tive historical account. The reader interested in the history of cryptography
is invited to consult the references at the end of this chapter.

1.2 The Setting of Private-Key Encryption

Classical cryptography was concerned with designing and using codes (or ci-
phers) that enable two parties to send messages while keeping those messages
hidden from an eavesdropper who can monitor all communication between
them. In modern parlance, codes are called encryption schemes and that is
the terminology we will use here. Security of all classical encryption schemes
relies on a secret—a key—shared by the communicating parties in advance
and unknown to the eavesdropper. This scenario, in which the communicating
parties share some secret information in advance, is known as the private-key
(or shared-/secret-key) setting, and private-key encryption is one example of a
cryptographic primitive used in this setting. Before describing some historical
encryption schemes, we discuss private-key encryption more generally.

In the context of private-key encryption, two parties share a key and use
that key when they want to communicate secretly. One party can send a
message, or plaintext, to the other by using the shared key to encrypt (or
“scramble”) the message and thus obtain a ciphertext that is transmitted to
the receiver. The receiver uses the same key to decrypt (or “unscramble”) the

Introduction 3

k k

?

m m

encryption decryption

ciphertext

FIGURE 1.1: One common use case for private-key cryptography (here,
encryption): two parties share a key that they use to communicate securely.

ciphertext and recover the original message. The same key is used to convert
the plaintext into a ciphertext and back; that is why this setting is also known
as the symmetric-key setting, where the symmetry lies in the fact that both
parties hold the same key that is used for encryption and decryption. This is in
contrast to asymmetric, or public-key, encryption (introduced in Chapter 11),
where encryption and decryption use different keys.

As already noted, the goal of encryption is to keep the plaintext hidden from
an eavesdropper who can monitor the communication channel and observe the
ciphertext. We discuss this in more detail later in this chapter, and spend a
great deal of time in Chapters 2, 3, and 5 formally defining this goal.

There are two canonical applications of private-key cryptography. In the
first (cf. Figure 1.1), the two communication parties are separated in space,
e.g., a worker in New York communicating with her colleague in California.
These two users are assumed to have been able to securely share a key in
advance of their communication. (Note that if one party simply sends the key
to the other over the public communication channel, then the eavesdropper
obtains the key also!) This could be accomplished, for example, by having
the parties physically meet in a secure location to share a key before they
separate; in the example just given, the co-workers might arrange to share
a key when they are both in the New York office. In other cases, sharing a
key securely is more difficult. For the next several chapters we simply assume
that sharing a key is possible; we revisit this issue in Chapter 11.

The second widespread application of private-key cryptography involves the
same party communicating with itself over time. (See Figure 1.2.) Consider,
e.g., disk encryption, where a user encrypts some plaintext and stores the
resulting ciphertext on his hard drive; the same user will return at a later
point in time to decrypt the ciphertext and recover the original data. The
hard drive here serves as the communication channel on which an attacker

4 Introduction to Modern Cryptography

k

k

?

m

encryption

decryption

ciphertext

m

FIGURE 1.2: Another common use case of private-key cryptography
(again, encryption): a single user stores data securely over time.

might eavesdrop if it can gain access to the hard drive and read its contents.
“Sharing” the key is now trivial, though the user still needs a secure and
reliable way to remember/store the key for use at a later point in time.

The syntax of encryption. Formally, a private-key encryption scheme
is defined by specifying a message space M along with three algorithms: a
procedure for generating keys (Gen), a procedure for encrypting (Enc), and
a procedure for decrypting (Dec). The message space M defines the set of
“legal” messages, i.e., those supported by the scheme. The algorithms of the
scheme have the following functionality:

1. The key-generation algorithm Gen is a probabilistic algorithm that out-
puts a key k chosen according to some distribution.

2. The encryption algorithm Enc takes as input a key k and a message m
and outputs a ciphertext c. We denote by Enck(m) the encryption of
the plaintext m using the key k.

3. The decryption algorithm Dec takes as input a key k and a ciphertext c
and outputs a plaintext m. We denote the decryption of the ciphertext c
using the key k by Deck(c).

An encryption scheme must satisfy the following correctness requirement: for
every key k output by Gen and every message m ∈M, it holds that

Deck(Enck(m)) = m.

In words: encrypting a message and then decrypting the resulting ciphertext
using the same key yields the original message.

Introduction 5

The set of all possible keys output by the key-generation algorithm is called
the key space and is denoted by K. Almost always, Gen simply chooses a
key uniformly from the key space; in fact, one can assume without loss of
generality that this is the case (see Exercise 2.1).

Reviewing our earlier discussion, an encryption scheme can be used by two
parties who wish to communicate secretly as follows. First, Gen is run to
obtain a key k that the parties share. Later, when one party wants to send a
plaintext m to the other, she computes c := Enck(m) and sends the resulting
ciphertext c over the public channel to the other party.1 Upon receiving c,
the other party computes m := Deck(c) to recover the original plaintext.

Keys and Kerckhoffs’ principle. As should be clear from the above, if an
eavesdropping adversary knows the algorithm Dec as well as the key k shared
by the two communicating parties, then that adversary will be able to decrypt
any ciphertexts transmitted by those parties. It is for this reason that the
communicating parties must share the key k securely and keep k completely
hidden from everyone else. Perhaps they should keep the decryption algorithm
Dec secret, also? For that matter, would it not be better for them to keep all
the details of the encryption scheme secret?

Auguste Kerckhoffs [114, 115] argued the opposite in the late 19th century
when elucidating several design principles for military ciphers. One of the
most important of these, now known simply as Kerckhoffs’ principle, was:

The cipher method must not be required to be secret, and it must
be able to fall into the hands of the enemy without inconvenience.

That is, an encryption scheme should be designed to be secure even if an
eavesdropper knows all the details of the scheme, so long as the attacker
doesn’t know the key being used. Stated differently, security should not rely
on the encryption scheme being secret; instead, Kerckhoffs’ principle demands
that security rely solely on secrecy of the key.

There are three primary arguments in favor of Kerckhoffs’ principle. The
first is that it is significantly easier to maintain secrecy of a short key than
to keep secret a (more complicated) encryption scheme. This is especially
true when encryption is used widely. For example, consider the case where
encryption is used for communication between all pairs of employees in some
organization. Unless each pair of parties use their own, unique scheme, some
parties will know the scheme being used by others. Moreover, information
about the scheme might be leaked by one of those employees (say, after being
fired), or obtained by an attacker using reverse engineering. In short, it is
simply unrealistic to assume that the encryption scheme will remain secret.

Second, in case the honest parties’ shared, secret information is ever ex-
posed, it will be much easier for them to change the key than to replace the

1We use “:=” to denote deterministic assignment, and assume for now that Enc is deter-
ministic. A list of common notation can be found in the back of the book.

6 Introduction to Modern Cryptography

encryption scheme. (Consider updating a file versus installing a new pro-
gram.) Moreover, it is relatively trivial to generate a new random secret,
whereas it would be a huge undertaking to design a new encryption scheme.

Finally, prior to widespread deployment of an encryption scheme, there is
a significant benefit to encouraging public review of that scheme in order to
check for possible weaknesses. Going further, it is desirable to standardize en-
cryption schemes so that (1) compatibility between different users is ensured
and (2) the general public will use strong schemes that have undergone pub-
lic scrutiny. Overall, perhaps counter-intuitively, it is advantageous to have
broad, public dissemination of the full details of an encryption scheme—the
exact opposite of keeping the scheme secret.

Nowadays Kerckhoffs’ principle is understood as advocating that the entire
cryptographic design process be made completely public, in stark contrast to
the notion of “security by obscurity” that suggests keeping algorithms secret
improves security. In fact, it is very dangerous to use a proprietary, “home-
brewed” algorithm (i.e., a non-standardized algorithm designed in secret) since
published designs undergo public peer review and are therefore likely to be
stronger. Many years of experience have demonstrated that it is very difficult
to construct good cryptographic schemes. Our confidence in the security of a
scheme is much higher if it has been extensively studied by experts (beyond
the designers of the scheme) and no flaws have been found. As simple and
obvious as it may sound, the principle of open cryptographic design (i.e.,
Kerckhoffs’ principle) has been ignored over and over again with disastrous
results. Fortunately, today there are several secure, standardized, and widely
available cryptosystems and no reason to use anything else.

1.3 Historical Ciphers and Their Cryptanalysis

In our study of “classical” cryptography we will examine some historical en-
cryption schemes and show that they are insecure. Our main aims in present-
ing this material are (1) to highlight the weaknesses of heuristic approaches to
cryptography, and thus motivate the modern, rigorous approach that will be
taken in the rest of the book, and (2) to demonstrate that simple approaches
to achieving secure encryption are unlikely to succeed. Along the way, we will
present some central principles of cryptography inspired by the weaknesses of
these historical schemes.

In this section, plaintext characters are written in lower case and cipher-
text characters are written in UPPER CASE for clarity.

Caesar’s cipher. One of the oldest recorded ciphers, known as Caesar’s
cipher, is described in De Vita Caesarum, Divus Iulius (“The Lives of the
Caesars, the Deified Julius”), written in approximately 110 CE:

Introduction 7

There are also letters of his to Cicero, as well as to his intimates
on private affairs, and in the latter, if he had anything confidential
to say, he wrote it in cipher, that is, by so changing the order of
the letters of the alphabet, that not a word could be made out. . .

Julius Caesar encrypted by shifting the letters of the alphabet 3 places for-
ward: a was replaced with D, b with E, and so on. At the very end of the
alphabet, the letters wrap around and so z was replaced with C, y with B, and
x with A. For example, encryption of the message begin the attack now,
with spaces removed, gives:

EHJLQWKHDWWDFNQRZ.

An immediate problem with this cipher is that the encryption method is fixed ;
there is no key. Thus, anyone learning how Caesar encrypted his messages
would be able to decrypt effortlessly.

Interestingly, a variant of this cipher called ROT-13 (where the shift is 13
places instead of 3) is still used nowadays in various online forums. It is
understood that this does not provide any cryptographic security; it is used
merely to ensure that the text (say, a movie spoiler) is unintelligible unless
the reader of a message makes the conscious decision to decrypt it.

The shift cipher and the sufficient key-space principle. The shift
cipher can be viewed as a keyed variant of Caesar’s cipher.2 Specifically, in
the shift cipher the key k is a number between 0 and 25. To encrypt, letters are
shifted as in Caesar’s cipher, but now by k places. Mapping this to the syntax
of encryption described earlier, the message space consists of arbitrary length
strings of English letters with punctuation, spaces, and numerals removed, and
with no distinction between upper and lower case. Algorithm Gen outputs a
uniform key k ∈ {0, . . . , 25}; algorithm Enc takes a key k and a plaintext and
shifts each letter of the plaintext forward k positions (wrapping around at the
end of the alphabet); and algorithm Dec takes a key k and a ciphertext and
shifts every letter of the ciphertext backward k positions.

A more mathematical description is obtained by equating the English al-
phabet with the set {0, . . . , 25} (so a = 0, b = 1, etc.). The message space
M is then any finite sequence of integers from this set. Encryption of the
message m = m1 · · ·m` (where mi ∈ {0, . . . , 25}) using key k is given by

Enck(m1 · · ·m`) = c1 · · · c`, where ci = [(mi + k) mod 26].

(The notation [a mod N] denotes the remainder of a upon division by N ,
with 0 ≤ [a mod N] < N . We refer to the process mapping a to [a mod N]
as reduction modulo N ; see also Chapter 9.) Decryption of a ciphertext c =
c1 · · · c` using key k is given by

Deck(c1 · · · c`) = m1 · · ·m`, where mi = [(ci − k) mod 26].

2In some books, “Caesar’s cipher” and “shift cipher” are used interchangeably.

8 Introduction to Modern Cryptography

Is the shift cipher secure? Before reading on, try to decrypt the following
ciphertext that was generated using the shift cipher and a secret key k:

OVDTHUFWVZZPISLRLFZHYLAOLYL.

Is it possible to recover the message without knowing k? Actually, it is trivial!
The reason is that there are only 26 possible keys. So one can try to decrypt
the ciphertext using every possible key and thereby obtain a list of 26 candi-
date plaintexts. The correct plaintext will certainly be on this list; moreover,
if the ciphertext is “long enough” then the correct plaintext will likely be the
only candidate on the list that “makes sense.” By scanning the list of candi-
dates it is easy to recover the original plaintext. (This is not necessarily true,
but will be true most of the time. Even when it is not, this attack narrows
down the set of potential plaintexts to at most 26 possibilities.)

An attack that involves trying every possible key is called a brute-force or
exhaustive-search attack. Clearly, for an encryption scheme to be secure it
must not be vulnerable to such an attack.3 This observation is known as the
sufficient key-space principle:

Any secure encryption scheme must have a key space that is suffi-
ciently large to make an exhaustive-search attack infeasible.

One can debate what amount of effort makes a task “infeasible,” and an exact
determination of feasibility depends on both the resources of a potential at-
tacker and the length of time for which the sender and receiver want to ensure
secrecy of their communication. Nowadays, attackers can use supercomput-
ers, thousands of cloud servers, or graphics processing units (GPUs) to speed
up brute-force attacks. To protect against such attacks the key space must
be very large—say, of size at least 280, and even larger in many settings.

The sufficient key-space principle gives a necessary condition for security,
but not a sufficient one. The next example demonstrates this.

The mono-alphabetic substitution cipher. In the shift cipher, the key
defines a map from each letter of the (plaintext) alphabet to some letter of
the (ciphertext) alphabet, where the map is a fixed shift determined by the
key. In the mono-alphabetic substitution cipher the key also defines a map
on the alphabet, but the map is now allowed to be arbitrary subject only to
the constraint that it be one-to-one (so that decryption is possible). The key
space thus consists of all bijections, or permutations, of the alphabet. So, for
example, the key that defines the following permutation

a b c d e f g h i j k l m n o p q r s t u v w x y z
X E U A D N B K V M R O C Q F S Y H W G L Z I J P T

3Technically, this is only true if the message space is larger than the key space; we will
return to this point in Chapter 2. Encryption schemes used in practice have this property.

Introduction 9

(in which a maps to X, etc.) would encrypt the message tellhimaboutme to
GDOOKVCXEFLGCD. The name of this cipher comes from the fact that the key
defines a (fixed) substitution for individual characters of the plaintext.

Assuming the English alphabet is being used, the key space is of size 26! =
26 · 25 · 24 · · · 2 · 1, or approximately 288, and a brute-force attack is infeasible.
This, however, does not mean the cipher is secure! In fact, as we will show
next, it is easy to break this scheme even though it has a large key space.

Assume English-language text is being encrypted (i.e., the text is gram-
matically correct English writing, not just text written using characters of
the English alphabet). The mono-alphabetic substitution cipher can then be
attacked by utilizing statistical properties of the English language. (Of course,
the same idea works for any language.) The attack relies on the facts that:

1. For any key, the mapping of each letter is fixed, and so if e is mapped
to D, then every appearance of e in the plaintext will result in the ap-
pearance of D in the ciphertext.

2. The frequency distribution of individual letters in English-language text
is known. (See Figure 1.3.) Of course, very short texts may deviate from
this distribution, but even texts consisting of only a few sentences tend
to have distributions that are very close to it.

FIGURE 1.3: Average letter frequencies for English-language text.

The attack works by tabulating the frequency distribution of characters in
the ciphertext, i.e., recording that A appeared 12% of the time, B appeared
3% of the time, and so on. These frequencies are then compared to the known
letter frequencies of normal English text. One can then guess parts of the
mapping defined by the key based on the observed frequencies. For example,

10 Introduction to Modern Cryptography

since e is the most frequent letter in English, one can guess that the most
frequent character in the ciphertext corresponds to the plaintext character e,
and so on. Some of the guesses may be wrong, but enough of the guesses
will be correct to enable relatively quick decryption (especially utilizing other
knowledge of English, such as the fact that q is generally followed by u, and
that h is likely to appear between t and e). We conclude that although the
mono-alphabetic substitution cipher has a large key space, it is still insecure.

It should not be surprising that the mono-alphabetic substitution cipher
can be quickly broken, since puzzles based on this cipher are common (and
are solved by some people before their morning coffee!). We recommend that
you try to decipher the following ciphertext—this should convince you how
easy it is to carry out the attack. (Use Figure 1.3.)

JGRMQOYGHMVBJWRWQFPWHGFFDQGFPFZRKBEEBJIZQQOCIBZKLFAFGQVFZFWWE

OGWOPFGFHWOLPHLRLOLFDMFGQWBLWBWQOLKFWBYLBLYLFSFLJGRMQBOLWJVFP

FWQVHQWFFPQOQVFPQOCFPOGFWFJIGFQVHLHLROQVFGWJVFPFOLFHGQVQVFILE

OGQILHQFQGIQVVOSFAFGBWQVHQWIJVWJVFPFWHGFIWIHZZRQGBABHZQOCGFHX

An improved attack on the shift cipher. We can use letter-frequency
tables to give an improved attack on the shift cipher. Our previous attack on
the shift cipher required decrypting the ciphertext using each possible key, and
then checking which key results in a plaintext that “makes sense.” A drawback
of this approach is that it is somewhat difficult to automate, since it is difficult
for a computer to check whether a given plaintext “makes sense.” (We do not
claim that it would be impossible, as the attack could be automated using a
dictionary of valid English words.) More importantly, there may be cases—we
will see one later—where the plaintext characters follow the same distribution
as English-language text even though the plaintext itself is not valid English,
in which case checking for a plaintext that “makes sense” will not work.

We now describe an attack that does not suffer from these drawbacks. As
before, associate the letters of the English alphabet with 0, . . . , 25. Let pi,
with 0 ≤ pi ≤ 1, denote the frequency of the ith letter in normal English text
(i.e., p0 = 0.082 using Figure 1.3). Calculation using Figure 1.3 gives

25∑
i=0

p2
i ≈ 0.065. (1.1)

Now, say we are given some ciphertext and let qi denote the frequency of
the ith letter of the alphabet in this ciphertext; i.e., qi is simply the number
of occurrences of the ith letter of the alphabet in the ciphertext divided by
the length of the ciphertext. If the key is k, then pi should be roughly equal
to qi+k for all i because the ith letter is mapped to the (i+ k)th letter. (We
use i+k instead of the more cumbersome [i+k mod 26].) Thus, if we compute

Ij
def
=

25∑
i=0

pi · qi+j (1.2)

Introduction 11

for each value of j ∈ {0, . . . , 25}, then we expect to find that Ik ≈ 0.065
(where k is the actual key), whereas Ij for j 6= k will be different from 0.065.
This leads to a key-recovery attack that is easy to automate: compute Ij for
all j, and then output the value k for which Ik is closest to 0.065.

The Vigenère (poly-alphabetic shift) cipher. The statistical attack on
the mono-alphabetic substitution cipher can be carried out because the key
defines a fixed mapping that is applied letter-by-letter to the plaintext. Such
an attack could be thwarted by using a poly-alphabetic substitution cipher
where the key instead defines a mapping that is applied on blocks of plaintext
characters. Here, for example, a key might map the 2-character block ab to
DZ while mapping ac to TY; note that the plaintext character a does not get
mapped to a fixed ciphertext character. Poly-alphabetic substitution ciphers
“smooth out” the frequency distribution of characters in the ciphertext and
make it harder to perform statistical analysis.

The Vigenère cipher, a poly-alphabetic shift cipher that is a special case
of the above, can be viewed as applying different instances of the shift cipher
to different parts of the plaintext. The key is now viewed as a string of
letters; encryption is done by shifting each plaintext character by the amount
indicated by the next character of the key, wrapping around in the key when
necessary. (This degenerates to the shift cipher if the key has length 1.)
For example, encryption of the message tellhimaboutme using the key cafe

would work as follows:

Plaintext: tellhimaboutme
Key (repeated): cafecafecafeca
Ciphertext: VEQPJIREDOZXOE

(The key need not be an English word.) This is exactly the same as encrypting
the first, fifth, ninth, . . . characters with the shift cipher and key c; the second,
sixth, tenth, . . . characters with key a; the third, seventh, . . . characters
with f; and the fourth, eighth, . . . characters with e. Notice that in the above
example l is mapped once to Q and once to P. Furthermore, the ciphertext
character E is sometimes obtained from e and sometimes from a. Thus, the
character frequencies of the ciphertext are “smoothed out,” as desired.

If the key is sufficiently long, cracking this cipher appears daunting. Indeed,
it had been considered by many to be “unbreakable,” and although it was
invented in the 16th century, a systematic attack on the scheme was only
devised hundreds of years later.

Attacking the Vigenère cipher. A first observation in attacking the Vi-
genère cipher is that if the length of the key is known then attacking the
cipher is relatively easy. Specifically, say the length of the key, also called
the period, is t. Write the key k as k = k1 · · · kt where each ki is a letter
of the alphabet. An observed ciphertext c = c1c2 · · · can be divided into t
parts where each part can be viewed as having been encrypted using the shift

12 Introduction to Modern Cryptography

cipher. Specifically, for all j ∈ {1, . . . , t} the ciphertext characters

cj , cj+t, cj+2t, . . .

all resulted by shifting the corresponding characters of the plaintext by kj
positions. We refer to the above sequence of characters as the jth stream.
All that remains is to determine, for each of the t streams, which of the 26
possible shifts was used. This is not as trivial as in the case of the shift
cipher, because it is no longer possible to simply try different shifts in an
attempt to determine when decryption of a stream “makes sense.” (Recall
that a stream does not correspond to consecutive letters in the plaintext.)
Furthermore, trying to guess the entire key k at once would require a brute-
force search through 26t different possibilities, which is infeasible for large t.
Nevertheless, we can still use letter-frequency analysis to analyze each stream
independently. Namely, for each stream we tabulate the frequency of each
ciphertext character and then check which of the 26 possible shifts yields the
“right” probability distribution for that stream. Since this can be carried out
independently for each stream (i.e., for each character of the key), this attack
takes time 26 · t rather than time 26t.

A more principled, easier-to-automate approach is to apply the improved
attack on the shift cipher (discussed earlier) to each stream. That attack did
not rely on checking for a plaintext that “made sense,” but only relied on the
underlying frequency distribution of characters in the plaintext.

Either of the above approaches gives a successful attack when the key length
is known. What if the key length is unknown?

Note first that as long as the maximum length T of the key is not too large,
we can simply repeat the above attack T times (once for each possible value
t ∈ {1, . . . , T}). This leads to at most T different candidate plaintexts, among
which the true plaintext will likely be easy to identify. So an unknown key
length is not a serious obstacle.

There are also more efficient ways to determine the key length from an
observed ciphertext. One is to use Kasiski’s method, published in the mid-
19th century. The first step here is to identify repeated patterns of length 2
or 3 in the ciphertext. These are likely the result of certain bigrams or trigrams
that appear frequently in the plaintext. For example, consider the common
word “the.” This word will be mapped to different ciphertext characters,
depending on its position in the plaintext. However, if it appears twice in
the same relative position, then it will be mapped to the same ciphertext
characters. For a sufficiently long plaintext, there is thus a good chance that
“the” will be mapped repeatedly to the same ciphertext characters.

Consider the following concrete example with the key beads (spaces have
been added for clarity):

Plaintext: the man and the woman retrieved the letter from the post office
Key: bea dsb ead sbe adsbe adsbeadsb ead sbeads bead sbe adsb eadsbe
Ciphertext: ULE PSO ENG LII WREBR RHLSMEYWE XHH DFXTHJ GVOP LII PRKU SFIADI

Introduction 13

The word the is mapped sometimes to ULE, sometimes to LII, and sometimes
to XHH. However, it is mapped twice to LII, and in a long enough text it is
likely that it would be mapped multiple times to each possibility. Kasiski’s ob-
servation was that the distance between such repeated appearances (assuming
they are not coincidental) is a multiple of the period. (In the above example,
the period is 5 and the distance between the two appearances of LII is 30,
which is 6 times the period.) Therefore, the greatest common divisor of the
distances between repeated sequences (assuming they are not coincidental)
will yield the key length t or a multiple thereof.

An alternative approach, called the index of coincidence method, is more
methodical and hence easier to automate. Recall that if the key length is t,
then the ciphertext characters

c1, c1+t, c1+2t, . . .

in the first stream all resulted from encryption using the same shift. This
means that the frequencies of the characters in this sequence are expected
to be identical to the character frequencies of standard English text in some
shifted order. In more detail: let qi denote the observed frequency of the ith
letter in this stream; this is simply the number of occurrences of the ith letter
of the alphabet divided by the total number of letters in the stream. If the
shift used here is j (i.e., if the first character k1 of the key is equal to j), then
for all i we expect qi+j ≈ pi, where pi is the frequency of the ith letter of
the alphabet in standard English text. (Once again, we use qi+j in place of
q[i+j mod 26].) But this means that the sequence q0, . . . , q25 is just the sequence
p0, . . . , p25 shifted j places. As a consequence (cf. Equation (1.1)):

25∑
i=0

q2
i ≈

25∑
i=0

p2
i ≈ 0.065.

This leads to a nice way to determine the key length t. For τ = 1, 2, . . . , T ,
look at the sequence of ciphertext characters c1, c1+τ , c1+2τ , . . . and tabulate
q0, . . . , q25 for this sequence. Then compute

Sτ
def
=

25∑
i=0

q2
i . (1.3)

When τ = t we expect Sτ ≈ 0.065, as discussed above. On the other hand, if τ
is not a multiple of t we expect that all characters will occur with roughly equal
probability in the sequence c1, c1+τ , c1+2τ , . . ., and so we expect qi ≈ 1/26 for
all i. In this case we will obtain

Sτ ≈
25∑
i=0

(
1

26

)2

≈ 0.038.

14 Introduction to Modern Cryptography

The smallest value of τ for which Sτ ≈ 0.065 is thus likely the key length.
One can further validate a guess τ by carrying out a similar calculation using
the second stream c2, c2+τ , c2+2τ , . . ., etc.

Ciphertext length and cryptanalytic attacks. The above attacks on
the Vigenère cipher require a longer ciphertext than the attacks on previous
schemes. For example, the index of coincidence method requires c1, c1+t, c1+2t

(where t is the actual key length) to be sufficiently long in order to ensure
that the observed frequencies are close to what is expected; the ciphertext
itself must then be roughly t times larger. Similarly, the attack we showed
on the mono-alphabetic substitution cipher requires a longer ciphertext than
the attack on the shift cipher (which can work for encryptions of even a single
word). This illustrates that a longer key can, in general, require the crypt-
analyst to obtain more ciphertext in order to carry out an attack. (Indeed,
the Vigenère cipher can be shown to be secure if the key is as long as what is
being encrypted. We will see a related phenomenon in the next chapter.)

Conclusions. We have presented only a few historical ciphers. Beyond their
historical interest, our aim in presenting them was to illustrate some important
lessons. Perhaps the most important is that designing secure ciphers is hard.
The Vigenère cipher remained unbroken for a long time. Far more complex
schemes have also been used. But a complex scheme is not necessarily secure,
and all historical schemes have been broken.

1.4 Principles of Modern Cryptography

As should be clear from the previous section, cryptography was historically
more of an art than a science. Schemes were designed in an heuristic manner
and evaluated based on their perceived complexity or cleverness. A scheme
would be analyzed to see if any attacks could be found; if so, the scheme would
be “patched” to thwart that attack, and the process repeated. Although there
may have been agreement that some schemes were not secure (as evidenced
by an especially damaging attack), there was no agreed-upon notion of what
requirements a “secure” scheme should satisfy, and no way to give evidence
that any specific scheme was secure.

Over the past several decades, cryptography has developed into more of
a science. Schemes are now developed and analyzed in a more systematic
manner, with the ultimate goal being to give a rigorous proof that a given
construction is secure. In order to articulate such proofs, we first need formal
definitions that pin down exactly what “secure” means; such definitions are
useful and interesting in their own right. As it turns out, most cryptographic
proofs rely on currently unproven assumptions about the algorithmic hard-
ness of certain mathematical problems; any such assumptions must be made

Introduction 15

explicit and be stated precisely. An emphasis on definitions, assumptions,
and proofs distinguishes modern cryptography from classical cryptography;
we now discuss these three principles in greater detail.

1.4.1 Principle 1 – Formal Definitions

One of the key contributions of modern cryptography has been the recog-
nition that formal definitions of security are essential for the proper design,
study, evaluation, and usage of cryptographic primitives. Put bluntly:

If you don’t understand what you want to achieve, how can you
possibly know when (or if) you have achieved it?

Formal definitions provide such understanding by giving a clear description of
what threats are in scope and what security guarantees are desired. As such,
definitions can help guide the design of cryptographic schemes. Indeed, it is
much better to formalize what is required before the design process begins,
rather than to come up with a definition post facto once the design is complete.
The latter approach risks having the design phase end when the designers’
patience is exhausted (rather than when the goal has been met), or may result
in a construction achieving more than is needed at the expense of efficiency.

Definitions also offer a way to evaluate and analyze constructions. With a
definition in place, one can study a proposed scheme to see if it achieves the
desired guarantees; in some cases, one can even prove a given construction
secure (see Section 1.4.3) by showing that it meets the definition. On the flip
side, definitions can be used to conclusively show that a given scheme is not
secure, insofar as the scheme does not satisfy the definition. In particular,
observe that the attacks in the previous section do not conclusively demon-
strate that any of the schemes shown there is “insecure.” For example, the
attack on the Vigenère cipher assumed that sufficiently long English text was
being encrypted, but perhaps the Vigenère cipher is “secure” if short English
text, or compressed text (which will have roughly uniform letter frequencies),
is encrypted? It is hard to say without a formal definition in place.

Definitions enable a meaningful comparison of schemes. As we will see, there
can be multiple (valid) ways to define security; the “right” one depends on the
context in which a scheme is used. A scheme satisfying a weaker definition
may be more efficient than another scheme satisfying a stronger definition;
with precise definitions we can properly evaluate the trade-offs between the
two schemes. Along the same lines, definitions enable secure usage of schemes.
Consider deciding which encryption scheme to use for some larger application.
A sound way to approach the problem is to first understand what notion of
security is required for that application, and then find an encryption scheme
satisfying that notion. A side benefit of this approach is modularity : a designer
can “swap out” one encryption scheme and replace it with another (that also
satisfies the necessary definition of security) without having to worry about
affecting security of the overall application.

16 Introduction to Modern Cryptography

Writing a formal definition forces one to think about what is essential to
the problem at hand and what properties are extraneous. Going through the
process often reveals subtleties of the problem that were not obvious at first
glance. We illustrate this next for the case of encryption.

An example: secure encryption. A common mistake is to think that
formal definitions are not needed, or are trivial to come up with, because
“everyone has an intuitive idea of what security means.” This is not the case.
As an example, we consider the case of encryption. (The reader may want to
pause here to think about how they would formally define what it means for
an encryption scheme to be secure.) Although we postpone a formal definition
of secure encryption to subsequent chapters, we describe here informally what
such a definition should capture.

In general, a security definition has two components: a security guarantee
(or, from the attacker’s point of view, what constitutes a successful attack) and
a threat model. The security guarantee defines what the scheme is intended to
prevent the attacker from doing, while the threat model describes the power
of the adversary, i.e., what actions the attacker is assumed able to carry out.

Let’s start with the first of these. What should a secure encryption scheme
guarantee? Here are some thoughts:

� It should be impossible for an attacker to recover the key. We have
previously observed that if an attacker can determine the key shared
by two parties using some scheme, then that scheme cannot be secure.
However, it is easy to come up with schemes for which key recovery
is impossible, yet the scheme is blatantly insecure. Consider, e.g., the
scheme where Enck(m) = m. The ciphertext leaks no information about
the key (and so the key cannot be recovered if it is long enough) yet
the message is sent in the clear! We thus see that inability to recover
the key is necessary but not sufficient for security. This makes sense:
the aim of encryption is to protect the message; secrecy of the key is a
means for achieving this goal, but is not itself the objective.

� It should be impossible for an attacker to recover the plaintext from the
ciphertext. This definition is better, but is still far from satisfactory. In
particular, this definition would consider an encryption scheme secure
if its ciphertexts revealed 90% of the plaintext, as long as 10% of the
plaintext remained hard to figure out. This is clearly unacceptable in
most common applications of encryption; for example, when encrypting
a salary database, we would be justifiably upset if 90% of employees’
salaries were revealed!

� It should be impossible for an attacker to recover any character of the
plaintext from the ciphertext. This looks like a good definition, yet is
still not sufficient. Going back to the example of encrypting a salary
database, we would not consider an encryption scheme secure if it re-
veals whether an employee’s salary is more than or less than $100,000,

Introduction 17

even if it does not reveal any particular digit of that employee’s salary.
Similarly, we would not want an encryption scheme to reveal whether
one particular employee makes more than another.

Another issue is how to formalize what it means for an adversary to
“recover a character of the plaintext.” What if an attacker correctly
guesses, through sheer luck or external information, that the least sig-
nificant digit of someone’s salary is 0? Clearly that should not render an
encryption scheme insecure, and so any viable definition must somehow
rule out such behavior from qualifying as a successful attack.

� The “right” answer: regardless of any information an attacker already
has, a ciphertext should leak no additional information about the un-
derlying plaintext. This informal definition captures all the concerns
outlined above. Note in particular that it does not try to define what
information about the plaintext is “meaningful”; it simply requires that
no information be leaked. This is important, as it means that a secure
encryption scheme is suitable for all potential applications in which se-
crecy is required.

What is missing here is a precise, mathematical formulation of the def-
inition. How should we capture an attacker’s prior knowledge about
the plaintext? And what does it mean to (not) leak information? We
will return to these questions in the next two chapters; see especially
Definitions 2.3 and 3.12.

Now that we have fixed a security goal, it remains to specify a threat model.
This specifies what “power” the attacker is assumed to have, but does not
place any restrictions on the adversary’s strategy. This is an important dis-
tinction: we specify what we assume about the adversary’s abilities, but we
do not assume anything about how it uses those abilities. It is impossible to
foresee what strategies might be used in an attack, and history has proven
that attempts to do so are doomed to failure.

There are several plausible options for the threat model in the context of
encryption; standard ones, in order of increasing power of the attacker, are:

� Ciphertext-only attack: This is the most basic attack, where the ad-
versary just observes a ciphertext (or multiple ciphertexts) and attempts
to determine information about the underlying plaintext (or plaintexts).
This is the threat model we have been implicitly assuming when dis-
cussing classical encryption schemes in the previous section.

� Known-plaintext attack: Here, the adversary is able to learn one
or more plaintext/ciphertext pairs generated using some key. The aim
of the adversary is then to deduce information about the underlying
plaintext of some other ciphertext produced using the same key.

All the classical encryption schemes we have seen are trivial to break
using a known-plaintext attack; we leave a demonstration as an exercise.

18 Introduction to Modern Cryptography

� Chosen-plaintext attack: In this attack, the adversary can obtain
plaintext/ciphertext pairs, as above, for plaintexts of its choice.

� Chosen-ciphertext attack: The final type of attack is one where the
adversary is additionally able to obtain (some information about) the de-
cryption of ciphertexts of its choice, e.g., whether the decryption of some
ciphertext chosen by the attacker yields a valid English message. The
adversary’s aim, once again, is to learn information about the underly-
ing plaintext of some other ciphertext (whose decryption the adversary
is unable to obtain directly) generated using the same key.

Although the threat models are listed in order of increasing strength, none of
them is inherently better than any other; the right one to use depends on the
environment in which an encryption scheme is deployed.

The first two types of attack are the easiest to carry out. In a ciphertext-
only attack, the only thing the adversary needs to do is eavesdrop on the
communication channel over which encrypted messages are sent. In a known-
plaintext attack it is assumed the adversary also obtains ciphertexts corre-
sponding to known plaintexts. This is often easy to accomplish because not
all encrypted messages are secret, at least not indefinitely. As a trivial exam-
ple, two parties may always encrypt a “hello” message whenever they begin
communicating. As a more complex example, encryption may be used to keep
quarterly-earnings reports secret until their release date; in this case, anyone
eavesdropping on the ciphertext will later obtain the corresponding plaintext.

In the latter two attacks the adversary is assumed to be able to obtain
encryptions and/or decryptions of plaintexts/ciphertexts of its choice. This
may at first seem strange, and we defer a more detailed discussion of these
attacks, and their practicality, to Section 3.4.2 (for chosen-plaintext attacks)
and Section 5.1 (for chosen-ciphertext attacks).

1.4.2 Principle 2 – Precise Assumptions

Most modern cryptographic constructions cannot be proven secure uncon-
ditionally; such proofs would require resolving questions in the theory of com-
putational complexity that seem far from being answered today.4 The result
of this unfortunate state of affairs is that proofs of security typically rely on
assumptions. Modern cryptography requires any such assumptions to be made
explicit and mathematically precise. At the most basic level, this is because
proofs of security require this. But there are other reasons as well:

1. Validation of assumptions: By their very nature, assumptions are state-
ments that are not proven but are instead conjectured to be true. In
order to strengthen our belief in some assumption, it is necessary to

4In particular, most of cryptography requires the unproven assumption that P 6= NP.

Introduction 19

study it: The more the assumption is examined and tested without
being refuted, the more confident we are that the assumption is true.
Furthermore, study of an assumption can provide evidence of its valid-
ity by showing that it is implied by some other assumption that is also
widely believed.

If the assumption being relied upon is not precisely stated, it cannot
be effectively studied and (potentially) refuted. Thus, a precondition to
increasing our confidence in an assumption is having a precise statement
of what exactly is being assumed.

2. Comparison of assumptions: Often in cryptography we are presented
with two schemes that can both be proven to satisfy some definition,
each based on a different assumption. Assuming all else is equal, which
scheme should be preferred? If the assumption on which the first scheme
is based is weaker than the assumption on which the second scheme is
based (i.e., if the second assumption implies the first), then the first
scheme is preferable since it may turn out that the second assumption
is false while the first assumption is true. If the assumptions used by the
two schemes are not comparable, then the general rule is to prefer the
scheme that is based on the better-studied assumption in which there is
presumably greater confidence.

3. Understanding the necessary assumptions: An encryption scheme may
be based on some underlying building block. If some weaknesses are
later found in the building block, how can we tell whether the encryp-
tion scheme is still secure? If the underlying assumptions regarding the
building block are made clear as part of proving security of the scheme,
then we need only check whether the required assumptions are affected
by the new weaknesses that were found.

A question that sometimes arises is: rather than prove a scheme secure
based on some other assumption, why not simply assume that the scheme it-
self is secure? In some cases—e.g., when the definition is simple and a scheme
has successfully resisted attack for many years—this may be an acceptable ap-
proach. But this approach is not preferred, and is downright dangerous when
a new construction is being introduced. The reasons above help explain why.
First, an assumption that has been studied for several years is preferable to a
new, arbitrary assumption that is introduced along with a new construction.
Second, there is a general preference for “simpler” assumptions—i.e., an as-
sumption about the hardness of a clean mathematical problem vs. an assump-
tion that a complex scheme satisfies an elaborate security definition—since
simpler assumptions are in general easier to understand and study. Another
advantage of relying on “lower-level” assumptions (rather than just assuming
a scheme is secure) is that these low-level assumptions can typically be used in
other constructions. Finally, low-level assumptions enable modularity. Con-
sider an encryption scheme whose security relies on some assumed property

20 Introduction to Modern Cryptography

of one of its building blocks. If the underlying building block turns out not
to satisfy the stated assumption, the encryption scheme can be instantiated
using a different component that satisfies the necessary requirements.

1.4.3 Principle 3 – Proofs of Security

The two principles just described allow us to achieve our goal of providing
rigorous proof that a construction satisfies a given definition under certain
assumptions. Such proofs are especially important in the context of cryp-
tography where there is an attacker who is actively trying to “break” some
scheme. Proofs of security give an iron-clad guarantee—relative to the def-
inition and assumptions—that no attacker will succeed; this is much better
than taking an unprincipled or heuristic approach to the problem. Without a
proof that no adversary with the specified resources can break some scheme,
we are left only with our intuition that this is the case. Experience has shown
that intuition in cryptography and computer security is disastrous. There are
countless examples of unproven schemes that were broken, sometimes imme-
diately and sometimes years after being developed.

Summary: Rigorous vs. Heuristic Approaches to Security

Reliance on definitions, assumptions, and proofs constitutes a rigorous ap-
proach to cryptography that is distinct from the informal approach of clas-
sical cryptography. Unfortunately, unprincipled, “off-the-cuff” solutions are
still designed and deployed by those wishing to obtain a quick solution to a
problem, or by those who are simply unknowledgable. We hope this book
will contribute to an awareness of the rigorous approach and its importance
in developing provably secure schemes.

1.4.4 Provable Security and Real-World Security

Much of modern cryptography now rests on sound mathematical founda-
tions. But this does not mean that the field is no longer partly an art as
well. The rigorous approach leaves room for creativity in developing defini-
tions suited to contemporary applications and environments, in proposing new
mathematical assumptions and designing new primitives, and in constructing
novel schemes and proving them secure. There will also always be the art
of attacking deployed cryptosystems, even when they are proven secure. We
expand on this point next.

The approach taken by modern cryptography has revolutionized the field,
and helps provide confidence in the security of cryptographic schemes deployed
in the real world. But it is important not to overstate what a proof of security
implies. A proof of security is always relative to the definition being considered
and the assumption(s) being used. If the security guarantee does not match
what is needed, or the threat model does not capture the adversary’s true

Introduction 21

abilities, then the proof may be irrelevant. Similarly, if the assumption that
is relied upon turns out to be false, then the proof of security is meaningless.

The take-away point is that provable security of a scheme does not nec-
essarily imply security of that scheme in the real world.5 While some have
viewed this as a drawback of provable security, we view this optimistically as
illustrating the strength of the approach. To attack a provably secure scheme
in the real world, the attacker is forced to focus attention on the definition
(i.e., to explore how the idealized definition differs from the real-world re-
quirements) or the underlying assumptions (i.e., to see whether they hold).
In turn, it is the job of cryptographers to continually refine their definitions
to more closely match the real world, and to investigate their assumptions to
test their validity. Provable security does not end the age-old battle between
attacker and defender, but it does provide a framework that helps shift the
odds in the defender’s favor.

References and Additional Reading

In this chapter, we have studied just a few of the known historical ciphers.
There are many others of both historical and mathematical interest, and we
refer the reader to textbooks by Stinson [195] or Trappe and Washington [196]
for further details. The important role cryptography has played throughout
history is a fascinating subject covered in books by Kahn [106] and Singh [188].

Shannon [177] was the first to pursue a rigorous approach to cryptography
based on precise definitions and mathematical proofs; we explore his work in
the next chapter.

Exercises

1.1 Decrypt the ciphertext provided at the end of the section on mono-
alphabetic substitution ciphers.

1.2 Provide a formal definition of the Gen, Enc, and Dec algorithms for the
mono-alphabetic substitution cipher.

1.3 Provide a formal definition of the Gen, Enc, and Dec algorithms for
the Vigenère cipher. (Note: there are several plausible choices for Gen;
choose one.)

5Here we are not even considering the possibility of an incorrect implementation of the
scheme. Poorly implemented cryptography is a serious problem in the real world, but this
problem is largely outside the scope of this book.

22 Introduction to Modern Cryptography

1.4 Say you are given a ciphertext that corresponds to English-language text
that was encrypted using either the shift cipher or the Vigenère cipher
with period greater than 1. How could you tell which was the case?

1.5 Implement the attacks described in this chapter for the shift cipher and
the Vigenère cipher.

1.6 The shift and Vigenère ciphers can also be defined on the 256-character
alphabet consisting of all possible bytes (8-bit strings), and using XOR
instead of modular addition.

(a) Provide a formal definition of both schemes in this case.

(b) Discuss how the attacks we have shown in this chapter can be
modified to break these schemes.

1.7 The index of coincidence method relies on a known value for the sum
of the squares of plaintext-letter frequencies (cf. Equation (1.1)). Why
would it not work using the sum

∑
i pi itself?

1.8 Show that the shift, substitution, and Vigenère ciphers are all trivial to
break using a chosen-plaintext attack. How much chosen plaintext is
needed to recover the key for each of the ciphers?

1.9 Assume an attacker knows that a user’s password is either abcd or bedg.
Say the user encrypts his password using the shift cipher, and the at-
tacker sees the resulting ciphertext. Show how the attacker can deter-
mine the user’s password, or explain why this is not possible.

1.10 Repeat the previous exercise for the Vigenère cipher using period 2,
using period 3, and using period 4.

1.11 The attack on the Vigenère cipher has two steps: (a) find the key length
by identifying τ with Sτ ≈ 0.065 (cf. Equation (1.3)) and (b) for each
character of the key, find j maximizing Ij (cf. Equation (1.2)), using
{pi} corresponding to English text. What happens in each case if the
underlying plaintext is in a language other than English?

Chapter 2

Perfectly Secret Encryption

In the previous chapter we presented some historical encryption schemes and
showed that they can be broken easily. In this chapter, we look at the other
extreme and study encryption schemes that are provably secure even against
an adversary with unbounded computational power. Such schemes are called
perfectly secret. We rigorously define this notion, and explore conditions under
which perfect secrecy can be achieved.

The material in this chapter belongs, in some sense, more to the world of
“classical” cryptography than to the world of “modern” cryptography. Be-
sides the fact that all the material introduced here was developed before the
revolution in cryptography that took place in the mid-1970s and 1980s, the
constructions we study in this chapter rely only on the first and third prin-
ciples outlined in Section 1.4. That is, precise mathematical definitions are
used and rigorous proofs are given, but it will not be necessary to rely on
any unproven computational assumptions. It is clearly advantageous to avoid
such assumptions; we will see, however, that doing so has inherent limitations.
Thus, in addition to serving as a good basis for understanding the principles
underlying modern cryptography, the results of this chapter also justify our
later adoption of all three of the aforementioned principles.

Beginning with this chapter, we will define security and analyze schemes
using probabilistic experiments involving randomized algorithms. (We assume
familiarity with basic probability theory. The relevant notions are reviewed
in Appendix A.3.) A simple example is given by the “experiment” in which
the parties who wish to communicate using a private-key encryption scheme
generate a random key. Since randomness is so essential, we briefly discuss the
issue of generating randomness suitable for cryptographic applications before
returning to a discussion of cryptography per se.

Generating randomness. Throughout the book, we will assume for simplic-
ity that parties have access to an unlimited supply of independent, unbiased
(i.e., uniform) bits. Where do these random bits come from? Since classical
computation is deterministic, it is not at all clear how computers can be used
to generate random bits. In principle, one could generate a small number of
uniform bits by hand, e.g., by flipping a fair coin. But that approach is not
very convenient, nor does it scale.

Modern random-number generation proceeds in two steps. First, a “pool”
of high-entropy data is collected. (For our purposes a formal definition of

23

24 Introduction to Modern Cryptography

entropy is not needed, and it suffices to think of entropy as a measure of
unpredictability.) Next, this high-entropy data is processed to yield a sequence
of nearly independent and unbiased bits. This second step is necessary since
high-entropy data is not necessarily uniform.

For the first step, some source of unpredictable data is needed. This can
come from external inputs, for example, delays between network events, hard-
disk access times, keystrokes or mouse movements made by the user, and so
on. More sophisticated approaches—which, by design, incorporate random-
number generation more tightly into the system at the hardware level—can
also be used. These rely on physical phenomena such as thermal/shot noise or
radioactive decay; for example, certain Intel processors use thermal noise to
generate high-entropy data on-chip. Hardware random-number generators of
this sort generally produce high-entropy data at a faster rate than techniques
relying on external sources.

The processing needed to “smooth” the high-entropy data to obtain (nearly)
independent and uniform bits is non-trivial, and is discussed briefly in Sec-
tion 6.6.4. Here, we consider a simple example to give an idea of what can be
done. Imagine that our high-entropy pool contains a sequence of biased bits,
where 1 occurs with probability p and 0 occurs with probability 1−p. (We do
assume, however, that the bits are all independent. In practice this assump-
tion is typically not valid and so more-complex processing must be done.)
Thousands of such bits have lots of entropy, but are not close to uniform. We
can obtain a uniform sequence of bits by taking the original bits in pairs: if
we see a 1 followed by a 0 then we output 0, and if we see a 0 followed by a 1
then we output 1. (If we see two 0s or two 1s in a row we output nothing, and
simply move on to the next pair.) The probability that any pair results in a 0
is p · (1− p), which is exactly equal to the probability that any pair results in
a 1. (Note that we do not even need to know the value of p !) We thus obtain
a uniformly distributed output from our initial high-entropy pool.

Care must be taken in how random bits are produced, and using poor
random-number generators can often leave a good cryptosystem vulnerable
to attack. One should use a random-number generator that is designed for
cryptographic use, rather than a “general-purpose” random-number generator
that is generally not suitable for cryptographic applications. In particular, the
rand() function in the C stdlib.h library is not cryptographically secure, and
using it in cryptographic settings can have disastrous consequences.

2.1 Definitions

We begin by recalling and expanding upon the syntax of encryption, as
introduced in the previous chapter. An encryption scheme is defined by three

Perfectly Secret Encryption 25

algorithms Gen, Enc, and Dec, as well as a specification of a message space M
with |M| > 1.1 The key-generation algorithm Gen is a probabilistic algorithm
that outputs a key k chosen according to some distribution. We denote by
K the (finite) key space, i.e., the set of all possible keys that can be output
by Gen. The encryption algorithm Enc takes as input a key k ∈ K and a
message m ∈ M, and outputs a ciphertext c. We now explicitly allow the
encryption algorithm to be probabilistic (so Enck(m) might output a different
ciphertext when run multiple times), and we write c← Enck(m) to denote the
possibly probabilistic process by which message m is encrypted using key k to
give ciphertext c. (Looking ahead, we also sometimes use the notation x← S
to denote uniform selection of x from a set S. In case Enc is deterministic, we
may emphasize this by writing c := Enck(m).) We let C denote the set of all
possible ciphertexts that can be output by Enck(m), for all possible choices of
k ∈ K and m ∈M (and for all random choices of Enc in case it is randomized).
The decryption algorithm Dec takes as input a key k ∈ K and a ciphertext
c ∈ C and outputs a message m ∈M. We assume perfect correctness, meaning
that for all k ∈ K, m ∈M, and any ciphertext c output by Enck(m), it holds
that Deck(c) = m with probability 1. Perfect correctness implies that we may
assume Dec is deterministic without loss of generality, since Deck(c) must
give the same output every time it is run. We will thus write m := Deck(c)
to denote the (deterministic) process of decrypting ciphertext c using key k
to yield the message m.

In the definitions and theorems below, we refer to probability distributions
over K, M, and C. The distribution over K is the one defined by running
Gen and taking the output. (It is almost always the case that Gen chooses
a key uniformly from K and, in fact, we may assume this without loss of
generality; see Exercise 2.1.) We let K be the random variable denoting the
value of the key output by Gen; thus, for any k ∈ K, Pr[K = k] denotes the
probability that the key output by Gen is equal to k. Similarly, we let M be
the random variable denoting the message being encrypted, so Pr[M = m]
denotes the probability that the message takes on the value m ∈ M. The
probability distribution of the message is not determined by the encryption
scheme itself, but instead reflects the likelihood of different messages being
sent by the parties using the scheme, as well as an adversary’s uncertainty
about what will be sent. As an example, an adversary may know that the
message will either be attack today or don’t attack. The adversary may
even know (by other means) that with probability 0.7 the message will be a
command to attack and with probability 0.3 the message will be a command
not to attack. In this case, we have Pr[M = attack today] = 0.7 and
Pr[M = don’t attack] = 0.3.

K and M are required to be independent, i.e., what is being communicated
by the parties must be independent of the key they share. This makes sense,

1If |M| = 1 there is only one message and no point in communicating, let alone encrypting.

26 Introduction to Modern Cryptography

among other reasons, because the distribution over K is determined by the
encryption scheme itself (since it is defined by Gen), while the distribution
overM depends on the context in which the encryption scheme is being used.

Fixing an encryption scheme and a distribution over M determines a dis-
tribution over the space of ciphertexts C given by choosing a key k ∈ K (ac-
cording to Gen) and a message m ∈M (according to the given distribution),
and then computing the ciphertext c ← Enck(m). We let C be the random
variable denoting the resulting ciphertext and so, for c ∈ C, write Pr[C = c]
to denote the probability that the ciphertext is equal to the fixed value c.

Example 2.1
We work through a simple example for the shift cipher (cf. Section 1.3). Here,
by definition, we have K = {0, . . . , 25} with Pr[K = k] = 1/26 for each k ∈ K.

Say we are given the following distribution over M:

Pr[M = a] = 0.7 and Pr[M = z] = 0.3.

What is the probability that the ciphertext is B? There are only two ways this
can occur: either M = a and K = 1, or M = z and K = 2. By independence
of M and K, we have

Pr[M = a ∧K = 1] = Pr[M = a] · Pr[K = 1]

= 0.7 ·
(

1

26

)
.

Similarly, Pr[M = z ∧K = 2] = 0.3 ·
(

1
26

)
. Therefore,

Pr[C = B] = Pr[M = a ∧K = 1] + Pr[M = z ∧K = 2]

= 0.7 ·
(

1

26

)
+ 0.3 ·

(
1

26

)
= 1/26.

We can calculate conditional probabilities as well. For example, what is
the probability that the message a was encrypted, given that we observe
ciphertext B? Using Bayes’ Theorem (Theorem A.8) we have

Pr[M = a | C = B] =
Pr[C = B |M = a] · Pr[M = a]

Pr[C = B]

=
Pr[C = B |M = a] · 0.7

1/26
.

Note that Pr[C = B |M = a] = 1/26, since if M = a then the only way C = B

can occur is if K = 1 (which occurs with probability 1/26). We conclude that
Pr[M = a | C = B] = 0.7. ♦

Example 2.2
Consider the shift cipher again, but with the following distribution over M:

Pr[M = kim] = 0.5, Pr[M = ann] = 0.2, Pr[M = boo] = 0.3.

Perfectly Secret Encryption 27

What is the probability that C = DQQ? The only way this ciphertext can
occur is if M = ann and K = 3, or M = boo and K = 2, which happens with
probability 0.2 · 1/26 + 0.3 · 1/26 = 1/52.

We can also compute the probability that ann was encrypted, conditioned
on observing the ciphertext DQQ? A calculation as above using Bayes’ Theorem
gives Pr[M = ann | C = DQQ] = 0.4. ♦

Perfect secrecy. We are now ready to define the notion of perfect secrecy.
We imagine an adversary who knows the probability distribution of M ; that
is, the adversary knows the likelihood that different messages will be sent.
The adversary also knows the encryption scheme being used. The only thing
unknown to the adversary is the key shared by the parties. A message is
chosen by one of the honest parties and encrypted, and the resulting cipher-
text is transmitted to the other party. The adversary can eavesdrop on the
parties’ communication, and thus observe this ciphertext. (That is, this is a
ciphertext-only attack, where the attacker sees only a single ciphertext.) For
a scheme to be perfectly secret, observing this ciphertext should have no effect
on the adversary’s knowledge regarding the actual message that was sent; in
other words, the a posteriori probability that some message m ∈M was sent,
conditioned on the ciphertext that was observed, should be no different from
the a priori probability that m would be sent. This means that the cipher-
text reveals nothing about the underlying plaintext, and the adversary learns
absolutely nothing about the plaintext that was encrypted. Formally:

DEFINITION 2.3 An encryption scheme (Gen,Enc,Dec) with message
space M is perfectly secret if for every probability distribution for M , every
message m ∈M, and every ciphertext c ∈ C for which Pr[C = c] > 0:

Pr[M = m | C = c] = Pr[M = m].

(The requirement that Pr[C = c] > 0 is a technical one needed to prevent
conditioning on a zero-probability event.)

Example 2.4
We show that the shift cipher is not perfectly secret when used with the
message space M consisting of all two-character plaintexts. To do so, we
work with Definition 2.3, and show a probability distribution over M for
which, for some message m and ciphertext c,

Pr[M = m | C = c] 6= Pr[M = m].

Many such distributions are possible, but we pick a simple one: say the mes-
sage is either aa or ab, each with half probability. Set m = ab and c = XX.
Then clearly Pr[M = ab | C = XX] = 0, as there is no way that XX can ever
result from the encryption of ab. But Pr[M = ab] = 1/2. ♦

28 Introduction to Modern Cryptography

We now give an equivalent formulation of perfect secrecy. This formulation
defines perfect secrecy by requiring that the distribution of the ciphertext
does not depend on the plaintext, i.e., for any two messages m,m′ ∈ M
the distribution of the ciphertext when m is encrypted should be identical to
the distribution of the ciphertext when m′ is encrypted. That is, for every
m,m′ ∈M, and every c ∈ C, we have

Pr[EncK(m) = c] = Pr[EncK(m′) = c] (2.1)

(where the probabilities are over choice of K and any randomness of Enc).
Note that the above probabilities depend only on the encryption scheme, and
make no reference to any underlying distribution onM. The above condition
implies that a ciphertext contains no information about the plaintext, and
that it is impossible to distinguish an encryption of m from an encryption of
m′, since the distributions of the ciphertext are the same in each case.

LEMMA 2.5 An encryption scheme (Gen,Enc,Dec) with message space
M is perfectly secret if and only if Equation (2.1) holds for every m,m′ ∈M
and every c ∈ C.

PROOF The proof is straightforward, but we go through it in detail. The
key observation is that for any scheme, any distribution on M, any m ∈ M
for which Pr[M = m] > 0, and any c ∈ C, we have

Pr[C = c |M = m] = Pr[EncK(M) = c |M = m]

= Pr[EncK(m) = c |M = m]

= Pr[EncK(m) = c], (2.2)

where the first equality is by definition of the random variable C, the second
is because we are conditioning on the event that M = m, and the third is
because K is independent of M . We also use the fact that for any c ∈ C with
Pr[C = c] > 0, we have

Pr[M = m | C = c] · Pr[C = c] = Pr[C = c |M = m] · Pr[M = m]. (2.3)

Take the uniform distribution over M. If the scheme is perfectly secret
then Pr[M = m | C = c] = Pr[M = m], and so Equation (2.3) implies that
Pr[C = c | M = m] = Pr[C = c]. Since m and c were arbitrary, this shows
that for every m,m′ ∈M and every c ∈ C,

Pr[EncK(m) = c] = Pr[C = c |M = m]

= Pr[C = c]

= Pr[C = c |M = m′] = Pr[EncK(m′) = c]

(using Equation (2.2)), proving one direction of the lemma.

Perfectly Secret Encryption 29

Conversely, say Equation (2.1) holds for every m,m′ ∈M and every c ∈ C.
Fix some distribution over M, a message m ∈ M, and a ciphertext c ∈ C
with Pr[C = c] > 0. If Pr[M = m] = 0 then we trivially have

Pr[M = m | C = c] = Pr[M = m] = 0.

So, assume Pr[M = m] > 0. For c ∈ C, define pc
def
= Pr[EncK(m) = c].

Equations (2.1) and (2.2) imply that Pr[C = c | M = m′] = pc for every
m′ ∈M. So,

Pr[C = c] =
∑
m′∈M

Pr[C = c |M = m′] · Pr[M = m′]

=
∑
m′∈M

pc · Pr[M = m′] = pc = Pr[C = c |M = m],

where the sum is over m′ with Pr[M = m′] > 0. Equation (2.3) implies that
Pr[M = m | C = c] = Pr[M = m], so the scheme is perfectly secret.

Perfect (adversarial) indistinguishability. We conclude this section by
presenting another equivalent definition of perfect secrecy. This definition is
based on an experiment involving an adversary passively observing a cipher-
text and then trying to guess which of two possible messages was encrypted.
We introduce this notion since it will serve as our starting point for defining
computational security in the next chapter; throughout the rest of the book
we will often use experiments like this one to define security.

In the present context, we consider the following experiment: An adver-
sary A first specifies two arbitrary messages m0,m1 ∈ M. Next, a key k is
generated using Gen. Then, one of the two messages specified by A is chosen
(each with probability 1/2) and encrypted using k; the resulting ciphertext is
given to A. Finally, A outputs a “guess” as to which of the two messages was
encrypted; A succeeds if it guesses correctly. An encryption scheme is per-
fectly indistinguishable if no adversary A can succeed with probability better
than 1/2. (Note that, for any encryption scheme, A can succeed with prob-
ability 1/2 by outputting a uniform guess; the requirement is simply that no
attacker can do any better than this.) We stress that no limitations are placed
on the computational power of A.

Formally, let Π = (Gen,Enc,Dec) be an encryption scheme with message
spaceM. Let A be an adversary, which is formally just a (stateful) algorithm
that we may assume is deterministic without loss of generality. We define an
experiment PrivKeav

A,Π , based, on A and Π, as follows:

The adversarial indistinguishability experiment PrivKeav
A,Π:

1. The adversary A outputs a pair of messages m0,m1 ∈M.

2. A key k is generated using Gen, and a uniform bit b ∈ {0, 1}
is chosen. Ciphertext c ← Enck(mb) is computed and given
to A. We refer to c as the challenge ciphertext.

30 Introduction to Modern Cryptography

3. A outputs a bit b′.

4. The output of the experiment is defined to be 1 if b′ = b,
and 0 otherwise. We write PrivKeav

A,Π = 1 if the output of the
experiment is 1 and in this case we say that A succeeds.

As noted earlier, it is trivial for A to succeed with probability 1/2 by out-
putting a random guess. Perfect indistinguishability requires that it is impos-
sible for any A to do better.

DEFINITION 2.6 Encryption scheme Π = (Gen,Enc,Dec) with message
space M is perfectly indistinguishable if for every A it holds that

Pr
[
PrivKeav

A,Π = 1
]

=
1

2
.

The following lemma states that Definition 2.6 is equivalent to Defini-
tion 2.3. We leave the proof of the lemma as Exercise 2.6.

LEMMA 2.7 Encryption scheme Π is perfectly secret if and only if it is
perfectly indistinguishable.

Example 2.8
We show that the Vigenère cipher is not perfectly indistinguishable, at least
for certain parameters. Concretely, let Π denote the Vigenère cipher for the
message space of two-character strings, and where the period is chosen uni-
formly in {1, 2}. To show that Π is not perfectly indistinguishable, we exhibit
an adversary A for which Pr

[
PrivKeav

A,Π = 1
]
> 1

2 .
Adversary A does:

1. Output m0 = aa and m1 = ab.

2. Upon receiving the challenge ciphertext c = c1c2, do the following: if
c1 = c2 output 0; else output 1.

Computation of Pr
[
PrivKeav

A,Π = 1
]

is tedious but straightforward.

Pr
[
PrivKeav

A,Π = 1
]

=
1

2
· Pr

[
PrivKeav

A,Π = 1 | b = 0
]

+
1

2
· Pr

[
PrivKeav

A,Π = 1 | b = 1
]

=
1

2
· Pr[A outputs 0 | b = 0] +

1

2
· Pr[A outputs 1 | b = 1], (2.4)

where b is the uniform bit determining which message gets encrypted. As
defined, A outputs 0 if and only if the two characters of the ciphertext c = c1c2
are equal. When b = 0 (so m0 = aa is encrypted) then c1 = c2 if either (1) a

Perfectly Secret Encryption 31

key of period 1 is chosen, or (2) a key of period 2 is chosen and both characters
of the key are equal. The former occurs with probability 1

2 , and the latter
occurs with probability 1

2 ·
1
26 . So

Pr[A outputs 0 | b = 0] =
1

2
+

1

2
· 1

26
≈ 0.52.

When b = 1 then c1 = c2 only if a key of period 2 is chosen and the first
character of the key is one more than the second character of the key, which
happens with probability 1

2 ·
1
26 . So

Pr[A outputs 1 | b = 1] = 1− Pr[A outputs 0 | b = 1] = 1− 1

2
· 1

26
≈ 0.98.

Plugging into Equation (2.4) then gives

Pr
[
PrivKeav

A,Π = 1
]

=
1

2
·
(

1

2
+

1

2
· 1

26
+ 1− 1

2
· 1

26

)
= 0.75 >

1

2
,

and the scheme is not perfectly indistinguishable. ♦

2.2 The One-Time Pad

In 1917, Vernam patented a perfectly secret encryption scheme now called
the one-time pad. At the time Vernam proposed the scheme, there was no
proof that it was perfectly secret; in fact, the notion of perfect secrecy was not
yet defined. Approximately 25 years later, however, Shannon introduced the
definition of perfect secrecy and demonstrated that the one-time pad satisfied
that definition.

In describing the scheme we let a⊕b denote the bitwise exclusive-or (XOR)
of two equal-length binary strings a and b. (i.e., if a = a1 · · · a` and b = b1 · · · b`
are `-bit strings, then a⊕b is the `-bit string given by (a1⊕b1) · · · (a`⊕b`).) In
the one-time pad encryption scheme the key is a uniform string of the same
length as the message, and the ciphertext is computed by simply XORing
the key and the message; a formal definition is given as Construction 2.9.
Before discussing security, we first verify correctness: For every key k and
every message m it holds that Deck(Enck(m)) = k ⊕ k ⊕m = m, and so the
one-time pad constitutes a valid encryption scheme.

One can easily prove perfect secrecy of the one-time pad using Lemma 2.5
because the ciphertext is uniformly distributed regardless of what message is
encrypted. We give a direct proof based on the original definition.

THEOREM 2.10 The one-time pad encryption scheme is perfectly secret.

32 Introduction to Modern Cryptography

CONSTRUCTION 2.9

Fix an integer ` > 0. The message spaceM, key space K, and ciphertext
space C are all equal to {0, 1}` (the set of all binary strings of length `).

� Gen: the key-generation algorithm chooses a key from K = {0, 1}`
according to the uniform distribution (i.e., each of the 2` strings
in the space is chosen as the key with probability exactly 2−`).

� Enc: given a key k ∈ {0, 1}` and a message m ∈ {0, 1}`, the
encryption algorithm outputs the ciphertext c := k ⊕m.

� Dec: given a key k ∈ {0, 1}` and a ciphertext c ∈ {0, 1}`, the
decryption algorithm outputs the message m := k ⊕ c.

The one-time pad encryption scheme.

PROOF We first compute Pr[C = c | M = m] for arbitrary c ∈ C and
m ∈M with Pr[M = m] > 0. For the one-time pad, we have

Pr[C = c |M = m] = Pr[K ⊕m = c |M = m]

= Pr[K = m⊕ c |M = m]

= 2−`,

where the first equality is by definition of the scheme and the fact that we
condition on the event M = m, and the final equality holds because the key
K is a uniform `-bit string that is independent of M . Fix any distribution
over M. Using the above result, we see that for any c ∈ C we have

Pr[C = c] =
∑
m∈M

Pr[C = c |M = m] · Pr[M = m]

= 2−` ·
∑
m∈M

Pr[M = m]

= 2−`,

where the sum is over m ∈M with Pr[M = m] 6= 0. Bayes’ Theorem gives:

Pr[M = m | C = c] =
Pr[C = c |M = m] · Pr[M = m]

Pr[C = c]

=
2−` · Pr[M = m]

2−`

= Pr[M = m].

We conclude that the one-time pad is perfectly secret.

The one-time pad was used by several national-intelligence agencies in the
mid-20th century to encrypt sensitive traffic. Perhaps most famously, the
“red phone” linking the White House and the Kremlin during the Cold War

Perfectly Secret Encryption 33

was protected using one-time pad encryption, where the governments of the
US and the USSR would exchange extremely long keys using trusted couriers
carrying briefcases of paper on which random characters were written.

Notwithstanding the above, one-time pad encryption is rarely used nowa-
days because it has a number of drawbacks. Most prominent is that the key is
as long as the message.2 This limits the usefulness of the scheme for sending
very long messages (as it may be difficult to securely share and store a very
long key), and is problematic when the parties cannot predict in advance (an
upper bound on) how long the message will be.

Moreover, the one-time pad—as the name indicates—is only secure if used
once (with a given key). Although we did not yet define a notion of secrecy
when multiple messages are encrypted, it is easy to see that encrypting more
than one message with the same key leaks a lot of information. In particular,
say two messages m,m′ are encrypted using the same (unknown) key k. An
adversary who obtains c = m⊕ k and c′ = m′ ⊕ k can compute

c⊕ c′ = (m⊕ k)⊕ (m′ ⊕ k) = m⊕m′

and thus learn the XOR of the two messages or, equivalently, exactly where
the two messages differ. This attack extends to more than two messages as
well, where it enables the attacker to learn the XOR of all pairs of messages.
While this may not seem very significant, it is enough to rule out any claims
of perfect secrecy for encrypting more than one message using the same key.
Moreover, if the messages correspond to natural-language text, then given
the XOR of sufficiently many pairs of messages—or even two sufficiently long
messages—it is possible to perform frequency analysis (as in the previous
chapter, though more complex) and recover the messages themselves. (See
Exercise 2.16 for an example.) An interesting historical example of this is
given by the VENONA project, as part of which the US and UK were able to
decrypt ciphertexts sent by the Soviet Union that were mistakenly encrypted
with repeated portions of a one-time pad over several decades.

2.3 Limitations of Perfect Secrecy

We ended the previous section by noting some drawbacks of the one-time
pad encryption scheme. Here, we show that these drawbacks are not specific
to that scheme, but are instead inherent limitations of perfect secrecy. Specif-
ically, we prove that any perfectly secret encryption scheme must have a key
space that is at least as large as the message space. If all keys are the same

2This does not make the one-time pad useless, since it may be easier for two parties to
share a key at some point in time before the message to be communicated is known.

34 Introduction to Modern Cryptography

length, and the message space consists of all strings of some fixed length, this
implies that the key is at least as long as the message. In particular, the key
length of the one-time pad is optimal. (The other limitation—namely, that a
key can be used only once—is also inherent; see Exercise 2.19.)

THEOREM 2.11 If (Gen,Enc,Dec) is a perfectly secret encryption scheme
with message space M and key space K, then |K| ≥ |M|.

PROOF We show that if |K| < |M| then the scheme cannot be perfectly
secret. Assume |K| < |M|. Consider the uniform distribution overM and let
c ∈ C be a ciphertext that occurs with nonzero probability. Let M(c) be the
set of all possible messages that are possible decryptions of c; that is

M(c)
def
= {m | m = Deck(c) for some k ∈ K}.

Clearly |M(c)| ≤ |K|. (Recall that we may assume Dec is deterministic.) If
|K| < |M|, there is some m′ ∈M such that m′ 6∈ M(c). But then

Pr[M = m′ | C = c] = 0 6= Pr[M = m′],

and so the scheme is not perfectly secret.

Perfect secrecy with shorter keys? The above theorem shows an inherent
limitation of schemes that achieve perfect secrecy. Even so, individuals oc-
casionally claim they have developed a radically new encryption scheme that
is “unbreakable” and achieves the security of the one-time pad without using
keys as long as what is being encrypted. The above proof demonstrates that
such claims cannot be true; anyone making such claims either knows very
little about cryptography or is blatantly lying.

2.4 *Shannon’s Theorem

In his work on perfect secrecy, Shannon also provided a characterization of
perfectly secret encryption schemes. This characterization says that, under
certain conditions, the key-generation algorithm Gen must choose the key
uniformly from the set of all possible keys (as in the one-time pad); moreover,
for every message m and ciphertext c there is a unique key mapping m to c
(again, as in the one-time pad). Beyond being interesting in its own right, this
theorem is a useful tool for proving (or disproving) perfect secrecy of schemes.
We discuss this further after the proof.

The theorem as stated here assumes |M| = |K| = |C|, meaning that the sets
of plaintexts, keys, and ciphertexts all have the same size. We have already

Perfectly Secret Encryption 35

seen that for perfect secrecy we must have |K| ≥ |M|. It is easy to see that
correct decryption requires |C| ≥ |M|. Therefore, in some sense, perfectly
secret encryption schemes with |M| = |K| = |C| are “optimal.”

THEOREM 2.12 (Shannon’s theorem) Let (Gen,Enc,Dec) be an en-
cryption scheme with message space M, for which |M| = |K| = |C|. The
scheme is perfectly secret if and only if:

1. Every key k ∈ K is chosen with (equal) probability 1/|K| by Gen.

2. For every m ∈ M and every c ∈ C, there is a unique key k ∈ K such
that Enck(m) outputs c.

PROOF The intuition behind the proof is as follows. To see that the
stated conditions imply perfect secrecy, note that condition 2 means that
any ciphertext c could be the result of encrypting any possible plaintext m,
because there is some key k mapping m to c. Since there is a unique such key,
and each key is chosen with equal probability, perfect secrecy follows as for
the one-time pad. For the other direction, perfect secrecy immediately implies
that for every m and c there is at least one key mapping m to c. The fact that
|M| = |K| = |C| means, moreover, that for every m and c there is exactly one
such key. Given this, each key must be chosen with equal probability or else
perfect secrecy would fail to hold. A formal proof follows.

We assume for simplicity that Enc is deterministic. (One can show that
this is without loss of generality here.) We first prove that if the encryption
scheme satisfies conditions 1 and 2, then it is perfectly secret. The proof is
essentially the same as the proof of perfect secrecy for the one-time pad, so
we will be relatively brief. Fix arbitrary c ∈ C and m ∈ M. Let k be the
unique key, guaranteed by condition 2, for which Enck(m) = c. Then,

Pr[EncK(m) = c] = Pr[K = k] = 1/|K| ,

where the final equality holds by condition 1. Since this holds for arbitrary
m and c, Lemma 2.5 implies that the scheme is perfectly secret.

For the second direction, assume the encryption scheme is perfectly secret;
we show that conditions 1 and 2 hold. Fix arbitrary c ∈ C. There must
be some message m∗ for which Pr[EncK(m∗) = c] 6= 0. Lemma 2.5 then
implies that Pr[EncK(m) = c] 6= 0 for every m ∈ M. In other words, if we
let M = {m1,m2, . . .}, then for each mi ∈ M we have a nonempty set of
keys Ki ⊂ K such that Enck(mi) = c if and only if k ∈ Ki. Moreover, when
i 6= j then Ki and Kj must be disjoint or else correctness fails to hold. Since
|K| = |M|, we see that each Ki contains only a single key ki, as required by
condition 2. Now, Lemma 2.5 shows that for any mi,mj ∈M we have

Pr[K = ki] = Pr[EncK(mi) = c] = Pr[EncK(mj) = c] = Pr[K = kj].

36 Introduction to Modern Cryptography

Since this holds for all 1 ≤ i, j ≤ |M| = |K|, and ki 6= kj for i 6= j, this means
each key is chosen with probability 1/|K|, as required by condition 1.

Shannon’s theorem is useful for deciding whether a given scheme is perfectly
secret. Condition 1 is easy to check, and condition 2 can be demonstrated
(or contradicted) without having to compute any probabilities (in contrast to
working with Definition 2.3 directly). As an example, perfect secrecy of the
one-time pad is trivial to prove using Shannon’s theorem. We stress, however,
that the theorem only applies when |M| = |K| = |C|.

References and Additional Reading

The one-time pad is popularly credited to Vernam [200], who filed a patent
on it, but recent historical research [28] shows that it was invented some
35 years earlier. Analysis of the one-time pad had to await the ground-
breaking work of Shannon [177], who introduced the notion of perfect secrecy.

In this chapter we studied perfectly secret encryption. Some other cryp-
tographic problems can also be solved with “perfect” security. A notable
example is the problem of message authentication where the aim is to prevent
an adversary from (undetectably) modifying a message sent from one party to
another. We study this problem in depth in Chapter 4, discussing “perfectly
secure” message authentication in Section 4.6.

Exercises

2.1 Prove that, by redefining the key space, we may assume that the key-
generation algorithm Gen chooses a uniform key from the key space,
without changing Pr[C = c |M = m] for any m, c.

Hint: Define the key space to be the set of all possible random bits used

by the randomized algorithm Gen.

2.2 Prove that, by redefining the key space as well as the encryption algo-
rithm, we may assume that encryption is deterministic without changing
Pr[C = c |M = m] for any m, c.

2.3 Prove or refute: An encryption scheme with message space M is per-
fectly secret if and only if for every probability distribution on M and
every c0, c1 ∈ C we have Pr[C = c0] = Pr[C = c1].

Perfectly Secret Encryption 37

2.4 Prove or refute: For every perfectly secret encryption scheme it holds
that for every distribution on the message space M, every m,m′ ∈ M,
and every c ∈ C:

Pr[M = m | C = c] = Pr[M = m′ | C = c].

2.5 Prove that in Definition 2.6 we may assume A is deterministic without
loss of generality.

2.6 Prove Lemma 2.7.

2.7 What is the ciphertext that results when the plaintext 0x012345 (writ-
ten in hex) is encrypted using the one-time pad with key 0xFFEEDD?

2.8 For each of the following encryption schemes, state whether the scheme
is perfectly secret. Justify your answer in each case.

(a) The message space is M = {0, . . . , 4}, and Gen chooses a uniform
key from the key space K = {0, . . . , 5}. Enck(m) returns [m +
k mod 5], and Deck(c) returns [c− k mod 5].

(b) The message space is M = {m ∈ {0, 1}` | the last bit of m is 0}.
Gen chooses a uniform key from {0, 1}`−1. Enck(m) returns cipher-
text m⊕ (k‖0), and Deck(c) returns c⊕ (k‖0).

2.9 In each of the following schemes, Enck(m) = [m+k mod 3]. State in each
case whether the scheme is perfectly secret, and justify your answers.

(a) The message space is M = {0, 1}, and Gen chooses a uniform key
from the key space K = {0, 1}.

(b) The message space is M = {0, 1, 2}, and Gen chooses a uniform
key from the key space K = {0, 1, 2}.

(c) The message space is M = {0, 1}, and Gen chooses a uniform key
from the key space K = {0, 1, 2}.

2.10 The following questions concern the message space M = {0, 1}≤`, the
set of all nonempty binary strings of length at most `.

(a) Consider the encryption scheme in which Gen chooses a uniform
key from K = {0, 1}`, and Enck(m) outputs k|m| ⊕ m, where kt
denotes the first t bits of k. Show that this scheme is not perfectly
secret for message space M.

(b) Design a perfectly secret encryption scheme for message space M.

2.11 When using the one-time pad with the key k = 0`, we have Enck(m) =
k ⊕m = m and the message is sent in the clear! It has therefore been
suggested to modify the one-time pad by only encrypting with k 6= 0`

(i.e., to have Gen choose k uniformly from the set of nonzero keys of
length `). Is this modified scheme still perfectly secret? Explain.

38 Introduction to Modern Cryptography

2.12 Let Π denote the Vigenère cipher where the message space consists of
all 3-character strings (over the English alphabet), and the period t is
fixed to 2 (and so the key is a uniform string of length 2). Define A as
follows: A outputs m0 = aaa and m1 = aab. When given a ciphertext c,
it outputs 0 if the first character of c is the same as the third character
of c, and outputs 1 otherwise. Compute Pr[PrivKeav

A,Π = 1].

2.13 Let Π denote the Vigenère cipher where the message space consists of all
3-character strings (over the English alphabet), and the key is generated
by first choosing the period t uniformly from {1, 2, 3} and then letting
the key be a uniform string of length t.

(a) Define A as follows: A outputs m0 = aab and m1 = abb. When
given a ciphertext c, it outputs 0 if the first character of c is the
same as the second character of c, and outputs 1 otherwise. Com-
pute Pr[PrivKeav

A,Π = 1].

(b) Construct and analyze an adversary A′ for which Pr[PrivKeav
A′,Π = 1]

is greater than your answer from part (a).

2.14 In this exercise, we look at different conditions under which the shift,
mono-alphabetic substitution, and Vigenère ciphers are perfectly secret:

(a) Prove that if only a single character is encrypted, then the shift
cipher is perfectly secret.

(b) What is the largest message spaceM for which the mono-alphabetic
substitution cipher provides perfect secrecy?

(c) Prove that the Vigenère cipher using (fixed) period t is perfectly
secret when used to encrypt messages of length t.

Reconcile this with the attacks shown in the previous chapter.

2.15 Give a direct proof that a scheme satisfying Definition 2.6 must have
|K| ≥ |M|. Specifically, let Π be an arbitrary encryption scheme with
|K| < |M|. Show an A for which Pr

[
PrivKeav

A,Π = 1
]
> 1

2 .

Hint: It may be easier to let A be randomized.

2.16 The following questions concern multiple encryptions of single-character
ASCII plaintexts with the one-time pad using the same 8-bit key. You
may assume that the plaintexts are either (upper- or lower-case) English
letters or the space character.

(a) Say you see the ciphertexts 1011 0111 and 1110 0111. What can
you deduce about the plaintext characters these correspond to?

(b) Say you see the three ciphertexts 0110 0110, 0011 0010, and 0010
0011. What can you deduce about the plaintext characters these
correspond to?

Hint: Focus on the second bit of the ciphertexts.

Perfectly Secret Encryption 39

2.17 Assume we require only that an encryption scheme (Gen,Enc,Dec) with
message space M satisfy the following: For all m ∈ M, we have
Pr[DecK(EncK(m)) = m] ≥ 2−t. (This probability is taken over choice
of the key as well as any randomness used during encryption/decryption.)
Show that perfect secrecy can be achieved with |K| < |M| when t ≥ 1.
Prove a lower bound on the size of K in terms of t.

2.18 Let ε > 0 be a constant. Say an encryption scheme is ε-perfectly secret
if for every adversary A it holds that

Pr
[
PrivKeav

A,Π = 1
]
≤ 1

2
+ ε .

(Compare to Definition 2.6.) Consider a variant of the one-time pad
where M = {0, 1}` and the key is chosen uniformly from an arbitrary
set K ⊆ {0, 1}` with |K| = (1 − ε) · 2`; encryption and decryption are
otherwise the same.

(a) Prove that this scheme is ε-perfectly secret.

(b) Prove that this scheme is
(

ε
2(1−ε)

)
-perfectly secret when ε ≤ 1/2.

(Note that ε
2(1−ε) ≤ ε here, so this is an improvement over part (a).)

(c) Prove that any deterministic scheme that is ε-perfectly secret must
have |K| ≥ (1− 2ε) · |M|. (Note: It is an open question to prove a
tight lower bound that also holds for randomized schemes.)

2.19 In this problem we consider definitions of perfect secrecy for the encryp-
tion of two messages (using the same key). Here we consider distribu-
tions on pairs of messages from the message spaceM; we let M1,M2 be
random variables denoting the first and second message, respectively.
(These random variables are not assumed to be independent.) We gen-
erate a (single) key k, sample a pair of messages (m1,m2) according to
the given distribution, and then compute ciphertexts c1 ← Enck(m1)
and c2 ← Enck(m2); this induces a distribution on pairs of ciphertexts
and we let C1, C2 be the corresponding random variables.

(a) Say encryption scheme (Gen,Enc,Dec) is perfectly secret for two
messages if for all distributions on M×M, all m1,m2 ∈ M, and
all ciphertexts c1, c2 ∈ C with Pr[C1 = c1 ∧ C2 = c2] > 0:

Pr [M1 = m1 ∧M2 = m2 | C1 = c1 ∧ C2 = c2]

= Pr[M1 = m1 ∧M2 = m2].

Prove that no encryption scheme can satisfy this definition.

Hint: Take c1 = c2.

40 Introduction to Modern Cryptography

(b) Say encryption scheme (Gen,Enc,Dec) is perfectly secret for two
distinct messages if for all distributions onM×M where the first
and second messages are guaranteed to be different (i.e., distri-
butions on pairs of distinct messages), all m1,m2 ∈ M, and all
c1, c2 ∈ C with Pr[C1 = c1 ∧ C2 = c2] > 0:

Pr[M1 = m1 ∧M2 = m2 | C1 = c1 ∧ C2 = c2]

= Pr[M1 = m1 ∧M2 = m2].

Show an encryption scheme that provably satisfies this definition.

Hint: The encryption scheme you propose need not be efficient,

although an efficient solution is possible.

Part II

Private-Key (Symmetric)
Cryptography

http://taylorandfrancis.com

Chapter 3

Private-Key Encryption

In the previous chapter we saw some fundamental limitations of perfect se-
crecy. In this chapter we begin our study of modern cryptography by intro-
ducing the weaker (but sufficient) notion of computational secrecy. We then
show how this definition can be used to bypass the impossibility results shown
previously for perfect secrecy and, in particular, how a short key (say, 128 bits
long) can be used to encrypt many long messages (say, gigabytes in total).

Along the way we will study the fundamental notion of pseudorandomness,
which captures the idea that something can “look” completely random even
though it is not. This powerful concept underlies much of modern cryptogra-
phy, and has applications and implications beyond the field as well.

3.1 Computational Security

In Chapter 2 we introduced the notion of perfect secrecy. While perfect
secrecy is a worthwhile goal, it is also unnecessarily strong. Perfect secrecy
requires that absolutely no information about an encrypted message is leaked,
even to an eavesdropper with unlimited computational power. For all practical
purposes, however, an encryption scheme would still be considered secure if it
leaked information with some tiny probability to eavesdroppers with bounded
computational power. For example, a scheme that leaks information with
probability at most 2−60 to eavesdroppers investing up to 200 years of com-
putational effort on the fastest available supercomputer (or cluster of comput-
ers) would be more than adequate for real-world applications. Computational
security definitions take into account computational limits on an attacker, and
allow for a small probability that security is violated, in contrast to notions
(such as perfect secrecy) that are information-theoretic in nature. Computa-
tional security is now the de facto way in which security is defined for almost
all cryptographic applications.

We stress that although we give up on obtaining perfect secrecy, this does
not mean we do away with the rigorous mathematical approach we have been
taking so far. Definitions and proofs are still essential; the only difference is
that we now consider a weaker (but still meaningful) notion of security.

43

44 Introduction to Modern Cryptography

As discussed, computational security definitions incorporate two relaxations
relative to information-theoretic notions of security:

1. Security is only guaranteed against efficient adversaries that run for
some feasible amount of time. This means that given enough time (or
sufficient computational resources) an attacker may be able to violate
security. If we can make the resources required to break the scheme
larger than those available to any realistic attacker, however, then for
all practical purposes the scheme is unbreakable.

2. Adversaries can potentially succeed (i.e., security can potentially fail)
with some very small probability . If we can make this probability
sufficiently small, we need not worry about it.

(As we will see, both these relaxations are necessary in order to overcome
the limitations of perfect secrecy shown in the last chapter.) To obtain a
meaningful theory, we need to precisely define what we mean by the above
relaxations. There are two general approaches for doing so: the concrete
approach and the asymptotic approach. These are described next.

3.1.1 The Concrete Approach

The concrete approach to computational security quantifies the security of
a cryptographic scheme by explicitly bounding the maximum success proba-
bility of a (randomized) adversary running for some specified amount of time
or, more precisely, investing some specified amount of computational effort.
Thus, a concrete definition of security takes the following form:

A scheme is (t, ε)-secure if any adversary running for time at
most t succeeds in breaking the scheme with probability at most ε.

(Of course, the above serves only as a general template, and for it to make
sense we need to define exactly what it means to “break” the scheme in ques-
tion.) As an example, one might have a scheme with the guarantee that no
adversary running for at most 200 years using the fastest available supercom-
puter can succeed in breaking the scheme with probability better than 2−60.
Or, it may be more convenient to measure running time in terms of CPU
cycles, and to construct a scheme such that no adversary using at most 280

cycles can break the scheme with probability better than 2−60.
It is instructive to get a feel for the large values of t and the small values

of ε that are typical of modern cryptosystems.

Example 3.1
Modern private-key encryption schemes are generally assumed to give almost
optimal security in the following sense: when the key has length n—and so
the key space has size 2n—an adversary running for time t (measured in, say,

Private-Key Encryption 45

CPU cycles) succeeds in breaking the scheme with probability at most ct/2n

for some fixed constant c. (This simply corresponds to a brute-force search of
the key space.)

Assuming c = 1 for simplicity, a key of length n = 64 provides adequate
security against an adversary using a standard desktop computer. Indeed, on
a 4 GHz processor with 16 cores that executes 4× 109 cycles per second per
core, 264 CPU cycles require 264/(4 × 109 × 16) seconds, or about 9 years.
(The above numbers are for illustrative purposes only; in practice c 6= 1, and
several other factors—including the time required for accessing memory—can
significantly affect the performance of brute-force attacks.)

However, there is no reason to assume that an adversary is limited to a desk-
top computer, and powerful adversaries are able to carry out computations
orders of magnitude faster. Today, the minimum recommended key length is
n = 128. The difference between 264 and 2128 is a multiplicative factor of 264.
To get a feeling for how big this is, note that according to physicists’ estimates
the number of seconds since the Big Bang is on the order of 258.

If the probability that an attacker can successfully recover an encrypted
message in one year is at most 2−60, then it is much more likely that the
sender and receiver will both be hit by lightning in that time period than that
the attacker will recover the message! Something that occurs with probability
2−60 each second is expected to occur roughly once every 10 billion years. ♦

The concrete approach is important in practice, since concrete guarantees
are what users of a cryptographic scheme are ultimately interested in. How-
ever, precise concrete guarantees are difficult to provide. Furthermore, one
must be careful in interpreting concrete-security claims. For example, a claim
that no adversary running for 5 years can break a given scheme with proba-
bility better than ε begs the questions: what type of computing power (e.g.,
desktop PC, supercomputer, network of hundreds of computers) does this as-
sume? Does this take into account expected future advances in computing
power (which, by Moore’s Law, roughly doubles every 18 months)? Does the
estimate assume the use of “off-the-shelf” algorithms, or dedicated hardware
optimized for the attack? Furthermore, such a guarantee says little about the
success probability of an adversary running for 2 years (other than the fact
that it can be at most ε) and says nothing about the success probability of
an adversary running for 10 years.

3.1.2 The Asymptotic Approach

As partly noted above, there are some technical and theoretical difficulties
in using the concrete-security approach. These issues must be dealt with in
practice but when describing schemes abstractly (as we do in this book) it is
convenient instead to use an asymptotic approach. This approach, rooted in
complexity theory, introduces an integer-valued security parameter (denoted
by n) that parameterizes both cryptographic schemes as well as all involved

46 Introduction to Modern Cryptography

parties (i.e., the honest parties as well as the attacker). When honest parties
use a scheme (e.g., when they generate a key), they choose some value for
the security parameter; for the purposes of this discussion, one can view the
security parameter as corresponding to the length of the key. We also view the
running time of the adversary, as well as its success probability, as functions
of the security parameter rather than as fixed, concrete values. Then:

1. We equate “efficient adversaries” with randomized (i.e., probabilistic)
algorithms running in time polynomial in n. This means there is some
polynomial p such that the adversary runs for time at most p(n) when
the security parameter is n. We also require—for real-world efficiency—
that honest parties run in polynomial time, although we stress that the
adversary may be much more powerful (and run much longer) than the
honest parties.

2. We equate the notion of “small probabilities of success” with success
probabilities smaller than any inverse polynomial in n. (See Defini-
tion 3.4.) Such probabilities are called negligible.

Let ppt stand for “probabilistic polynomial-time.” A definition of asymptotic
security then takes the following general form:

A scheme is secure if any ppt adversary succeeds in breaking the
scheme with at most negligible probability.

This notion of security is asymptotic since it depends on a scheme’s behavior
for sufficiently large values of n. The following example illustrates this.

Example 3.2
Say we have a scheme that is asymptotically secure. Then it may be the
case that an adversary running for n3 minutes can succeed in “breaking the
scheme” with probability 240/2n (which is a negligible function of n). When
n ≤ 40 this means that an adversary running for 403 minutes (about 6 weeks)
can break the scheme with probability 1, so such values of n are not very
useful. Even for n = 50 an adversary running for 503 minutes (about 3
months) can break the scheme with probability roughly 1/1000, which may
not be acceptable. On the other hand, when n = 500 an adversary running
for 200 years breaks the scheme only with probability roughly 2−500. ♦

As indicated by the previous example, we can view the security parameter as
a mechanism that allows the honest parties to “tune” the security of a scheme
to some desired level. (Increasing the security parameter also increases the
time required to run the scheme, as well as the length of the key, so the
honest parties will want to set the security parameter as small as possible
subject to defending against the class of attacks they are concerned about.)
Viewing the security parameter as the key length, this corresponds to the fact

Private-Key Encryption 47

that the time required for an exhaustive-search attack grows exponentially
in the length of the key. The ability to “increase security” by increasing
the security parameter has important practical ramifications, since it enables
honest parties to defend against increases in computing power. The following
example gives a sense of how this might play out in practice.

Example 3.3
Let us see the effect that the availability of faster computers might have on
security in practice. Say we have a cryptographic scheme in which the honest
parties run for 106 ·n2 cycles, and for which an adversary running for 108 ·n4

cycles can succeed in “breaking” the scheme with probability at most 2−n/2.
(The numbers are intended to make calculations easier, and are not meant to
correspond to any existing cryptographic scheme.)

Assume all parties are using 2 GHz computers and the honest parties set
n = 80. Then the honest parties run for 106 · 6400 cycles, or 3.2 seconds, and
an adversary running for 108 · (80)4 cycles, or roughly 3 weeks, can break the
scheme with probability only 2−40.

Say 8 GHz computers become available, and all parties upgrade. Honest
parties can increase n to 160 (which requires generating a fresh key) and
maintain a running time of 3.2 seconds (i.e., 106 · 1602 cycles at 8 · 109 cy-
cles/second). In contrast, the adversary now has to run for over 8 million
seconds, or more than 13 weeks, to achieve a success probability of 2−80. The
effect of a faster computer has been to make the adversary’s job harder. ♦

Even when using the asymptotic approach it is important to remember that
when a cryptosystem is ultimately deployed a concrete security guarantee will
be needed. (After all, some value of n must be chosen, and it is important to
understand what level of security is being provided.) As the above examples
indicate, however, an asymptotic security claim can typically be translated
into a concrete security bound for any desired value of n.

The Asymptotic Approach in Detail

We now discuss more formally the notions of “polynomial-time algorithms”
and “negligible success probabilities.”

Efficient algorithms. A function f from the natural numbers to the non-
negative real numbers is polynomially bounded (or simply polynomial) if there
is a constant c such that f(n) < nc for all n. An algorithm A runs in polyno-
mial time if there exists a polynomial p such that, for every input x ∈ {0, 1}∗,
the computation of A(x) terminates within at most p(|x|) steps. (Here, |x|
denotes the length of the string x.) As mentioned earlier, we equate efficient
adversaries with those whose running time is polynomial in the security pa-
rameter n. When it is necessary to explicitly indicate this, we provide the
security parameter in unary (i.e., the string 1n consisting of n ones) as input

48 Introduction to Modern Cryptography

to an algorithm. An algorithm may take other inputs besides the security
parameter—for example, a message to be encrypted—and in that case we
allow its running time to be polynomial in the total length of its inputs.

A technical advantage of working with polynomials is that they obey cer-
tain closure properties. In particular, if p1, p2 are two polynomials, then the
function p(n) = p1(p2(n)) is also polynomial.

By default, we allow all algorithms to be probabilistic (i.e., randomized).
Any such algorithm is assumed to have access to a sequence of unbiased,
independent random bits. Equivalently, a randomized algorithm is given (in
addition to its input) a uniformly distributed random tape of sufficient length
whose bits it can use, as needed, throughout its execution.

We consider randomized algorithms by default for two reasons. First, ran-
domness is essential to cryptography (e.g., in order to choose random keys
and so on) and so honest parties must be probabilistic; given this, it is nat-
ural to allow adversaries to be probabilistic as well. Second, randomization
is practical and—as far as we know—gives attackers additional power. Since
our goal is to model all realistic attacks, we prefer a more liberal definition of
efficient computation.

Negligible success probability. A negligible function is one that is asymp-
totically smaller than any inverse polynomial function. Formally:

DEFINITION 3.4 A function f from the natural numbers to the non-
negative real numbers is negligible if for every polynomial p there is an N
such that for all n > N it holds that f(n) < 1

p(n) .

The above is equivalently stated as follows: for every polynomial p and all
sufficiently large values of n it holds that f(n) < 1

p(n) . Or, in other words,

for all constants c there exists an N such that for all n > N it holds that
f(n) < n−c. We typically denote an arbitrary negligible function by negl.

Example 3.5

The functions 2−n, 2−
√
n, and n− logn are all negligible. However, they ap-

proach zero at very different rates. For example, we can look at the minimum
value of n for which each function is smaller than 1/n5:

1. Solving 2−n < n−5 we get n > 5 log n. The smallest integer value of
n > 1 for which this holds is n = 23.

2. Solving 2−
√
n < n−5 we get n > 25 log2 n. The smallest integer value of

n > 1 for which this holds is n ≈ 3500.

3. Solving n− logn < n−5 we get log n > 5. The smallest integer value of n
for which this holds is n = 33.

Private-Key Encryption 49

From the above you may have the impression that n− logn is smaller than
2−
√
n. However, this is incorrect; for all n > 65536 it holds that 2−

√
n <

n− logn. Nevertheless, this does show that for values of n in the hundreds
or thousands, an adversarial success probability of n− logn is preferable to an
adversarial success probability of 2−

√
n. ♦

A technical advantage of working with negligible success probabilities is
that they obey certain closure properties. The following is an easy exercise.

PROPOSITION 3.6 Let negl1 and negl2 be negligible functions. Then,

1. The function negl3(n) = negl1(n) + negl2(n) is negligible.

2. For any polynomial p, the function negl4(n) = p(n)·negl1(n) is negligible.

The second part of the above proposition implies that if a certain event
occurs with only negligible probability in some experiment, then the event
occurs with negligible probability even if that experiment is repeated poly-
nomially many times. (This relies on the union bound; see Proposition A.7.)
For example, the probability that n fair coin flips all come up “heads” is 2−n,
which is negligible. This means that even if we repeat the experiment of flip-
ping n coins polynomially many times, the probability that even one of those
experiments results in n heads is still negligible.

A corollary of the second part of the above proposition is that if a function

g is not negligible, then neither is the function f(n)
def
= g(n)/p(n) for any

polynomial p.

Asymptotic Security: A Summary

Any security definition consists of two components: a definition of what is
considered a “break” of the scheme, and a specification of the power of the
adversary. The power of the adversary can relate to many issues (e.g., in the
case of encryption, whether we assume a ciphertext-only attack or a chosen-
plaintext attack). However, when it comes to the computational power of
the adversary, we will from now on model the adversary as efficient and thus
only consider adversarial strategies that can be implemented in probabilis-
tic polynomial time. (The only exceptions are Section 4.6, where we revisit
information-theoretic security, and Chapter 14, where we consider quantum
polynomial-time attackers.) Definitions will also be formulated so that a break
that occurs with negligible probability is not considered significant. Thus, the
general framework of any security definition will be:

A scheme is secure if for every probabilistic polynomial-time adver-
sary A carrying out an attack (of some formally specified type),
the probability that A succeeds in the attack (where success is
also formally specified) is negligible.

50 Introduction to Modern Cryptography

Such a definition is asymptotic because it is possible that for small values of n
an adversary can succeed with high probability. In order to see this more
clearly, we expand the term “negligible” in the above statement:

A scheme is secure if for every ppt adversary A carrying out an
attack, and every polynomial p, there is an integer N such that
when n > N the probability that A succeeds in the attack is less
than 1

p(n) .

Note that nothing is guaranteed for values n ≤ N .

On the Choices Made in Defining Asymptotic Security

In defining the general notion of asymptotic security, we have made two
choices: we have identified efficient adversarial strategies with the class of
probabilistic polynomial-time algorithms, and have equated small chances of
success with negligible probabilities. Both these choices are—to some extent—
arbitrary, and one could build a perfectly reasonable theory by defining, say,
efficient strategies as those running in time 2o(n), or small success probabilities
as those bounded by 2−n. Nevertheless, we briefly justify the choices we have
made (which are the standard ones).

Those familiar with complexity theory or algorithms will recognize that the
idea of equating efficient computation with (probabilistic) polynomial-time
algorithms is not unique to cryptography. One advantage of using (prob-
abilistic) polynomial time as our notion of efficiency is that this frees us
from having to specify our model of computation precisely, since the extended
Church–Turing thesis states that all “reasonable” models of computation are
polynomially equivalent.1 Thus, we need not specify whether we use Turing
machines, boolean circuits, or random-access machines; we can present algo-
rithms in high-level pseudocode and be confident that if our analysis shows
that an algorithm runs in polynomial time, then any reasonable implementa-
tion of that algorithm will run in polynomial time.

Another advantage of (probabilistic) polynomial-time algorithms is that
they satisfy desirable closure properties: in particular, an algorithm that
does only polynomial computation and makes polynomially many calls to
polynomial-time subroutines will itself run in polynomial time.

The most important feature of negligible probabilities is the closure prop-
erty we have already seen in Proposition 3.6(2): a polynomial multiplied by
a negligible function is still negligible. This means, in particular, that if a
polynomial-time algorithm makes polynomially many calls to some subrou-
tine that “fails” with negligible probability each time it is called, then the
probability that any call to that subroutine fails is still negligible.

1Note, however, that quantum computers may may give super-polynomial speedup (for
some problems) relative to classical computers. We defer further discussion to Chapter 14.

Private-Key Encryption 51

Necessity of the Relaxations

Computational secrecy introduces two relaxations of perfect secrecy: first,
secrecy is guaranteed only against efficient adversaries; second, secrecy may
“fail” with small probability. Both these relaxations are essential for achieving
practical encryption schemes, and in particular for bypassing the negative
results for perfectly secret encryption. We informally discuss why this is the
case. Assume we have an encryption scheme where the size of the key space K
is smaller than the size of the message space M. (As shown in the previous
chapter, this means the scheme cannot be perfectly secret.) Two attacks apply
regardless of how the encryption scheme is constructed:

� Given a ciphertext c, an adversary can decrypt c using all keys k ∈ K.
This gives a list of all the messages to which c can possibly correspond.
Since this list cannot contain all ofM (because |K| < |M|), this attack
leaks some information about the message that was encrypted.

Moreover, say the adversary carries out a known-plaintext attack and
learns that ciphertexts c1, . . . , c` correspond to the messages m1, . . . ,m`,
respectively. The adversary can again try decrypting each of these ci-
phertexts with all possible keys until it finds a key k for which Deck(ci) =
mi for all i. Later, given a ciphertext c that is the encryption of an un-
known message m, it is almost surely the case that Deck(c) = m.

Brute-force attacks like the above allow an adversary to “succeed” with
probability ≈ 1 in time O(|K|).

� Consider again the case where the adversary learns that ciphertexts
c1, . . . , c` correspond to messages m1, . . . ,m`. The adversary can guess
a uniform key k ∈ K and check whether Deck(ci) = mi for all i. If so,
then, as above, the attacker can use k to decrypt anything subsequently
encrypted by the honest parties.

Here the adversary runs in constant time and “succeeds” with nonzero
probability 1/|K|.

Nevertheless, by setting |K| large enough we can hope to achieve meaningful
secrecy against attackers running in time much less than |K| (so the attacker
does not have sufficient time to carry out a brute-force attack), except possibly
with small probability on the order of 1/|K|.

3.2 Defining Computationally Secure Encryption

Given the background of the previous section, we are ready to present a
definition of computational security for private-key encryption. First, we re-
define the syntax of private-key encryption; this will be largely the same as

52 Introduction to Modern Cryptography

the syntax introduced in Chapter 2 except that we now explicitly take into
account the security parameter n. We also make two other changes: we allow
the decryption algorithm to output an error (e.g., in case it is presented with
an invalid ciphertext), and let the message space be the set {0, 1}∗ of all
(finite-length) binary strings by default.

DEFINITION 3.7 A private-key encryption scheme consists of three prob-
abilistic polynomial-time algorithms (Gen,Enc,Dec) such that:

1. The key-generation algorithm Gen takes as input 1n (i.e., the security
parameter written in unary) and outputs a key k; we write k ← Gen(1n)
(emphasizing that Gen is a randomized algorithm). We assume without
loss of generality that any key k output by Gen(1n) satisfies |k| ≥ n.

2. The encryption algorithm Enc takes as input a key k and a plaintext
message m ∈ {0, 1}∗, and outputs a ciphertext c. Since Enc may be
randomized, we write this as c← Enck(m).

3. The decryption algorithm Dec takes as input a key k and a ciphertext c,
and outputs a message m ∈ {0, 1}∗ or an error. We denote a generic
error by the symbol ⊥.

It is required that for every n, every key k output by Gen(1n), and every
m ∈ {0, 1}∗, it holds that Deck(Enck(m)) = m.

If (Gen,Enc,Dec) is such that for k output by Gen(1n), algorithm Enck is
only defined for messages m ∈ {0, 1}`(n), then we say that (Gen,Enc,Dec) is
a fixed-length private-key encryption scheme for messages of length `(n).

Almost always, Gen(1n) simply outputs a uniform n-bit string as the key.
When this is the case, we omit Gen and define a private-key encryption scheme
to be a pair of algorithms (Enc,Dec). Without significant loss of generality, we
assume Dec is deterministic throughout this book, and so write m := Deck(c).

The above definition considers stateless schemes, in which each invocation
of Enc is independent of all prior invocations (and similarly for Dec). Later in
this chapter, we will discuss stateful schemes in which parties may maintain
local state that is updated after each invocation of Enc and/or Dec. We
assume encryption schemes are stateless (as in the above definition) unless
explicitly noted otherwise.

3.2.1 The Basic Definition of Security (EAV-Security)

We begin by presenting the most basic notion of computational security
for private-key encryption: security against a ciphertext-only attack where
the adversary observes only a single ciphertext or, equivalently, security when
a given key is used to encrypt just a single message. We consider stronger
definitions of security later.

Private-Key Encryption 53

Motivating the definition. As we have already discussed, any definition
of security consists of two distinct components: a threat model (i.e., a speci-
fication of the assumed power of the adversary) and a security goal (usually
specified by describing what constitutes a “break” of the scheme). We begin
our definitional treatment by considering the simplest threat model, where
there is an eavesdropping adversary who observes the encryption of a sin-
gle message. This is exactly the threat model we considered in the previous
chapter. This only difference here is that, as explained in the previous section,
we are now interested only in computationally bounded adversaries that are
limited to running in polynomial time.

Although we have made two assumptions about the adversary’s capabilities
(namely, that it eavesdrops on one ciphertext, and that it runs in polynomial
time), we make no assumptions whatsoever about the adversary’s strategy in
trying to decipher the ciphertext it observes. This is crucial for obtaining
meaningful notions of security: the definition ensures protection against any
computationally bounded eavesdropper, regardless of the algorithm it uses.

Correctly defining the security goal for encryption is not trivial, but we
have already discussed this issue at length in Section 1.4.1 and in the previ-
ous chapter. We therefore just recall that the idea behind the definition is
that the adversary should be unable to learn any partial information about
the plaintext from the ciphertext. The definition of semantic security (cf.
Section 3.2.2) exactly formalizes this notion, and was the first definition of
computationally secure encryption to be proposed. Semantic security is com-
plex and difficult to work with. Fortunately, there is an equivalent definition
called indistinguishability that is much simpler.

The definition of indistinguishability is patterned on the alternative defi-
nition of perfect secrecy given as Definition 2.6. (This serves as further jus-
tification that the definition of indistinguishability is a good one.) Recall
that Definition 2.6 considers an experiment PrivKeav

A,Π in which an adversary
A outputs two messages m0 and m1, and is then given an encryption of one
of those messages using a randomly generated key. The definition states that
a scheme Π is secure if no adversary A can determine which of the messages
m0,m1 was encrypted with probability any different from 1/2 (which is the
probability that A is correct if it just makes a random guess).

Here, we keep the experiment PrivKeav
A,Π almost exactly the same (except

for some technical differences discussed below), but introduce two important
modifications in the definition itself:

1. We now consider only adversaries running in polynomial time, whereas
Definition 2.6 considered even adversaries with unbounded running time.

2. We now concede that the adversary might determine the encrypted mes-
sage with probability negligibly better than 1/2.

As discussed extensively in the previous section, the above relaxations consti-
tute the core elements of computational security.

54 Introduction to Modern Cryptography

As for the other differences, the most prominent is that we now parame-
terize the experiment by a security parameter n. The running time of the
adversary A, as well as its success probability, are then both viewed as func-
tions of n. We write PrivKeav

A,Π(n) to denote the experiment being run with
security parameter n, and write

Pr[PrivKeav
A,Π(n) = 1] (3.1)

to denote the probability that the output of experiment PrivKeav
A,Π(n) is 1.

Note that with A,Π fixed, the expression in Equation (3.1) is a function of n.

A second difference is that we now explicitly require the adversary to output
two messages m0,m1 of equal length. (In Definition 2.6 this requirement is
implicit if the message spaceM only contains messages of some fixed length,
as is the case for the one-time pad encryption scheme.) This means that,
by default, we do not require a secure encryption scheme to hide the length
of the plaintext. We revisit this point at the end of this section; see also
Exercises 3.2 and 3.3.

Indistinguishability in the presence of an eavesdropper. We now give
the formal definition, beginning with the experiment outlined above. The
experiment is defined for a private-key encryption scheme Π = (Gen,Enc,Dec),
an adversary A, and a value n for the security parameter:

The adversarial indistinguishability experiment PrivKeav
A,Π(n):

1. The adversary A is given input 1n, and outputs a pair of
messages m0,m1 with |m0| = |m1|.

2. A key k is generated by running Gen(1n), and a uniform bit
b ∈ {0, 1} is chosen. Ciphertext c ← Enck(mb) is computed
and given to A. We refer to c as the challenge ciphertext.

3. A outputs a bit b′.

4. The output of the experiment is defined to be 1 if b′ = b, and
0 otherwise. If PrivKeav

A,Π(n) = 1, we say that A succeeds.

There is no limitation on the lengths of m0 and m1, as long as they are the
same. (Of course, if A runs in polynomial time, then m0 and m1 have length
polynomial in n.) If Π is a fixed-length scheme for messages of length `(n),
the above experiment is modified by requiring m0,m1 ∈ {0, 1}`(n).

The fact that the adversary can only eavesdrop is implicit in the fact that
the adversary is given only a (single) ciphertext, and does not have any further
interaction with the sender or the receiver. (As we will see later, allowing
additional interaction makes the adversary significantly stronger.)

The definition of indistinguishability states that an encryption scheme is se-
cure if no ppt adversary A succeeds in guessing which message was encrypted

Private-Key Encryption 55

in the above experiment with probability significantly better than random
guessing (which is correct with probability 1/2):

DEFINITION 3.8 A private-key encryption scheme Π = (Gen,Enc,Dec)
has indistinguishable encryptions in the presence of an eavesdropper, or is EAV-
secure, if for all probabilistic polynomial-time adversaries A there is a negli-
gible function negl such that, for all n,

Pr
[
PrivKeav

A,Π(n) = 1
]
≤ 1

2
+ negl(n).

The probability above is taken over the randomness used by A and the ran-
domness used in the experiment (for choosing the key and the bit b, as well as
any randomness used by Enc).

It should be clear that Definition 3.8 is weaker than Definition 2.6, which is
equivalent to perfect secrecy. Thus, any perfectly secret encryption scheme is
also EAV-secure. Our goal, therefore, is to show that there exist encryption
schemes satisfying Definition 3.8 that can circumvent the limitations of perfect
secrecy, and in particular for which the key is shorter than the message. (Note
that this must be the case if the scheme can handle arbitrary length messages.)
That is, we will show schemes that satisfy Definition 3.8 but cannot satisfy
Definition 2.6.

An equivalent formulation. Definition 3.8 requires that no ppt adver-
sary can determine which of two messages was encrypted with probability
significantly better than 1/2. An equivalent formulation is that every ppt
adversary behaves the same whether it observes an encryption of m0 or of m1.
Since A outputs a bit, “behaving the same” means it outputs 1 with almost
the same probability in each case. To formalize this, define PrivKeav

A,Π(n, b) as
above except that the fixed bit b ∈ {0, 1} is used (rather than being chosen
at random). Let outA(PrivKeav

A,Π(n, b)) denote the output bit b′ of A in this
experiment. The following states that the output distribution of A is not
significantly affected by whether it is running in experiment PrivKeav

A,Π(n, 0) or
experiment PrivKeav

A,Π(n, 1).

DEFINITION 3.9 A private-key encryption scheme Π = (Gen,Enc,Dec)
has indistinguishable encryptions in the presence of an eavesdropper if for all
ppt adversaries A there is a negligible function negl such that∣∣∣Pr[outA(PrivKeav

A,Π(n, 0)) = 1]− Pr[outA(PrivKeav
A,Π(n, 1)) = 1]

∣∣∣ ≤ negl(n).

The fact that this is equivalent to Definition 3.8 is left as an exercise.

On Revealing the Plaintext Length

The default notion of secure encryption does not require the encryption
scheme to hide the plaintext length and, in fact, all commonly used encryp-

56 Introduction to Modern Cryptography

tion schemes reveal the plaintext length (or a close approximation thereof).
The main reason for this is that it is impossible to support arbitrary length
messages while hiding all information about the plaintext length (cf. Exer-
cise 3.2). In many cases this is inconsequential since the plaintext length is
already public or is not sensitive. This is not always the case, however, and
sometimes leaking the plaintext length is problematic. As examples:

� Simple numeric/text data: Say the encryption scheme being used reveals
the plaintext length exactly. Then encrypted salary information would
reveal whether someone makes a 5-figure or a 6-figure salary. Similarly,
encryption of “yes”/“no” responses would leak the answer exactly.

� Auto-suggestions: Websites often include an “auto-complete” or “auto-
suggestion” functionality by which the website suggests a list of poten-
tial words or phrases based on partial information the user has already
typed. The size of this list can reveal information about the letters the
user has typed so far. (For example, the number of auto-completions
returned for “th” is far greater than the number for “zo.”)

� Database searches: Consider a user querying a database for all records
matching some search term. The number of records returned can reveal
a lot of information about what the user was searching for. This can be
particularly damaging if the user is searching for medical information
and the query reveals information about a disease the user has.

� Compressed data: If the plaintext is compressed before being encrypted,
then information about the plaintext might be revealed even if only
fixed-length plaintext is being encrypted. For example, a short com-
pressed plaintext would indicate that the original (uncompressed) plain-
text has a lot of redundancy. If an adversary can control a portion of
what gets encrypted, this vulnerability can enable an adversary to learn
additional information about the rest of the plaintext; it has been shown
possible to use an attack of exactly this sort (called the CRIME attack)
to reveal secret session cookies from encrypted HTTPS traffic.

When using encryption one should determine whether leaking the plaintext
length is a concern and, if so, take steps to mitigate or prevent such leakage by
padding all messages to some pre-determined length before encrypting them.

3.2.2 *Semantic Security

We motivated the definition of secure encryption by saying that it implies
the inability of an adversary to learn any partial information about the plain-
text from the ciphertext. At first glance, however, Definition 3.8 looks very
different. As we have mentioned, though, that definition is equivalent to a
definition called semantic security that formalizes exactly the notion we want.

Private-Key Encryption 57

We build up to that definition by first introducing two weaker notions and
showing that they are implied by EAV-security.

We begin by showing that EAV-security implies that ciphertexts leak no
information about individual bits of the plaintext. Formally, we show that if
an EAV-secure encryption scheme (Enc,Dec) (recall that if Gen is omitted, the
key is a uniform n-bit string) is used to encrypt a uniform messagem ∈ {0, 1}`,
then for any i it is infeasible for an attacker given the ciphertext to guess the
ith bit of m (here denoted by mi) with probability much better than 1/2.

THEOREM 3.10 Let Π = (Enc,Dec) be a fixed-length private-key encryp-
tion scheme for messages of length ` that is EAV-secure. Then for all ppt
adversaries A and i ∈ {1, . . . , `}, there is a negligible function negl such that

Pr
[
A(1n,Enck(m)) = mi

]
≤ 1

2
+ negl(n), (3.2)

where the probability is taken over uniform m ∈ {0, 1}` and k ∈ {0, 1}n, the
randomness of A, and the randomness of Enc.

PROOF The idea behind the proof of this theorem is that if it were possible
to determine the ith bit of m from Enck(m), then it would also be possible
to distinguish between encryptions of messages m0 and m1 whose ith bits
differ. We formalize this via a proof by reduction, in which we show how
to use any efficient adversary A to construct an efficient adversary A′ such
that if A violates Equation (3.2), then A′ violates EAV-security of Π. (See
Section 3.3.2 for more discussion of proofs by reduction.) Since Π is EAV-
secure, this implies that no such A can exist.

Fix an arbitrary ppt adversary A and i ∈ {1, . . . , `}. Let I0 ⊂ {0, 1}` be
the set of all strings whose ith bit is 0, and let I1 ⊂ {0, 1}` be the set of all
strings whose ith bit is 1. We have

Pr
[
A(1n,Enck(m)) = mi

]
=

1

2
· Pr
m0←I0

[A(1n,Enck(m0)) = 0] +
1

2
· Pr
m1←I1

[A(1n,Enck(m1)) = 1] .

Construct the following eavesdropping adversary A′:

Adversary A′(1n):

1. Choose uniform m0 ∈ I0 and m1 ∈ I1. Output m0,m1.

2. Upon observing a ciphertext c, invoke A(1n, c). If A outputs
0, output b′ = 0; otherwise, output b′ = 1.

Note that A′ runs in polynomial time since A does.

58 Introduction to Modern Cryptography

By the definition of experiment PrivKeav
A′,Π(n), we have that A′ succeeds if

and only if A outputs b upon receiving Enck(mb). So

Pr
[
PrivKeav

A′,Π(n) = 1
]

= Pr [A(1n,Enck(mb)) = b]

=
1

2
· Pr
m0←I0

[A(1n,Enck(m0)) = 0] +
1

2
· Pr
m1←I1

[A(1n,Enck(m1)) = 1]

= Pr
[
A(1n,Enck(m)) = mi

]
.

Since (Enc,Dec) is EAV-secure, there is a negligible function negl such that
Pr
[
PrivKeav

A′,Π(n) = 1
]
≤ 1

2 + negl(n). We conclude that

Pr
[
A(1n,Enck(m)) = mi

]
≤ 1

2
+ negl(n),

completing the proof.

We next argue that EAV-security implies that no ppt adversary can learn
any function f of the plaintext m from the ciphertext, regardless of the distri-
bution D of m. This requirement is not trivial to define formally, because it
needs to distinguish information that the attacker knows about the message
due to D from information the attacker learns about the message from the
ciphertext. (For example, if D is only over messages for which f evaluates
to 1, then it is easy for an attacker to determine f(m). But in this case
the attacker is not learning f(m) from the ciphertext.) This is taken into
account in the definition by requiring that if there exists an adversary who,
with some probability, correctly computes f(m) when given Enck(m), then
there exists an adversary that can correctly compute f(m) with almost the
same probability without being given the ciphertext at all (and knowing only
the distribution D of m).

THEOREM 3.11 Let (Enc,Dec) be a fixed-length private-key encryption
scheme for messages of length ` that is EAV-secure. Then for any ppt al-
gorithm A there is a ppt algorithm A′ such that for any distribution D over
{0, 1}` and any function f : {0, 1}` → {0, 1}, there is a negligible function negl
such that:∣∣∣Pr [A(1n,Enck(m)) = f(m)]− Pr [A′(1n) = f(m)]

∣∣∣ ≤ negl(n),

where the first probability is taken over choice of m according to D, uniform
choice of k ∈ {0, 1}n, and the randomness of A and Enc, and the second
probability is taken over choice of m according to D and the randomness of A′.

PROOF (Sketch) The fact that (Enc,Dec) is EAV-secure means that, for
any D, no ppt adversary can distinguish between Enck(m) for m chosen ac-
cording to D, and Enck(1`) (i.e., an encryption of the all-1 string). (We leave

Private-Key Encryption 59

a proof of this claim to the reader.) Consider now the probability that A suc-
cessfully computes f(m) given Enck(m). We claim that A should successfully
compute f(m) given Enck(1`) with almost the same probability; otherwise,
A could be used to distinguish between Enck(m) and Enck(1`). The distin-
guisher is easily constructed: choose m according to D, and output m0 = m,
m1 = 1`. When given a ciphertext c that is an encryption of either m0 or
m1, invoke A(1n, c) and output 0 if and only if A outputs f(m). If A outputs
f(m) when given an encryption of m with probability that is significantly
different from the probability that it outputs f(m) when given an encryption
of 1`, then the described distinguisher violates Definition 3.9.

The above suggests the following algorithm A′ that does not receive an
encryption of m, yet computes f(m) almost as well as A does: A′(1n) chooses
a uniform key k ∈ {0, 1}n, invokes A on c← Enck(1`), and outputs whatever
A does. By the above, we have that A outputs f(m) when run as a subroutine
by A′ with almost the same probability as when it receives Enck(m). Thus,
A′ fulfills the property required by the theorem.

Semantic security. The full definition of semantic security guarantees con-
siderably more than what is considered in Theorem 3.11. The definition al-
lows arbitrary (efficiently sampleable) distributions over messages, generated
by some polynomial-time sampling algorithm Samp. The definition also takes
into account arbitrary “external” information h(m) about the message m that
may be available to the adversary via other means (e.g., because the message
is used for some other purpose as well). It also allows messages of varying
lengths, although—as discussed at the end of the previous section—it assumes
the message length is revealed.

DEFINITION 3.12 A private-key encryption scheme (Enc,Dec) is seman-
tically secure in the presence of an eavesdropper if for every ppt algorithm A
there exists a ppt algorithm A′ such that for any ppt algorithm Samp and
polynomial-time computable functions f and h, the following is negligible:∣∣∣Pr[A(1n,Enck(m), h(m)) = f(m)]− Pr[A′(1n, |m|, h(m)) = f(m)]

∣∣∣ ,
where the first probability is taken over m output by Samp(1n), uniform choice
of k ∈ {0, 1}n, and the randomness of Enc and A, and the second probability
is taken over m output by Samp(1n) and the randomness of A′.

The adversary A is given the ciphertext Enck(m) as well as the external
information h(m), and attempts to guess the value of f(m). Algorithm A′
also attempts to guess the value of f(m), but is given only the length of m
and h(m). The security requirement states that A’s probability of correctly
guessing f(m) is about the same as that of A′. Intuitively, then, this means

60 Introduction to Modern Cryptography

that the ciphertext Enck(m) does not reveal any information about f(m)
except for |m|.

Definition 3.12 is a very strong and convincing formulation of the security
guarantees that should be provided by an encryption scheme. Definition 3.8
is much easier to work with. Fortunately, the definitions are equivalent :

THEOREM 3.13 A private-key encryption scheme has indistinguishable
encryptions in the presence of an eavesdropper (i.e., is EAV-secure) if and
only if it is semantically secure in the presence of an eavesdropper.

Looking ahead, a similar equivalence to a “semantic security”-based defini-
tion is known for all the definitions we present in this chapter and Chapter 5.
We can therefore use a simpler notion as our working definition, while being
assured that it implies the strong guarantees of semantic security.

3.3 Constructing an EAV-Secure Encryption Scheme

Having defined what it means for an encryption scheme to be secure, the
reader may expect us to turn immediately to constructions of secure encryp-
tion schemes. Before doing so, however, we need to introduce the notion of
pseudorandom generators (PRGs), which are important building blocks for
private-key encryption. This, in turn, will lead to a discussion of pseudo-
randomness, which plays a fundamental role in cryptography in general and
private-key encryption in particular.

3.3.1 Pseudorandom Generators

A pseudorandom generator G is an efficient, deterministic algorithm for
transforming a short, uniform string (called a seed) into a longer, “uniform-
looking” (or “pseudorandom”) output string. Stated differently, a pseudoran-
dom generator uses a small amount of true randomness in order to generate a
large amount of pseudorandomness. This is useful whenever a large number of
random(-looking) bits are needed, since generating true random bits is often
difficult and slow. (See the discussion at the beginning of Chapter 2.) Pseu-
dorandom generators have been studied since at least the 1940s when they
were used for running statistical simulations. In that context, researchers pro-
posed various statistical tests that a pseudorandom generator should pass in
order to be considered “good.” As a simple example, one could require that
the first bit of the output of a pseudorandom generator should be equal to 1
with probability very close to 1/2 (where the probability is taken over uniform
choice of the seed), since the first bit of a uniform string is equal to 1 with

Private-Key Encryption 61

probability exactly 1/2. As another example, the parity of any fixed subset
of the output bits should also be 1 with probability very close to 1/2. More
complex statistical tests can also be considered.

This historical approach to determining the quality of some candidate pseu-
dorandom generator is unsatisfying, as it is not clear when passing some set
of statistical tests is sufficient to guarantee the soundness of using a candidate
pseudorandom generator for some application. (In particular, there may be
another statistical test that does successfully distinguish the output of the
generator from true random bits.) The historical approach is even more prob-
lematic when using pseudorandom generators for cryptographic applications;
there, security may be compromised if any attacker is able to distinguish the
output of a pseudorandom generator from uniform, and we do not know in
advance what strategy an attacker might use.

The above considerations motivated a cryptographic approach to defining
pseudorandom generators in the 1980s. The basic realization was that a good
pseudorandom generator should pass all (efficient) statistical tests. That is,
for any efficient statistical test (or distinguisher) D, the probability that D
returns 1 when given the output of the pseudorandom generator should be
close to the probability that D returns 1 when given a uniform string of the
same length. Informally, then, this means the output of a pseudorandom
generator “looks like” a uniformly generated string to any efficient observer.

We begin by defining what it means for a distribution to be pseudorandom.
Let Dist be a distribution on `-bit strings. (This means that Dist assigns
some probability to every string in {0, 1}`; sampling from Dist means that we
choose an `-bit string according to this probability distribution.) Informally,
Dist is pseudorandom if the experiment in which a string is sampled from
Dist is indistinguishable from the experiment in which a uniform string of
length ` is sampled. (Strictly speaking, since we are in an asymptotic setting
we need to speak of the pseudorandomness of a sequence of distributions
Dist = {Distn}, where distribution Distn is used for security parameter n.
We ignore this point in our current discussion.) More precisely, it should
be infeasible for any polynomial-time algorithm to determine (better than
guessing) whether it is given a string sampled according to Dist, or whether
it is given a uniform `-bit string. This means that a pseudorandom string is
just as good as a uniform string, as long as we consider only polynomial-time
observers. We stress that it does not make sense to say that any fixed string is
“pseudorandom,” in the same way that it is meaningless to refer to any fixed
string as “uniform.” Rather, pseudorandomness is a property of a distribution
on strings. (Nevertheless, we sometimes informally call a string output by a
pseudorandom generator a “pseudorandom string” in the same way we might
say that a string sampled according to the uniform distribution is a “uniform
string.”) Just as indistinguishability is a computational relaxation of perfect
secrecy, pseudorandomness is a computational relaxation of true randomness.

Let G be an efficiently computable function that maps strings of length n
to outputs of length `(n) > n, and define Distn to be the distribution on `(n)-

62 Introduction to Modern Cryptography

bit strings obtained by choosing a uniform s ∈ {0, 1}n and outputting G(s).
Then G is a pseudorandom generator if and only if the distribution Distn
(technically, the sequence of distributions {Distn}) is pseudorandom.

The formal definition. As discussed above, G is a pseudorandom generator
if no efficient distinguisher can detect whether it is given a string output by G
or a string chosen uniformly at random. As in Definition 3.9, this is formalized
by requiring that every efficient algorithm outputs 1 with almost the same
probability when given G(s) (for uniform seed s) or a uniform string. (For an
equivalent definition analogous to Definition 3.8, see Exercise 3.7.) We obtain
a definition in the asymptotic setting by letting the security parameter n
determine the length of the seed, and insisting that G be computable by an
efficient algorithm. As a technicality, we also require that G’s output be longer
than its input; otherwise, G is not very useful or interesting.

DEFINITION 3.14 Let G be a deterministic polynomial-time algorithm
such that for any n and any input s ∈ {0, 1}n, the result G(s) is a string of
length `(n). G is a pseudorandom generator if the following conditions hold:

1. (Expansion.) For every n it holds that `(n) > n.

2. (Pseudorandomness.) For any ppt algorithm D, there is a negligible
function negl such that∣∣Pr[D(G(s)) = 1]− Pr[D(r) = 1]

∣∣ ≤ negl(n),

where the first probability is taken over uniform choice of s ∈ {0, 1}n and
the randomness of D, and the second probability is taken over uniform
choice of r ∈ {0, 1}`(n) and the randomness of D.

We call `(n) the expansion factor of G.

We give an example of an insecure pseudorandom generator to gain famil-
iarity with the definition.

Example 3.15
Define G(s) to output s followed by ⊕ni=1si (i.e., the XOR of all the bits of s),
so the expansion factor of G is `(n) = n+ 1. The output of G can be distin-
guished easily from uniform. Consider the following efficient distinguisher D:
on input a string w, output 1 if and only if the final bit of w is equal to the
XOR of all the preceding bits of w. Since this holds for all strings output
by G, we have Pr[D(G(s)) = 1] = 1. On the other hand, if r is uniform, the
final bit of r is uniform and so Pr[D(r) = 1] = 1

2 . The quantity | 12 − 1| is
constant, not negligible, and so G is not a pseudorandom generator. (Note
that D is not always “correct,” since it sometimes outputs 1 even when given
a uniform string. But D is still a good distinguisher.) ♦

Private-Key Encryption 63

Discussion. The distribution of the output of a pseudorandom generator G
is far from uniform. To see this, consider the case that `(n) = 2n and so G
doubles the length of its input. Under the uniform distribution on {0, 1}2n,
each of the 22n possible strings is chosen with probability exactly 2−2n. In
contrast, consider the distribution of the output of G when it is run on a
uniform n-bit seed. The number of different strings in the range of G is at
most 2n. The fraction of strings of length 2n that are in the range of G is
thus at most 2n/22n = 2−n, and we see that the vast majority of strings of
length 2n have probability 0 of being output by G.

This in particular means that it is trivial to distinguish between a random
string and a pseudorandom string given an unlimited amount of time. Let
G be as above and consider the exponential-time distinguisher D that works
as follows: D(w) outputs 1 if and only if there exists an s ∈ {0, 1}n such
that G(s) = w. (This computation is carried out in exponential time by
exhaustively computing G(s) for every s ∈ {0, 1}n. Recall that by Kerckhoffs’
principle, the specification of G is known to D.) Now, if w were output by G,
then D outputs 1 with probability 1. In contrast, if w is uniformly distributed
in {0, 1}2n, then the probability that there exists an s with G(s) = w is at
most 2−n, and so D outputs 1 in this case with probability at most 2−n. So∣∣Pr[D(r) = 1]− Pr[D(G(s)) = 1]

∣∣ ≥ 1− 2−n,

which is large. This is just another example of a brute-force attack, and does
not contradict the pseudorandomness of G since the attack is not efficient.

The seed and its length. The seed for a pseudorandom generator is anal-
ogous to the key used by an encryption scheme, and—just as in the case of
a cryptographic key—the seed s must be chosen uniformly and be kept se-
cret from any adversary if we want G(s) to look random. Another important
point, evident from the above discussion of brute-force attacks, is that s must
be long enough so that it is not feasible to enumerate all possible seeds. In an
asymptotic sense this is taken care of by setting the length of the seed equal
to the security parameter, so exhaustive search over all possible seeds requires
exponential time. In practice, the seed length n must at least be large enough
so that a brute-force attack running in time 2n is infeasible.

On the existence of pseudorandom generators. Do pseudorandom gen-
erators exist? They certainly seem difficult to construct, and one may rightly
ask whether any algorithm G satisfies Definition 3.14. Although we do not
know how to unconditionally prove the existence of pseudorandom generators,
we have strong reasons to believe they exist for any (polynomial) expansion
factor. For one, they can be constructed under the rather weak assumption
that one-way functions exist (which is true if certain problems like factoring
are hard); this is discussed in detail in Chapter 8. We also have several practi-
cal constructions of candidate pseudorandom generators called stream ciphers
for which no efficient distinguishers are known; see Section 3.6.1 for details

64 Introduction to Modern Cryptography

and Section 7.1 for concrete examples. In this chapter, we simply assume
pseudorandom generators exist for any polynomial expansion factor, and ex-
plore how they can be used to build secure encryption schemes. Doing so in
a sound way relies on the idea of proofs by reduction, which we describe next.

3.3.2 Proofs by Reduction

If we wish to prove that a given construction (e.g., encryption scheme) is
computationally secure, then—unless the scheme is information-theoretically
secure—we must rely on unproven assumptions. Our strategy will be to as-
sume that some mathematical problem is hard, or that some low-level cryp-
tographic primitive is secure, and then to prove that the given construction
based on that problem/primitive is secure as long as our initial assumption
is correct. In Section 1.4.2 we have already explained in great detail the
advantages of this approach, so we do not repeat those arguments here.

A proof that some cryptographic construction Π is secure as long as some
underlying problem X is hard generally proceeds by presenting an explicit
reduction showing how to transform any efficient adversary A that succeeds
in “breaking” Π into an efficient algorithm A′ that solves X. Since this is so
important, we walk through a high-level outline of the steps of such a proof in
detail. (We will see numerous concrete examples throughout the book, begin-
ning with the proof of Theorem 3.16 in the next section.) We start with the
assumption that some problem X cannot be solved (in some precisely defined
sense) by any polynomial-time algorithm, except with negligible probabil-
ity. We then want to prove that some cryptographic construction Π is secure
(again, in some sense that is precisely defined). A proof by reduction proceeds
via the following steps (see also Figure 3.1):

1. Fix some efficient (i.e., probabilistic polynomial-time) adversary A at-
tacking Π. Denote this adversary’s success probability by ε(n).

2. Construct an efficient algorithm A′ that attempts to solve problem X by
using adversary A as a subroutine. An important point here is that A′
knows nothing about how A works; the only thing A′ knows is that A
is expecting to attack Π. So, given some input instance x of problem X,
our algorithm A′ will simulate for A an instance of Π such that:

(a) As far as A can tell, it is interacting with Π. That is, the view of A
when run as a subroutine by A′ should be distributed identically to
(or at least close to) the view of A when it interacts with Π itself.

(b) When A succeeds in “breaking” the instance of Π that is being
simulated by A′, this should allow A′ to solve the instance x it was
given, at least with inverse polynomial probability 1/p(n).

I.e., we attempt to reduce the problem of solving X to the problem of
breaking Π.

Private-Key Encryption 65

FIGURE 3.1: A high-level overview of a proof by reduction.

3. Taken together, the above imply that A′ solves X with probability
ε(n)/p(n). Now, if ε(n) is not negligible then neither is ε(n)/p(n). More-
over, if A is efficient then we obtain an efficient algorithm A′ solving X
with non-negligible probability, contradicting our initial assumption.

4. Given our assumption regarding X, we conclude that no efficient ad-
versary A can succeed in breaking Π with non-negligible probability.
Stated differently, Π is computationally secure.

As an illustration of the above idea, we show in the following section how
to use a pseudorandom generator G to construct an encryption scheme, and
we prove the encryption scheme secure by showing that any attacker who
can “break” the encryption scheme can be used to distinguish the output
of G from a uniform string. Under the assumption that G is a pseudorandom
generator, then, the encryption scheme is secure.

3.3.3 EAV-Security from a Pseudorandom Generator

A pseudorandom generator provides a natural way to construct a secure,
fixed-length encryption scheme with a key shorter than the message. Recall
that in the one-time pad (see Section 2.2), encryption is done by XORing
a random pad with the message. The crucial insight is that we can use a
pseudorandom pad instead. Rather than sharing this long, pseudorandom
pad, however, the sender and receiver can instead share a uniform seed that is
used to generate the pad when needed (see Figure 3.2); this seed will be shorter
than the pad and hence shorter than the message. As for security, the intu-
ition is that a pseudorandom string “looks random” to any polynomial-time
adversary and so a computationally bounded eavesdropper cannot distinguish
between a message encrypted using the one-time pad or a message encrypted
using this “pseudo-”one-time pad encryption scheme.

66 Introduction to Modern Cryptography

FIGURE 3.2: Encryption with a pseudorandom generator.

The encryption scheme. Fix some message length `(n) and let G be a pseu-
dorandom generator with expansion factor `(n) (that is, |G(s)| = `(|s|)). Re-
call that an encryption scheme is defined by three algorithms: a key-generation
algorithm Gen, an encryption algorithm Enc, and a decryption algorithm Dec.
The key-generation algorithm is the trivial one: Gen(1n) simply outputs a
uniform key k ∈ {0, 1}n. Encryption works by applying G to the key (which
serves as a seed) in order to obtain a pad that is then XORed with the plain-
text. Decryption applies G to the key and XORs the resulting pad with the
ciphertext to recover the message. The scheme is described formally in Con-
struction 3.17. In Section 3.6.2, we describe how stream ciphers are used to
implement a variant of this scheme in practice.

THEOREM 3.16 If G is a pseudorandom generator, then Construc-
tion 3.17 is an EAV-secure, fixed-length private-key encryption scheme for
messages of length `(n).

PROOF Let Π denote Construction 3.17. We show that Π satisfies Defini-
tion 3.8 (under the assumption that G is a pseudorandom generator). Namely,
we show that for any probabilistic polynomial-time adversary A there is a neg-
ligible function negl such that

Pr
[
PrivKeav

A,Π(n) = 1
]
≤ 1

2
+ negl(n). (3.3)

The intuition is that if Π used a uniform pad in place of the pseudorandom
pad G(k), then the resulting scheme would be identical to the one-time pad
encryption scheme and A would be unable to correctly guess which message
was encrypted with probability any better than 1/2. Thus, if Equation (3.3)

Private-Key Encryption 67

CONSTRUCTION 3.17

Let G be a pseudorandom generator with expansion factor `(n). Define
a fixed-length private-key encryption scheme for messages of length `(n)
as follows:

� Gen: on input 1n, choose uniform k ∈ {0, 1}n and output it as
the key.

� Enc: on input a key k ∈ {0, 1}n and a message m ∈ {0, 1}`(n),
output the ciphertext

c := G(k)⊕m.

� Dec: on input a key k ∈ {0, 1}n and a ciphertext c ∈ {0, 1}`(n),
output the message

m := G(k)⊕ c.

A private-key encryption scheme based on any pseudorandom generator.

does not hold then A must implicitly be distinguishing the output of G from
a random string. We make this explicit by showing a reduction; namely,
by showing how to use A to construct an efficient distinguisher D, with the
property that D’s ability to distinguish the output of G from a uniform string
is directly related to A’s ability to determine which message was encrypted
by Π. Security of G then implies security of Π.

Let A be an arbitrary ppt adversary. We construct a distinguisher D that
takes a string w as input, and whose goal is to determine whether w was
chosen uniformly (i.e., w is a “random string”) or whether w was generated
by choosing a uniform k and computing w := G(k) (i.e., w is a “pseudorandom
string”). We construct D so that it emulates the eavesdropping experiment
for A, as described below, and observes whether A succeeds or not. If A
succeeds then D guesses that w must be a pseudorandom string, while if A
does not succeed then D guesses that w is a random string. In detail:

Distinguisher D:
D is given as input a string w ∈ {0, 1}`(n). (We assume that n can
be determined from `(n).)

1. Run A(1n) to obtain a pair of messages m0,m1 ∈ {0, 1}`(n).

2. Choose a uniform bit b ∈ {0, 1}. Set c := w ⊕mb.

3. Give c to A and obtain output b′. Output 1 if b′ = b, and
output 0 otherwise.

D clearly runs in polynomial time (assuming A does).
Before analyzing the behavior of D, we define a modified encryption scheme

Π̃ = (G̃en, Ẽnc, D̃ec) that is exactly the one-time pad encryption scheme, ex-
cept that we now incorporate a security parameter that determines the length

of the message to be encrypted. That is, G̃en(1n) outputs a uniform key
k of length `(n), and the encryption of message m ∈ {0, 1}`(n) using key

68 Introduction to Modern Cryptography

k ∈ {0, 1}`(n) is the ciphertext c := k⊕m. (Decryption can be done as usual,
but is inessential to what follows.) Perfect secrecy of the one-time pad implies

Pr
[
PrivKeav

A,Π̃(n) = 1
]

=
1

2
. (3.4)

To analyze the behavior of D, the main observations are:

1. If w is chosen uniformly from {0, 1}`(n), then the view ofA when run as a
subroutine by D is distributed identically to the view of A in experiment
PrivKeav

A,Π̃(n). This is because when A is run as a subroutine by D(w) in

this case, A is given a ciphertext c = w⊕mb where w ∈ {0, 1}`(n) is uni-
form. Since D outputs 1 exactly when A succeeds in its eavesdropping
experiment, we therefore have (using Equation (3.4))

Prw←{0,1}`(n) [D(w) = 1] = Pr
[
PrivKeav

A,Π̃(n) = 1
]

=
1

2
. (3.5)

(The subscript on the first probability just makes explicit that w is
chosen uniformly from {0, 1}`(n) there.)

2. If w is instead generated by choosing uniform k ∈ {0, 1}n and then
setting w := G(k), the view of A when run as a subroutine by D is
distributed identically to the view of A in experiment PrivKeav

A,Π(n). This
is because A, when run as a subroutine by D, is now given a ciphertext
c = w ⊕mb where w = G(k) for a uniform k ∈ {0, 1}n. Thus,

Prk←{0,1}n [D(G(k)) = 1] = Pr
[
PrivKeav

A,Π(n) = 1
]
. (3.6)

Since G is a pseudorandom generator (and since D runs in polynomial time),
we know there is a negligible function negl such that∣∣∣Prk←{0,1}n [D(G(k)) = 1]− Prw←{0,1}`(n) [D(w) = 1]

∣∣∣ ≤ negl(n).

Using Equations (3.5) and (3.6), we thus see that∣∣∣∣ Pr
[
PrivKeav

A,Π(n) = 1
]
− 1

2

∣∣∣∣ ≤ negl(n),

which implies Pr
[
PrivKeav

A,Π(n) = 1
]
≤ 1

2 + negl(n). Since A was an arbitrary
ppt adversary, this completes the proof that Π is EAV-secure.

It is easy to get lost in the details of the proof and wonder whether anything
has been gained as compared to the one-time pad; after all, the one-time pad
also encrypts an `-bit message by XORing it with an `-bit string! The point
of the construction, of course, is that the shared key k can be much shorter
than the `-bit string G(k). In particular, using the above scheme it may be

Private-Key Encryption 69

possible to securely encrypt a 1 Mb file using only a 128-bit key. By relying on
computational secrecy we have thus circumvented the impossibility result of
Theorem 2.11, which states that any perfectly secret encryption scheme must
use a key at least as long as the message.

Reductions—a discussion. We do not prove unconditionally that Con-
struction 3.17 is secure. Rather, we prove that it is secure under the assump-
tion that G is a pseudorandom generator. This approach of reducing the
security of a higher-level construction to a lower-level primitive has a number
of advantages (as discussed in Section 1.4.2). One of these advantages is that,
in general, it is easier to design a lower-level primitive than a higher-level one;
it is also easier, in general, to directly analyze an algorithm G with respect
to a lower-level definition than to analyze a more complex scheme Π with
respect to a higher-level definition. This does not mean that constructing a
pseudorandom generator is “easy,” only that it is easier than constructing an
encryption scheme from scratch. (In the present case the encryption scheme
does nothing except XOR the output of a pseudorandom generator with the
message and so this isn’t quite true. Soon, however, we will see more complex
constructions and in those cases the ability to reduce the task to a simpler
one is very useful.) Another advantage is that the construction can be instan-
tiated with any pseudorandom generator G, providing some flexibility to the
users of the scheme.

Concrete security. Although Theorem 3.16 and its proof are in an asymp-
totic setting, we can readily adapt the proof to bound the concrete security
of the encryption scheme in terms of the concrete security of G. Fix some
value of n for the remainder of this discussion, and let Π now denote Con-
struction 3.17 using this value of n. Assume G is (t, ε)-pseudorandom (for the
given value of n), in the sense that for all distinguishers D running in time at
most t we have ∣∣Pr[D(G(s)) = 1]− Pr[D(r) = 1]

∣∣ ≤ ε. (3.7)

(Think of t ≈ 280 CPU cycles and ε ≈ 2−60, though precise values are irrele-
vant for our discussion.) We claim that Π is (t− t′, ε)-secure for some (small)
constant t′, in the sense that for all A running in time at most t− t′ we have

Pr
[
PrivKeav

A,Π = 1
]
≤ 1

2
+ ε. (3.8)

(Note that the above are now fixed numbers, not functions of n, since we
have fixed n and are no longer in an asymptotic setting.) To see this, let A
be an arbitrary adversary running in time at most t − t′. Distinguisher D,
as constructed in the proof of Theorem 3.16, has very little overhead besides
running A; setting t′ appropriately ensures that D runs in time at most t.
Our assumption on the concrete security of G then implies Equation (3.7);
proceeding exactly as in the proof of Theorem 3.16, we obtain Equation (3.8).

70 Introduction to Modern Cryptography

3.4 Stronger Security Notions

Until now we have considered a relatively weak definition of security in
which the adversary only passively eavesdrops on a single ciphertext sent
between the honest parties. Here we consider stronger security notions.

3.4.1 Security for Multiple Encryptions

Definition 3.8 deals with the case where the communicating parties trans-
mit a single ciphertext that is observed by an eavesdropper. It would be
convenient, however, if the communicating parties could securely send multi-
ple ciphertexts to each other—all generated using the same key—even if an
eavesdropper might observe all of them. For such applications we need an
encryption scheme secure for the encryption of multiple messages.

We begin with an appropriate definition of security for this setting. As
in the case of Definition 3.8, we first introduce an appropriate experiment
defined for any encryption scheme Π, adversary A, and security parameter n:

The multiple-message eavesdropping experiment PrivKmult
A,Π(n):

1. The adversary A is given input 1n, and outputs a pair of
equal-length lists of messages ~M0 = (m0,1, . . . ,m0,t) and ~M1 =
(m1,1, . . . ,m1,t), with |m0,i| = |m1,i| for all i.

2. A key k is generated by running Gen(1n), and a uniform bit
b ∈ {0, 1} is chosen. For all i, the ciphertext ci ← Enck(mb,i)

is computed and the list ~C = (c1, . . . , ct) is given to A.

3. A outputs a bit b′.

4. The output of the experiment is defined to be 1 if b′ = b, and
0 otherwise.

The definition of security is the same as before, except that it now refers to
the above experiment.

DEFINITION 3.18 A private-key encryption scheme Π = (Gen,Enc,Dec)
has indistinguishable multiple encryptions in the presence of an eavesdropper if
for all probabilistic polynomial-time adversaries A there is a negligible function
negl such that

Pr
[
PrivKmult

A,Π(n) = 1
]
≤ 1

2
+ negl(n).

Any scheme that has indistinguishable multiple encryptions in the pres-
ence of an eavesdropper clearly also satisfies Definition 3.8, since experiment
PrivKeav

A,Π(n) corresponds to the special case of PrivKmult
A,Π(n) where the adver-

sary outputs two lists containing only a single message each. In fact, our new
definition is strictly stronger than Definition 3.8, as the following shows.

Private-Key Encryption 71

PROPOSITION 3.19 There is a private-key encryption scheme that has
indistinguishable encryptions in the presence of an eavesdropper, but not in-
distinguishable multiple encryptions in the presence of an eavesdropper.

PROOF We do not have to look far to find an example of an encryption
scheme satisfying the proposition. The one-time pad is perfectly secret, and so
also has indistinguishable encryptions in the presence of an eavesdropper. We
show that it is not secure in the sense of Definition 3.18. (We have discussed
this attack in Chapter 2 already; here, we merely analyze the attack with
respect to Definition 3.18.)

Concretely, consider the following adversary A attacking the scheme Π (in

the sense defined by experiment PrivKmult
A,Π(n)): A outputs ~M0 = (0`, 0`) and

~M1 = (0`, 1`). (The first contains the same message twice, while the second

contains two different messages.) Let ~C = (c1, c2) be the list of ciphertexts
thatA receives. If c1 = c2, thenA outputs b′ = 0; otherwise, A outputs b′ = 1.

We now analyze the probability that b′ = b. The crucial point is that the
one-time pad is deterministic, so encrypting the same message twice (using
the same key) yields the same ciphertext. Thus, if b = 0 then we must have
c1 = c2 and A outputs 0 in this case. On the other hand, if b = 1 then a
different message is encrypted each time; hence c1 6= c2 and A outputs 1.
We conclude that A correctly outputs b′ = b with probability 1, and so the
encryption scheme is not secure with respect to Definition 3.18.

Necessity of probabilistic encryption. The above might appear to show
that Definition 3.18 is impossible to achieve using any encryption scheme.
This is true as long as the encryption scheme is (stateless2 and) deterministic,
and so encrypting the same message multiple times using the same key always
yields the same result. This is important enough to state as a theorem.

THEOREM 3.20 If Π is a encryption scheme in which Enc is a determin-
istic function of the key and the message, then Π cannot have indistinguishable
multiple encryptions in the presence of an eavesdropper.

This should not be interpreted to mean that Definition 3.18 is too strong.
Indeed, leaking to an eavesdropper the fact that two encrypted messages are
the same can be a significant security breach. (Consider, e.g., a scenario in
which someone encrypts a series of yes/no answers!)

2Theorem 3.20 refers only to encryption schemes satisfying the syntax of Definition 3.7.
We will see in Section 3.6.2 that if an encryption scheme is stateful (something that is not
covered by Definition 3.7), then it is possible to securely encrypt multiple messages even if
Enc is deterministic. In Section 3.6.4, we consider a third syntax for encryption that also
enables deterministic encryption to be used to securely encrypt multiple messages.

72 Introduction to Modern Cryptography

To construct a scheme secure for encrypting multiple messages, we must
design a scheme in which encryption is randomized, so that when the same
message is encrypted multiple times different ciphertexts can be produced.
This may seem impossible since decryption must always be able to recover
the message. However, we will soon see how to achieve it.

While achieving security for the encryption of multiple messages is impor-
tant, we do not extensively consider Definition 3.18 itself but instead focus on
the stronger definition that we introduce in the following section.

3.4.2 Chosen-Plaintext Attacks and CPA-Security

Chosen-plaintext attacks capture the ability of an adversary to exercise
(partial) control over what the honest parties encrypt. Imagine a scenario
in which two honest parties share a key k, and the attacker can influence
those parties to encrypt messages m1,m2, . . . (using k) and send the resulting
ciphertexts over a channel that the attacker can observe. At some later point
in time, the attacker observes a ciphertext corresponding to some unknown
message m encrypted using the same key k; let us even assume that the
attacker knows that m is one of two possibilities m0,m1. Security against
chosen-plaintext attacks means that even in this case the attacker cannot
tell which of those two messages was encrypted with probability significantly
better than random guessing. (For now we revert back to the case where
the eavesdropper is given only a single encryption of an unknown message.
Shortly, we will return to consideration of the multiple-message case.)

Chosen-plaintext attacks in the real world. Are chosen-plaintext at-
tacks a realistic concern? For starters, note that chosen-plaintext attacks also
encompass known-plaintext attacks—in which the attacker knows some of the
messages being encrypted, even if it does not get to choose them—as a special
case. Moreover, there are several real-world scenarios in which an adversary
might have significant influence over what messages get encrypted. A simple
example is given by an attacker typing on a terminal, which in turn encrypts
everything the adversary types using a key (unknown to the attacker) shared
with a remote server. Here the attacker exactly controls what gets encrypted,
and the encryption scheme should still reveal nothing when it is used—with
the same key—to encrypt data typed by another user.

Interestingly, chosen-plaintext attacks have also been used successfully as
part of historical efforts to break military encryption schemes. For example,
during World War II the British placed mines at certain locations, knowing
that the Germans—when finding those mines—would encrypt the locations
and send them back to headquarters. Those encrypted messages were used
by cryptanalysts at Bletchley Park to break the German encryption scheme.

Another example is given by the famous story involving the Battle of Mid-
way. In May 1942, US Navy cryptanalysts intercepted an encrypted message
from the Japanese that they were able to partially decode. The result in-

Private-Key Encryption 73

dicated that the Japanese were planning an attack on AF, where AF was a
ciphertext fragment that the US was unable to decode. For other reasons,
the US believed that Midway Island was the target. Unfortunately, their at-
tempts to convince planners in Washington that this was the case were futile;
the general belief was that Midway could not possibly be the target. The
Navy cryptanalysts devised the following plan: They instructed US forces at
Midway to send a fake message that their freshwater supplies were low. The
Japanese intercepted this message and immediately sent an encrypted mes-
sage to their superiors that “AF is low on water.” The Navy cryptanalysts now
had their proof that AF corresponded to Midway, and the US dispatched three
aircraft carriers to that location. The result was that Midway was saved, and
the Japanese incurred significant losses. This battle was a turning point in
the war between the US and Japan in the Pacific.

The Navy cryptanalysts here carried out a chosen-plaintext attack, as they
were able to influence the Japanese (albeit in a roundabout way) to encrypt
the word “Midway.” If the Japanese encryption scheme had been secure
against chosen-plaintext attacks, this strategy by the US cryptanalysts would
not have worked (and history may have turned out very differently)!

CPA-security. In the formal definition we model chosen-plaintext attacks
by giving the adversary A access to an encryption oracle, viewed as a “black
box” that encrypts messages of A’s choice using a key k that is unknown
to A. That is, we imagine A has access to an “oracle” Enck(·); when A
queries this oracle by providing it with a message m as input, the oracle
returns a ciphertext c ← Enck(m) as the reply. (If Enc is randomized, the
oracle uses fresh randomness each time it answers a query.) The adversary
can interact with the encryption oracle adaptively, as many times as it likes.

Consider the following experiment defined for any encryption scheme Π =
(Gen,Enc,Dec), adversary A, and value n for the security parameter:

The CPA indistinguishability experiment PrivKcpa
A,Π(n):

1. A key k is generated by running Gen(1n).

2. The adversary A is given input 1n and oracle access to Enck(·),
and outputs a pair of messages m0,m1 of the same length.

3. A uniform bit b ∈ {0, 1} is chosen, and then a ciphertext
c← Enck(mb) is computed and given to A.

4. The adversary A continues to have oracle access to Enck(·),
and outputs a bit b′.

5. The output of the experiment is defined to be 1 if b′ = b, and
0 otherwise. In the former case, we say that A succeeds.

DEFINITION 3.21 A private-key encryption scheme Π = (Gen,Enc,Dec)
has indistinguishable encryptions under a chosen-plaintext attack, or is CPA-

74 Introduction to Modern Cryptography

secure, if for all probabilistic polynomial-time adversaries A there is a negli-
gible function negl such that

Pr
[
PrivKcpa

A,Π(n) = 1
]
≤ 1

2
+ negl(n),

where the probability is taken over the randomness used by A, as well as the
randomness used in the experiment.

CPA-security is nowadays the minimal notion of security an encryption
scheme should satisfy, though it is becoming more common to require even
stronger security notions that we will discuss in Chapter 5.

3.4.3 CPA-Security for Multiple Encryptions

Definition 3.21 can be extended to the case of multiple encryptions in the
same way that Definition 3.8 is extended to give Definition 3.18, i.e., by using
lists of plaintexts. Here, we take a different approach that is somewhat sim-
pler and has the advantage of modeling attackers that can adaptively choose
pairs of plaintexts to be encrypted. Specifically, we now give the attacker
access to a “left-or-right” oracle LRk,b that, on input a pair of equal-length
messages m0,m1, computes the ciphertext c← Enck(mb) and returns c. That
is, if b = 0 then the adversary always receives an encryption of the “left”
plaintext, and if b = 1 then it always receives an encryption of the “right”
plaintext. The bit b is a uniform bit chosen at the beginning of the experiment,
and as in previous definitions the goal of the attacker is to guess b.

Consider the following experiment defined for any encryption scheme Π =
(Gen,Enc,Dec), adversary A, and value n for the security parameter:

The LR-oracle experiment PrivKLR-cpa
A,Π (n):

1. A key k is generated by running Gen(1n).

2. A uniform bit b ∈ {0, 1} is chosen.

3. The adversary A is given input 1n and oracle access to LRk,b(·, ·),
as defined above.

4. The adversary A outputs a bit b′.

5. The output of the experiment is defined to be 1 if b′ = b, and
0 otherwise. In the former case, we say that A succeeds.

DEFINITION 3.22 Private-key encryption scheme Π has indistinguish-
able multiple encryptions under a chosen-plaintext attack, or is CPA-secure for
multiple encryptions, if for all probabilistic polynomial-time adversaries A there
is a negligible function negl such that

Pr
[
PrivKLR-cpa

A,Π (n) = 1
]
≤ 1

2
+ negl(n),

Private-Key Encryption 75

where the probability is taken over the randomness used by A and the random-
ness used in the experiment.

Note that an attacker given access to LRk,b can simulate access to an en-
cryption oracle: to obtain the encryption of a message m, the attacker simply
queries LRk,b(m,m). Given this observation, it is immediate that if Π is CPA-
secure for multiple encryptions then it is also CPA-secure. It should also be
clear that if Π is CPA-secure for multiple encryptions then it has indistin-
guishable multiple encryptions in the presence of an eavesdropper. In other
words, Definition 3.22 is at least as strong as Definitions 3.18 and 3.21.

It turns out that CPA-security is equivalent to CPA-security for multiple
encryptions. (This stands in contrast to the case of eavesdropping adversaries;
cf. Proposition 3.19.) We state the following without proof; an analogous
result in the public-key setting is proved in Section 12.2.2.

THEOREM 3.23 Any private-key encryption scheme that is CPA-secure
is also CPA-secure for multiple encryptions.

Thus, it suffices to prove that a scheme is CPA-secure (for a single encryp-
tion), and we may then conclude that it is CPA-secure for multiple encryptions
as well.

Fixed-length vs. arbitrary-length messages. An advantage of working
with the notion of CPA-security for multiple messages (or, equivalently, CPA-
security) is that it allows us to treat fixed-length encryption schemes without
loss of generality. In particular, given any CPA-secure fixed-length encryption
scheme Π = (Gen,Enc,Dec), it is possible to construct a CPA-secure encryp-
tion scheme Π′ = (Gen′,Enc′,Dec′) for arbitrary-length messages quite easily.
For simplicity, say Π encrypts messages that are 1-bit long. Leave Gen′ the
same as Gen. Define Enc′k for any message m (having some arbitrary length `)
as Enc′k(m) = Enck(m1), . . . ,Enck(m`), where mi denotes the ith bit of m.
Decryption is done in the natural way. It follows from Theorem 3.23 that if Π
is CPA-secure then so is Π′.

There are more efficient ways to encrypt messages of arbitrary length than
by adapting a fixed-length encryption scheme in this manner. We explore this
further in Section 3.6.

3.5 Constructing a CPA-Secure Encryption Scheme

Before constructing encryption schemes secure against chosen-plaintext at-
tacks, we first introduce the important notion of pseudorandom functions.

76 Introduction to Modern Cryptography

3.5.1 Pseudorandom Functions and Permutations

Pseudorandom functions (PRFs) generalize the notion of pseudorandom
generators. Now, instead of considering “random-looking” strings we con-
sider “random-looking” functions. As in our earlier discussion of pseudo-
randomness, it does not make much sense to say that any fixed function
f : {0, 1}∗ → {0, 1}∗ is pseudorandom (in the same way it makes little sense
to say that any fixed function is random). Instead, we must consider the
pseudorandomness of a distribution on functions. Such a distribution is in-
duced naturally by considering keyed functions, defined next.

A keyed function F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ is a two-input function,
where the first input is called the key and typically denoted by k. We say
F is efficient if there is a polynomial-time algorithm that computes F (k, x)
given k and x. (We will only be interested in efficient keyed functions.) The
security parameter n dictates the key length, input length, and output length.
That is, we associate with F three functions `key, `in, and `out ; for any key
k ∈ {0, 1}`key(n), the function Fk is only defined for inputs x ∈ {0, 1}`in(n), in
which case Fk(x) ∈ {0, 1}`out(n). Unless stated otherwise, we assume for sim-
plicity that F is length preserving, meaning `key(n) = `in(n) = `out(n) = n.
(Note, however, that this is only to reduce notational clutter, and it is not
uncommon to have pseudorandom functions that are not length preserving.)
Let Funcn denote the set of all functions mapping n-bit strings to n-bit strings.

In typical usage a key k ∈ {0, 1}n is chosen and fixed, and we are then
interested in the single-input function Fk : {0, 1}n → {0, 1}n defined by

Fk(x)
def
= F (k, x) mapping n-bit input strings to n-bit output strings. A

keyed function F thus induces a distribution on functions in Funcn, where
the distribution is given by choosing a uniform key k ∈ {0, 1}n and then
considering the resulting single-input function Fk. We call F pseudorandom
if the function Fk (for a uniform key k) is indistinguishable from a function
chosen uniformly at random from the set Funcn of all functions having the
same domain and range; that is, if no efficient adversary can distinguish—in
a sense we more carefully define below—whether it is interacting with Fk (for
uniform k) or f (where f is chosen uniformly from Funcn).

Since choosing a uniform function is less intuitive than choosing a uniform
string, it is worth spending a bit more time on this idea. The set Funcn is finite,
and selecting a uniform function mapping n-bit strings to n-bit strings simply
means choosing a function uniformly from this set. How large is Funcn? A
function f is specified by giving its value on each point in its domain. We can
view any function (over a finite domain) as a large look-up table that stores
f(x) in the row of the table labeled by x. For f ∈ Funcn, the look-up table
for f has 2n rows (one for each string in the domain {0, 1}n), with each row
containing an n-bit string (since the range of f is {0, 1}n). Concatenating all
the entries of this table, we see that any function in Funcn can be represented
by a string of length 2n · n. Moreover, this correspondence is one-to-one, as
each string of length 2n · n (i.e., each table containing 2n entries of length n)

Private-Key Encryption 77

defines a unique function in Funcn. Thus, the size of Funcn is exactly the
number of strings of length n · 2n, i.e., |Funcn| = 2n·2

n

.
Viewing a function as a look-up table provides another useful way to think

about selecting a uniform function f ∈ Funcn: It is exactly equivalent to
choosing each row in the look-up table of f uniformly. This means, in partic-
ular, that the values f(x) and f(y), for any two inputs x 6= y, are uniform and
independent. We can view this look-up table as being populated by uniform
entries in advance, before f is evaluated on any input, or we can view entries
of the table as being chosen uniformly “on-the-fly,” as needed, whenever f is
evaluated on a new input on which it was never evaluated before.

A pseudorandom function is a keyed function F such that Fk (for uniform
k ∈ {0, 1}n) is indistinguishable from f (for uniform f ∈ Funcn). The former
is chosen from a distribution over (at most) 2n distinct functions, whereas the
latter is chosen from all 2n·2

n

functions in Funcn. Despite this, the “behavior”
of those functions must look the same to any polynomial-time distinguisher.

A first attempt at formalizing the notion of a pseudorandom function would
be to proceed as in Definition 3.14. That is, we could require that every
polynomial-time distinguisher D that receives a description of Fk outputs 1
with “almost” the same probability as when it receives a description of a
random function f . However, this definition is inappropriate since the de-
scription of a random function has exponential length (given by its look-up
table of length n · 2n), while D is limited to running in polynomial time. So,
D would not even have sufficient time to examine its entire input.

Instead, we allow D to probe the input/output behavior of the function by
giving D access to an oracle O which is either equal to Fk or f . The distin-
guisher D may query its oracle at any point x, in response to which the oracle
returns O(x). We treat the oracle as a black box in the same way as when we
provided the adversary with oracle access to the encryption algorithm in the
definition of a chosen-plaintext attack. Here, however, the oracle computes
a deterministic function and so returns the same result if queried twice on
the same input. D may interact freely with its oracle, choosing its queries
adaptively based on all previous outputs. Since D runs in polynomial time,
however, it can ask only polynomially many queries.

We now present the formal definition. (The definition assumes F is length
preserving for simplicity.)

DEFINITION 3.24 An efficient, length preserving, keyed function F :
{0, 1}∗ × {0, 1}∗ → {0, 1}∗ is a pseudorandom function if for all probabilistic
polynomial-time distinguishers D, there is a negligible function negl such that:∣∣∣Pr[DFk(·)(1n) = 1]− Pr[Df(·)(1n) = 1]

∣∣∣ ≤ negl(n),

where the first probability is taken over uniform choice of k ∈ {0, 1}n and the
randomness of D, and the second probability is taken over uniform choice of
f ∈ Funcn and the randomness of D.

78 Introduction to Modern Cryptography

We stress that D is not given the key k (in the same way that D is not
given the seed when defining a pseudorandom generator). It is meaningless
to require that Fk “look random” if k is known, since given k it is trivial to
distinguish an oracle for Fk from an oracle for f . (All the distinguisher has
to do is query the oracle at any point x to obtain the answer y, and compare
this to the result y′ := Fk(x) that it computes itself using the known value k.
An oracle for Fk will return y = y′, while an oracle for a random function will
return y = y′ only with probability 2−n.) This means that if k is revealed,
any claims about pseudorandomness no longer hold.

Example 3.25

We can gain familiarity with the definition by considering an insecure example.
Define the keyed, length preserving function F by F (k, x) = k ⊕ x. For any
input x, the value of Fk(x) is uniformly distributed (when k is uniform).
Nevertheless, F is not pseudorandom since its values on any two points are
correlated. Consider the distinguisher D that queries its oracle O on distinct
points x1, x2 to obtain values y1 = O(x1) and y2 = O(x2), and outputs 1 if
and only if y1 ⊕ y2 = x1 ⊕ x2. If O = Fk, for any k, then D outputs 1. On
the other hand, if O = f for f chosen uniformly from Funcn, then

Pr[f(x1)⊕ f(x2) = x1 ⊕ x2] = Pr[f(x2) = x1 ⊕ x2 ⊕ f(x1)] = 2−n,

since f(x2) is uniform and independent of x1, x2, and f(x1). We thus have
Pr[DFk(·)(1n) = 1] = 1 and Pr[Df(·)(1n) = 1] = 2−n, and the difference
between these two is not negligible. ♦

Pseudorandom functions and pseudorandom generators. As one
might expect, there is a close relationship between pseudorandom functions
and pseudorandom generators. It is fairly easy to construct a pseudorandom
generator G from a pseudorandom function F by simply evaluating F on a

series of distinct inputs; e.g., we can define G(s)
def
= Fs(1)‖Fs(2)‖ · · · ‖Fs(`)

for any desired ` (where ‖ denotes concatenation). If Fs were replaced by a
uniform function f , the output of G would be uniform; when using F , the
output is pseudorandom. You are asked to prove this formally in Exercise 3.16.

Considering the other direction, a pseudorandom generator G immediately
gives a pseudorandom function F with small input length. Specifically, say
G has expansion factor `(n) = n · 2t(n). We can define the keyed function
F : {0, 1}n × {0, 1}t(n) → {0, 1}n as follows: to compute Fk(i), first compute
G(k) and interpret the result as a look-up table with 2t(n) rows each containing
n bits; output the ith row. (We leave the proof that F is pseudorandom
to the reader.) Note, however, that F is efficient only if t(n) = O(log n).
It is possible, though more difficult, to construct pseudorandom functions
with large input length from pseudorandom generators; see Section 8.5. Since
pseudorandom generators can be constructed based on certain mathematical
problems conjectured to be hard, we conclude that pseudorandom functions

Private-Key Encryption 79

(for long inputs) can be constructed based on those same problems. The
fact that pseudorandom functions can based on hard mathematical problems
represents one of the amazing contributions of modern cryptography.

Pseudorandom Permutations

Let Permn ⊂ Funcn be the set of all permutations (i.e., bijections) on {0, 1}n.
Viewing any f ∈ Permn as a look-up table as before, we now have the added
constraint that the entries in any two distinct rows must be different. We
have 2n different choices for the entry in the first row of the table; once we
fix that entry, we are left with only 2n − 1 choices for the second row, and so
on. We thus see that the size of Permn is (2n)!.

Let F be a keyed function where, for the moment, `key, `in, and `out can be
arbitrary. We call F a keyed permutation if `in = `out, and furthermore for all
k ∈ {0, 1}`key(n) the function Fk : {0, 1}`in(n) → {0, 1}`in(n) is one-to-one (i.e.,
Fk is a permutation). We call `in the block length of F in this case. A keyed
permutation is efficient if there is a polynomial-time algorithm for computing
Fk(x) given k and x, as well as a polynomial-time algorithm for computing
F−1
k (y) given k and y. That is, Fk should be both efficiently computable and

efficiently invertible given k. As before, unless stated otherwise we assume F
is length preserving for simplicity and so `key(n) = `in(n) = n.

The definition of what it means for an efficient, keyed permutation F to
be a pseudorandom permutation is exactly analogous to Definition 3.24, with
the only difference being that now we require Fk to be indistinguishable from
a uniform permutation rather than a uniform function. That is, we require
that no efficient algorithm can distinguish between access to Fk (for uniform
key k) and access to f (for uniform f ∈ Permn). We remark that whenever
the block length is sufficiently long (as is usually the case in practice), a ran-
dom permutation is indistinguishable from a random function with the same
domain and range; thus, we can equally well define a pseudorandom permu-
tation by requiring that no efficient algorithm can distinguish between access
to Fk (for uniform key k) and access to f (for uniform f ∈ Funcn). This is a
consequence of the following proposition, proven formally in Appendix A.4.

PROPOSITION 3.26 If F is a pseudorandom permutation for which
`in(n) ≥ n, then F is also a pseudorandom function.

While the above is true asymptotically, concrete security may be impacted
when a pseudorandom permutation is viewed as a pseudorandom function.

Strong pseudorandom permutations. If F is a keyed permutation then
cryptographic schemes based on F might require the honest parties to com-
pute the inverse F−1

k in addition to computing Fk itself. This potentially
introduces new security concerns. In particular, it may now be necessary to
impose the stronger requirement that Fk be indistinguishable from a uniform

80 Introduction to Modern Cryptography

permutation even if the distinguisher is additionally given oracle access to
the inverse of the permutation. If F has this property, we call it a strong
pseudorandom permutation.

DEFINITION 3.27 Let F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be an efficient,
length preserving, keyed permutation. F is a strong pseudorandom permuta-
tion if for all probabilistic polynomial-time distinguishers D, there exists a
negligible function negl such that:∣∣∣Pr[DFk(·),F−1

k (·)(1n) = 1]− Pr[Df(·),f−1(·)(1n) = 1]
∣∣∣ ≤ negl(n),

where the first probability is taken over uniform choice of k ∈ {0, 1}n and the
randomness of D, and the second probability is taken over uniform choice of
f ∈ Permn and the randomness of D.

Of course, any strong pseudorandom permutation is also a pseudorandom
permutation. However, the converse is not true.

3.5.2 CPA-Security from a Pseudorandom Function

We focus here on constructing a CPA-secure fixed-length encryption scheme.
By what we have said at the end of Section 3.4.3, this implies the existence of
a CPA-secure encryption scheme for arbitrary-length messages. In Section 3.6
we will discuss more efficient ways of encrypting messages of arbitrary length.

A naive attempt at constructing an encryption scheme from a pseudoran-
dom permutation is to define Enck(m) = Fk(m). Although we expect that
this “reveals no information about m” (since, if f is a uniform permutation,
then f(m) is a uniform n-bit string for any m), this method of encryption
is deterministic and so cannot possibly be CPA-secure since encrypting the
same plaintext twice will yield the same ciphertext.

Our CPA-secure construction uses randomized encryption. Specifically, we
encrypt by applying a pseudorandom function to a random value r ∈ {0, 1}n
and XORing the output with the plaintext; the ciphertext includes both the
result as well as r (to enable the receiver to decrypt). See Figure 3.3 and
Construction 3.28. Encryption can again be viewed as XORing a pseudoran-
dom pad with the plaintext (just like in the “pseudo-”one-time pad), with the
major difference being the fact that here a fresh pseudorandom pad—that
depends on r—is used each time a message is encrypted. (The pseudoran-
dom pad is only “fresh” if the pseudorandom function is applied to a “fresh”
value r on which it has never been evaluated before. The proof below shows
that with overwhelming probability this is always the case.)

Note that for any key k, every message m has 2n corresponding ciphertexts.
Nevertheless, the receiver is able to decrypt correctly. (Check for yourself
that decryption always returns the correct result!) This scheme also has the

Private-Key Encryption 81

Ciphertext

pad

XORPlaintext

Random string r

Pseudorandom

function

FIGURE 3.3: Encryption with a pseudorandom function.

property that the ciphertext is longer than the plaintext. This is the first
encryption scheme we have seen that has either of these properties.

Before turning to the proof that the above construction is CPA-secure, we
highlight a common template that is used by most proofs of security (even
outside the context of encryption) for constructions based on pseudorandom
functions. The first step of such proofs is to consider a hypothetical version
of the construction in which the pseudorandom function is replaced with a
random function. It is then argued—using a proof by reduction—that this
modification does not significantly affect the attacker’s success probability.
We are then left with analyzing a scheme that uses a completely random
function. The rest of the proof typically relies on probabilistic analysis and
does not rely on any computational assumptions. We will utilize this proof
template several times in this and the next two chapters.

CONSTRUCTION 3.28

Let F be a pseudorandom function. Define a fixed-length, private-key
encryption scheme for messages of length n as follows:

� Gen: on input 1n, choose uniform k ∈ {0, 1}n and output it.

� Enc: on input a key k ∈ {0, 1}n and a message m ∈ {0, 1}n, choose
uniform r ∈ {0, 1}n and output the ciphertext

c := 〈r, Fk(r)⊕m〉.

� Dec: on input a key k ∈ {0, 1}n and a ciphertext c = 〈r, s〉, output
the message

m := Fk(r)⊕ s.

A CPA-secure encryption scheme from any pseudorandom function.

82 Introduction to Modern Cryptography

THEOREM 3.29 If F is a pseudorandom function, then Construction 3.28
is a CPA-secure, fixed-length private-key encryption scheme for messages of
length n.

PROOF Let Π̃ = (G̃en, Ẽnc, D̃ec) be an encryption scheme that is exactly
the same as Π = (Gen,Enc,Dec) from Construction 3.28, except that a truly

random function f is used in place of Fk. That is, G̃en(1n) chooses a uniform

function f ∈ Funcn, and Ẽnc encrypts just like Enc except that f is used
instead of Fk. (This modified encryption scheme is not efficient. But we can
still define it as a hypothetical encryption scheme for the sake of the proof.)

Fix an arbitrary ppt adversary A, and let q(n) be an upper bound on the
number of queries that A(1n) makes to its encryption oracle. (Note that q
must be upper-bounded by some polynomial.) As the first step of the proof,
we show that there is a negligible function negl such that∣∣∣Pr

[
PrivKcpa

A,Π(n) = 1
]
− Pr

[
PrivKcpa

A,Π̃
(n) = 1

]∣∣∣ ≤ negl(n). (3.9)

We prove this by reduction. We use A to construct a distinguisher D for the
pseudorandom function F . The distinguisher D is given oracle access to a
function O, and its goal is to determine whether O is “pseudorandom” (i.e.,
equal to Fk for uniform k ∈ {0, 1}n) or “random” (i.e., equal to f for uniform
f ∈ Funcn). To do this, D simulates experiment PrivKcpa for A in the manner
described below, and observes whether A succeeds or not. If A succeeds then
D guesses that its oracle must be a pseudorandom function, whereas if A
does not succeed then D guesses that its oracle must be a random function.
In detail:

Distinguisher D:
D is given input 1n and access to an oracle O : {0, 1}n → {0, 1}n.

1. Run A(1n). Whenever A queries its encryption oracle on a
message m ∈ {0, 1}n, answer this query in the following way:

(a) Choose uniform r ∈ {0, 1}n.

(b) Query O(r) and obtain response y.

(c) Return the ciphertext 〈r, y ⊕m〉 to A.

2. When A outputs messages m0,m1 ∈ {0, 1}n, choose a uni-
form bit b ∈ {0, 1} and then:

(a) Choose uniform r ∈ {0, 1}n.

(b) Query O(r) and obtain response y.

(c) Return the challenge ciphertext 〈r, y ⊕mb〉 to A.

3. Continue answering encryption-oracle queries of A as before
until A outputs a bit b′. Output 1 if b′ = b, and 0 otherwise.

Private-Key Encryption 83

D runs in polynomial time since A does. The key points are as follows:

1. If D’s oracle is a pseudorandom function, then the view of A when
run as a subroutine by D is distributed identically to the view of A in
experiment PrivKcpa

A,Π(n). This is because, in this case, a uniform key k is
chosen and then every encryption is carried out by choosing a uniform r,
computing y := Fk(r), and setting the ciphertext equal to 〈r, y ⊕m〉,
exactly as in Construction 3.28. Thus,

Prk←{0,1}n
[
DFk(·)(1n) = 1

]
= Pr

[
PrivKcpa

A,Π(n) = 1
]
, (3.10)

where we emphasize on the left-hand side that k is chosen uniformly.

2. If D’s oracle is a random function, then the view of A when run as a
subroutine by D is distributed identically to the view of A in experiment
PrivKcpa

A,Π̃
(n). This can be seen exactly as above, with the only difference

being that a uniform function f ∈ Funcn is used instead of Fk. Thus,

Prf←Funcn

[
Df(·)(1n) = 1

]
= Pr

[
PrivKcpa

A,Π̃
(n) = 1

]
, (3.11)

where f is chosen uniformly from Funcn on the left-hand side.

By the assumption that F is a pseudorandom function (and since D is effi-
cient), there exists a negligible function negl for which∣∣∣Pr

[
DFk(·)(1n) = 1

]
− Pr

[
Df(·)(1n) = 1

]∣∣∣ ≤ negl(n).

Combining the above with Equations (3.10) and (3.11) gives Equation (3.9).
For the second part of the proof, we show that

Pr
[
PrivKcpa

A,Π̃
(n) = 1

]
≤ 1

2
+
q(n)

2n
. (3.12)

(Recall that q(n) is a bound on the number of encryption queries made by A.)
The above holds even if we place no computational restrictions on A. To see
this, observe that every time a message m is encrypted in PrivKcpa

A,Π̃
(n) (either

by the encryption oracle or when the challenge ciphertext is computed), a
uniform r ∈ {0, 1}n is chosen and the ciphertext is set equal to 〈r, f(r)⊕m〉.
Let r∗ denote the random string used when generating the challenge ciphertext
〈r∗, f(r∗)⊕mb〉. There are two possibilities:

1. The value r∗ is never used when answering any of A’s encryption-oracle
queries: In this case, A learns nothing about f(r∗) from its interaction
with the encryption oracle (since f is a truly random function). This
means that, from the perspective of A, the value f(r∗) that is XORed
with mb is uniformly distributed and independent of the rest of the
experiment, and so the probability that A outputs b′ = b in this case is
exactly 1/2 (as in the case of the one-time pad).

84 Introduction to Modern Cryptography

2. The value r∗ is used when answering at least one of A’s encryption-
oracle queries: In this case, A may easily determine whether m0 or m1

was encrypted. This is so because if the encryption oracle ever returns
a ciphertext 〈r∗, s〉 in response to a request to encrypt the message m,
the adversary learns that f(r∗) = s⊕m.

However, since A makes at most q(n) queries to its encryption ora-
cle (and thus at most q(n) values of r are used when answering A’s
encryption-oracle queries), and since r∗ is chosen uniformly from {0, 1}n,
the probability of this event is at most q(n)/2n.

Let repeat denote the event that r∗ is used by the encryption oracle when
answering at least one of A’s queries. As just discussed, the probability of
repeat is at most q(n)/2n, and the probability that A succeeds in PrivKcpa

A,Π̃
if

repeat does not occur is exactly 1/2. Therefore:

Pr[PrivKcpa

A,Π̃
(n) = 1]

= Pr[PrivKcpa

A,Π̃
(n) = 1 ∧ repeat] + Pr[PrivKcpa

A,Π̃
(n) = 1 ∧ repeat]

≤ Pr[repeat] + Pr[PrivKcpa

A,Π̃
(n) = 1 | repeat] ≤ q(n)

2n
+

1

2
.

Combining the above with Equation (3.9), we see that there is a negligible

function negl such that Pr[PrivKcpa
A,Π(n) = 1] ≤ 1

2 + q(n)
2n + negl(n). Since

q is polynomial, q(n)
2n is negligible. In addition, the sum of two negligible

functions is negligible, and thus there exists a negligible function negl′ such
that Pr[PrivKcpa

A,Π(n) = 1] ≤ 1
2 + negl′(n).

Concrete security. The above proof shows that

Pr[PrivKcpa
A,Π(n) = 1] ≤ 1

2
+
q(n)

2n
+ negl(n)

for some negligible function negl. The final term depends on the security of F
as a pseudorandom function; it is a bound on the distinguishing advantage of
algorithm D (which has roughly the same running time as the adversary A).

The term q(n)
2n represents a bound on the probability that the value r∗ used

to encrypt the challenge ciphertext was used to encrypt some other message,
and depends on the number of encryption-oracle queries the attacker makes.

3.6 Modes of Operation and Encryption in Practice

The encryption schemes described in Sections 3.3.3 and 3.5.2 (namely, Con-
structions 3.17 and 3.28) have a number of drawbacks that make them ill-

Private-Key Encryption 85

suited for practical applications. For starters, Construction 3.17 is only EAV-
secure. In addition, both constructions are defined only for the encryption
of fixed-length messages. While Construction 3.28 could be used to encrypt
arbitrary-length messages using the approach discussed at the end of Sec-
tion 3.4.3, this would result in a scheme in which the ciphertext length is a
constant multiple of the plaintext length, which is rather inefficient. In this
section, we show how to overcome these drawbacks.

While we are dealing with practical considerations, we also begin to discuss
how the underlying building blocks of secure encryption schemes—namely,
pseudorandom generators and pseudorandom permutations—are instantiated
in the real world using stream ciphers and block ciphers, respectively. Our goal
here is mainly to introduce the appropriate terminology and syntax; we defer
an in-depth discussion of how stream ciphers and block ciphers are designed,
and some popular candidates for those primitives, to Chapter 7.

3.6.1 Stream Ciphers

A pseudorandom generator G as in Definition 3.14 is rather inflexible since
its output length is fixed. This makes G a poor fit for adapting Construc-
tion 3.17 to handle arbitrary-length messages. Specifically, say G has expan-
sion factor `. We cannot easily use G to encrypt messages of length `′ > `
using a single n-bit key. And, although we can encrypt messages of length
`′ < ` by truncating the output of G, doing so is wasteful since it involves
generating ` pseudorandom bits and then discarding `− `′ of them.

Stream ciphers, used in practice to instantiate pseudorandom generators,
provide greater flexibility. The output bits of a stream cipher are produced
gradually and on demand, so that an application can request exactly as many
pseudorandom bits as it needs. This extends their usefulness (since there is
no upper bound on the number of bits that can be generated) and improves
efficiency (since no extraneous pseudorandom bits are generated).

Formally, a stream cipher is a pair of deterministic algorithms (Init,Next)
where:

� Init takes as input a seed s and an optional initialization vector IV , and
outputs some initial state st.

� Next takes as input a current state st and outputs a bit3 y along with
updated state st′.

Starting from some initial state st0, we can generate any desired number
of bits by repeatedly calling Next as many times as needed. As shorthand for
this, we define an algorithm GetBits that takes as input an initial state st0

3In practice, Next might output a byte or even a larger number of random bits, rather than
just outputting a single bit at a time. We assume it outputs a bit for simplicity here.

86 Introduction to Modern Cryptography

and a desired output length 1` (specified in unary, since GetBits runs in time
linear in `) and then does:

1. For i = 1 to `, compute (yi, sti) := Next(sti−1).

2. Return the `-bit string y = y1 · · · y` as well as the final state st`.

We let GetBits1 be the algorithm that runs GetBits and only returns its initial
output (namely, the `-bit string y).

A secure stream cipher without an IV is just a pseudorandom generator
with a more flexible interface. That is, we require that when we run Init on
a uniform seed s to obtain st0, and then generate any (polynomial) number
of bits using GetBits1, the resulting output is pseudorandom. Formally, given
a stream cipher (Init,Next) and a parameter ` = `(n) > n, we may define the
deterministic function G` as

G`(s)
def
= GetBits1(Init(s), 1`).

Then the stream cipher is secure if G` is a pseudorandom generator for any
polynomial `.

Security for a stream cipher that does take an IV can be defined in multiple
ways. We define security in this case to be akin to that of a pseudorandom
function. Specifically, here we consider the setting where a uniform seed s is
chosen and then Init(s, ·) is run repeatedly using different values for the IV ; the
requirement is that running GetBits1 using the different initial states should
produce output streams that appear independently uniform. Formally, given
a stream cipher (Init,Next) (where Init takes an n-bit IV) and a parameter ` =
`(n), we may define the keyed function F ` : {0, 1}n × {0, 1}n → {0, 1}` as

F `s (IV)
def
= GetBits1(Init(s, IV), 1`).

Then the stream cipher is secure if F ` is a pseudorandom function for any
polynomial `.

Practical stream ciphers typically do not support arbitrary values of n
(which determines the length of the seed and the IV), but instead work only
for some fixed values of n. Concrete-security definitions are thus more appro-
priate than the asymptotic definitions given above.

Constructing stream ciphers from pseudorandom functions. A pseu-
dorandom function F can be used to construct a stream cipher (Init,Next)
that takes an IV . (This is very similar to the construction of pseudorandom
generators from pseudorandom functions discussed briefly in Section 3.5.1.)
The basic idea is to use the seed s for the stream cipher as a key for F , and
to evaluate Fs on a sequence of consecutive inputs starting from a value de-
termined by IV . Concretely, if we set the length of the initialization vector
to 3n/4, then the output of the stream cipher will be

Fs(IV ‖ 〈0〉), Fs(IV ‖ 〈1〉), . . .

Private-Key Encryption 87

(see Construction 3.30), where 〈i〉 denotes the binary encoding of integer i as
an n/4-bit string. Informally, this will be secure (assuming F is a pseudoran-
dom function) as long as no more than 2n/4 output blocks are generated for
any IV , since in that case Fs is evaluated at distinct inputs when the stream
cipher is used with different IV s.

CONSTRUCTION 3.30

Let F be a pseudorandom function. Define a stream cipher (Init, Next)
as follows, where Init accepts a 3n/4-bit initialization vector and Next
outputs n bits in each call:

� Init: on input s ∈ {0, 1}n and IV ∈ {0, 1}3n/4, output st =
(s, IV, 0).

� Next: on input st = (s, IV, i), output y := Fs(IV ‖ 〈i〉) and up-
dated state st′ = (s, IV, i+ 1).

A stream cipher from a pseudorandom function.

Although stream ciphers can be constructed from pseudorandom functions
in this way, dedicated constructions of stream ciphers used in practice typically
have better performance, especially in resource-constrained environments.

3.6.2 Stream-Cipher Modes of Operation

We discuss two modes of operation for encrypting arbitrary-length messages
using a stream cipher (Init,Next): synchronized mode and unsynchronized
mode.

Synchronized mode. Stream ciphers are often used to encrypt an online
communication session between two parties. In that case, a fresh key k is gen-
erated by the parties (e.g., using methods described in Chapter 11) and then
that key is used to encrypt the messages sent during the session. Assuming
that the communication between the parties is such that all messages arrive
in order and no messages are lost (as is the case, e.g., when communicating
over TCP), the two parties are synchronized and the following method can be
used to encrypt a series of messages from a sender S to a receiver R:

1. Both parties call Init(k) to obtain the same initial state st0.

2. Let stS be the current state of S. If S wants to encrypt a message m, it
computes (y, st′S) := GetBits(stS , 1

|m|), sends c := m⊕ y to the receiver,
and updates its local state to st′S .

3. Let stR be the current state of R. When R receives a ciphertext c
from the sender, it computes (y, st′R) := GetBits(stR, 1

|c|), outputs the
message m := c⊕ y, and updates its own local state to st′R.

88 Introduction to Modern Cryptography

In the above description, the same party always acts as a sender. But by
sharing a second key the parties can support bidirectional communication.

Let ` denote the total combined length of all messages encrypted during
the course of a session. Conceptually, synchronized mode encryption can be
viewed as a counterpart to Construction 3.17 where (1) ` need not be fixed in
advance, and (2) the entire “message” need not be encrypted at once.

The above is an example of stateful encryption where the sender and receiver
are required to maintain state between the encryption/decryption of different
messages. One can define an appropriate notion of CPA-security suitable for
stateful encryption, and prove that the above scheme meets that definition if
the underlying stream cipher is secure.

Observe that for synchronized mode, the stream cipher does not need to
use an IV . Note also that there is no ciphertext expansion, since the total
communication from the sender to the receiver is exactly equal to the total
length of the messages being encrypted.

Unsynchronized mode. When a stream cipher does take an IV , it can be
used to construct a stateless encryption scheme that is exactly analogous to
Construction 3.28; see Construction 3.31. CPA-security of this scheme follows
as in the proof of Theorem 3.29. We stress that the main advantage here is
that the encryption scheme directly handles arbitrary-length messages.

CONSTRUCTION 3.31

Let (Init,Next) be a stream cipher that takes an n-bit IV . Define a
private-key encryption scheme for arbitrary-length messages as follows:

� Gen: on input 1n, choose a uniform k ∈ {0, 1}n and output it.

� Enc: on input a key k ∈ {0, 1}n and a message m ∈ {0, 1}∗, choose
uniform IV ∈ {0, 1}n, and output the ciphertext

〈IV, GetBits1(Init(k, IV), 1|m|)⊕m〉.

� Dec: on input a key k ∈ {0, 1}n and a ciphertext 〈IV, c〉, output
the message

m := GetBits1(Init(k, IV), 1|c|)⊕ c.

Unsynchronized mode encryption from a stream cipher that takes an IV .

3.6.3 Block Ciphers and Block-Cipher Modes of Operation

A block cipher is simply another name for a (strong) pseudorandom per-
mutation. That is, a block cipher F : {0, 1}n × {0, 1}` → {0, 1}` is a keyed

function such that, for all k, the function Fk defined by Fk(x)
def
= F (k, x) is

a bijection (i.e., a permutation). Recall that n is the key length of F , and `

Private-Key Encryption 89

is its block length. The main distinction between block ciphers and pseudo-
random permutations is that the former typically only support a specific set
of key/block lengths, and in particular do not support arbitrary-length keys.
For simplicity, we will assume in this section that ` = n.

As shown earlier (cf. Construction 3.30), a block cipher can be used to
construct a stream cipher that accepts an IV ; this means we can use any
block cipher F to implement the stream-cipher modes of operation discussed
in Section 3.6.2. Several other block-cipher modes of operation are also pos-
sible; here, we present four of the most common ones and discuss their secu-
rity. In our discussion, we assume for simplicity that all messages m being
encrypted have length a multiple of n (the block length of F), and write
m = m1,m2, . . . ,m` where each mi ∈ {0, 1}n represents a block of the plain-
text. (Messages whose length is not a multiple of n can be unambiguously
padded to have length a multiple of n by appending a 1 followed by sufficiently
many 0s, and so this assumption is without much loss of generality.)

Electronic Code Book (ECB) mode. This is a naive mode of operation
in which the ciphertext is obtained by direct application of the block cipher
to each plaintext block. That is, c := Fk(m1), Fk(m2), . . . , Fk(m`); see Fig-
ure 3.4. Decryption is done in the obvious way, using the fact that F−1

k is
efficiently computable.

Fk Fk Fk

m1

c3c1

m2

c2

m3

FIGURE 3.4: Electronic Code Book (ECB) mode.

ECB mode is deterministic and therefore cannot be CPA-secure. Worse,
ECB-mode encryption is not even EAV-secure. This is because if a block is
repeated in the plaintext, it will result in a repeating block in the ciphertext.
Thus, for example, it is easy to distinguish the encryption of a plaintext that
consists of two identical blocks from the encryption of a plaintext that con-
sists of two different blocks. This is not just a theoretical problem. Consider
encrypting an image in which small groups of pixels correspond to a plaintext
block. Encrypting using ECB mode may reveal a significant amount of infor-
mation about patterns in the image, something that should not happen when
using a secure encryption scheme. (Figure 3.5 demonstrates this.) For these
reasons, ECB mode should never be used.

90 Introduction to Modern Cryptography

FIGURE 3.5: An illustration of the dangers of using ECB mode. The
middle figure is an encryption of the image on the left using ECB mode; the
figure on the right is an encryption of the same image using a secure mode.
(Taken from http://en.wikipedia.org and derived from images created

by Larry Ewing (lewing@isc.tamu.edu) using The GIMP.)

Cipher Block Chaining (CBC) mode. To encrypt here, a uniform initial-
ization vector (IV) of length n is first chosen as the initial ciphertext block.
Then, ciphertext blocks are generated by applying the block cipher to the
XOR of the current plaintext block and the previous ciphertext block. That
is, set c0 := IV and then, for i = 1 to `, set ci := Fk(ci−1 ⊕ mi). The fi-
nal ciphertext is c0, c1, . . . , c`. (See Figure 3.6.) Decryption of a ciphertext
c0, . . . , c` is done by computing mi := F−1

k (ci) ⊕ ci−1 for i = 1, . . . , `. Note
that the IV is included in the ciphertext (and so the ciphertext is n bits longer
than the plaintext); this is crucial so decryption can be done.

CBC encryption is randomized, and it is possible to show:

THEOREM 3.32 If F is a pseudorandom permutation, then CBC mode
is CPA-secure.

The main drawback of CBC mode is that encryption must be carried out

FIGURE 3.6: Cipher Block Chaining (CBC) mode.

http://en.wikipedia.org
mailto:lewing@isc.tamu.edu

Private-Key Encryption 91

sequentially because the previous ciphertext block ci−1 is needed in order to
process the next plaintext block mi. Thus, if parallel processing is available,
CBC-mode encryption may not be the most efficient choice.

There is a stateful variant of CBC-mode encryption—called chained CBC
mode—in which the last block of the previous ciphertext is used as the IV
when encrypting the next message. This reduces the bandwidth, as a new
IV need not be sent each time. See Figure 3.7, where an initial message
m1,m2,m3 is encrypted using a uniform IV , and then subsequently a second
message m4,m5 is encrypted using the final ciphertext block of the previ-
ous ciphertext (i.e., c3) as the IV . (In contrast, encryption using standard
CBC mode would generate a fresh, random IV when encrypting the second
message.) Chained CBC mode was used in SSL 3.0 and TLS 1.0.

� �

� �

FIGURE 3.7: Chained CBC mode.

It may appear that chained CBC mode is as secure as CBC mode, since
the chained-CBC encryption of m1,m2,m3 followed by encryption of m4,m5

yields the same ciphertext blocks as CBC-mode encryption of the (single)
message m1,m2,m3,m4,m5. Nevertheless, chained CBC mode is vulnerable
to a chosen-plaintext attack. The basis of the attack is that the adversary
knows in advance the “initialization vector” c3 that will be used for the second
encrypted message. We describe the attack informally, based on Figure 3.7.
Assume the attacker knows that m1 ∈ {m0

1,m
1
1}, and observes the first ci-

phertext IV, c1, c2, c3. The attacker then requests an encryption of a second
message m4,m5 with m4 = IV ⊕m0

1 ⊕ c3, and observes a second ciphertext
c4, c5. One can verify that m1 = m0

1 if and only if c4 = c1, and so the attacker
learns m1. This example serves as a warning against making any modifications
to cryptographic schemes, even if those modifications seem benign.

Output Feedback (OFB) mode. The third mode we present can be viewed
as an unsynchronized stream-cipher mode, where the stream cipher is con-
structed in a specific way from the underlying block cipher. We describe the
mode directly. To encrypt a message m, first a uniform IV ∈ {0, 1}n is cho-
sen. Then, a pseudorandom stream is generated from IV in the following way:

92 Introduction to Modern Cryptography

m1

Fk

IV c1

m2

c2

m3

c3

Fk Fk

IV

FIGURE 3.8: Output Feedback (OFB) mode.

Define y0 := IV , and set the ith block yi of the stream to be yi := Fk(yi−1).
Each block of the plaintext is then encrypted by XORing it with the appro-
priate block of the stream; that is, ci := yi ⊕ mi. (See Figure 3.8.) As in
CBC mode, the IV is included as part of the ciphertext to enable decryp-
tion. However, in contrast to CBC mode, here it is not required that F be
invertible. (In fact, it need not even be a permutation.) Furthermore, as in
stream-cipher modes of operation, here it is not necessary for the plaintext
length to be a multiple of the block length n; instead, the generated stream
can be truncated to exactly the plaintext length. Another advantage of OFB
mode is that its stateful variant (in which the final value y` is used as the
IV for encrypting the next message, and is not sent) is secure. This stateful
variant is equivalent to a synchronized stream-cipher mode, with the stream
cipher constructed from the block cipher in a specific way.

OFB mode can be shown to be CPA-secure if F is a pseudorandom func-
tion. Although encryption must be carried out sequentially, this mode has the
advantage relative to CBC mode that the bulk of the computation (namely,
computation of the pseudorandom stream) can be done independently of the
actual message to be encrypted. That is, it is possible to generate a pseudo-
random stream ahead of time using preprocessing, after which encryption of
the plaintext (once it is known) is incredibly fast.

Counter (CTR) mode. Counter mode can also be viewed as an unsynchro-
nized stream-cipher mode, where the stream cipher is constructed from the
block cipher in a way that is analogous to Construction 3.30. We give a self-
contained description here. To encrypt a message with ` < 2n/4 blocks using
CTR mode, a uniform IV ∈ {0, 1}3n/4 is first chosen. Then, a pseudorandom
stream is generated by computing yi := Fk(IV ‖ 〈i〉) for i = 1, 2, . . ., where
the counter i is encoded as an n/4-bit string. (The lengths of the IV and the
counter are somewhat arbitrary, as long as they sum to n. A longer IV leads
to better concrete security—cf. the proof of Theorem 3.33—but reduces the
maximum length of messages that can be encrypted.) The ith ciphertext block

Private-Key Encryption 93

FIGURE 3.9: Counter (CTR) mode.

is computed as ci := yi⊕mi. As in CBC and OFB modes, the IV is included
as part of the ciphertext to enable decryption; see Figure 3.9. Note again
that decryption does not require F to be invertible, or even a permutation.
As with OFB mode—another “stream-cipher” mode—the generated stream
can be truncated to exactly the plaintext length, and preprocessing can be
used to generate the pseudorandom stream before the message is known.

In contrast to all the secure modes discussed previously, CTR mode has
the advantage that encryption and decryption can be fully parallelized, since
all the blocks of the pseudorandom stream can be computed independently of
each other. It is also possible to recover the ith block of the plaintext from
the ciphertext using only a single evaluation of F . These features make CTR
mode an attractive choice in practice.

We provide a proof that CTR mode is CPA-secure, since the proof of secu-
rity in this case is relatively straightforward. We directly prove CPA-security
for multiple encryptions (cf. Definition 3.22), rather than relying on Theo-
rem 3.23, since the proof is equally simple and a direct proof yields a better
concrete-security bound.

THEOREM 3.33 If F is a pseudorandom function, then CTR mode is
CPA-secure for multiple encryptions.

PROOF We follow the same template as in the proof of Theorem 3.29: We
first replace F with a random function and then analyze the resulting scheme.

Fix an arbitrary ppt adversary A, and let q(n) be a polynomial upper-
bound on the number of queries made by A(1n) to its left-or-right oracle. We
assume for simplicity that the messages A submits to its oracle always contain
fewer than 2n/4 blocks. (This must be true for large enough n since A runs
in polynomial time.) Let Π = (Gen,Enc,Dec) be the CTR-mode encryption

scheme, and let Π̃ = (G̃en, Ẽnc, D̃ec) be the encryption scheme identical to Π

except that a random function is used in place of Fk. That is, G̃en(1n) chooses

94 Introduction to Modern Cryptography

a uniform function f ∈ Funcn, and Ẽnc encrypts just like Enc except that f

is used instead of Fk. (Once again, neither G̃en nor Ẽnc is efficient but this

does not matter for the purposes of defining an experiment involving Π̃.)
As the first step of the proof, we claim that there is a negligible function

negl such that∣∣∣Pr
[
PrivKLR-cpa

A,Π (n) = 1
]
− Pr

[
PrivKLR-cpa

A,Π̃
(n) = 1

]∣∣∣ ≤ negl(n). (3.13)

This is proved by reduction to the pseudorandomness of F in a way similar to
the analogous step in the proof of Theorem 3.29, and so we omit the details.

We next claim that

Pr
[
PrivKLR-cpa

A,Π̃
(n) = 1

]
≤ 1

2
+

q(n)2

23n/4+1
. (3.14)

Combined with Equation (3.13) this means that

Pr
[
PrivKLR-cpa

A,Π (n) = 1
]
≤ 1

2
+

q(n)2

23n/4+1
+ negl(n). (3.15)

Since q is polynomial, q(n)2

23n/4+1 is negligible and so this completes the proof.
To prove Equation (3.14), recall that a uniform IV is chosen for each of

A’s queries to its left-or-right oracle. Let IVi be the IV used to answer the
ith oracle query. There are two possibilities:

1. Each IV is distinct, i.e., IVi 6= IVj for all i 6= j: The key observation
is that in this case all the inputs to the random function f , across the
entire experiment, are distinct. (If all IV s chosen are distinct, then the
inputs to f when answering different oracle queries must be distinct;
inputs to f when answering any particular oracle query are distinct
from each other because of the counter.) Thus, the outputs of all the
invocations of f are independent, uniform bit-strings. It follows that
the ciphertexts returned by the left-or-right oracle are independent of
the bit b determining which message is encrypted (by analogy with the
one-time pad; see also the proof of Theorem 3.29). We conclude that
the probability that A outputs b′ = b in this case is exactly 1/2.

2. Some IV is used more than once, i.e., IVi = IVj for some i 6= j: In
this case, A can easily determine whether b = 0 or b = 1. However,
this event occurs with only negligible probability. Specifically, since A
makes at most q(n) queries to its oracle and each IV is chosen uniformly

from {0, 1}3n/4, the probability of this event is at most q(n)2

23n/4+1 (using
Lemma A.15).

Let repeat denote the event that some IV is used more than once. As just
discussed, the probability that A succeeds in PrivKLR-cpa

A,Π̃
if repeat does not

Private-Key Encryption 95

occur is exactly 1/2, and Pr[repeat] ≤ q(n)2

23n/4+1 . Therefore:

Pr[PrivKLR-cpa
A,Π̃

(n) = 1]

= Pr[PrivKLR-cpa
A,Π̃

(n) = 1 ∧ repeat] + Pr[PrivKLR-cpa
A,Π̃

(n) = 1 ∧ repeat]

≤ Pr[PrivKLR-cpa
A,Π̃

(n) = 1 | repeat] + Pr[repeat] ≤ 1

2
+

q(n)2

23n/4+1
,

proving Equation (3.14).

Practical Considerations

We conclude this section with a brief discussion of some issues that arise in
practice when using block-cipher modes of operation.

Block length and concrete security. CBC, OFB, and CTR modes all
use a uniform IV . This has the effect of randomizing the encryption process,
and ensures that (with high probability) the underlying block cipher is always
evaluated on fresh (i.e., new) inputs. This is important because, as we have
noted in the proofs of Theorem 3.29 and Theorem 3.33, if an input to the block
cipher is repeated an adversary may learn information about a message.

The block length of a block cipher thus has a significant impact on the
concrete security of encryption schemes based on that cipher. Consider, e.g.,
CTR mode, whose concrete security when using a block cipher F with block
length n is given by Equation (3.15). Since the IV is a uniform string of
length 3n/4, we expect an IV to repeat after encrypting q(n) ≈ 23n/8 messages
(cf. Lemma A.15). If n is too short, then the resulting concrete-security bound
will be too weak for practical applications. Concretely, if n = 64 then after
encrypting q = 224 ≈ 17,000,000 messages a repeated IV is expected to occur.
Although this may seem like a lot, encrypting that many messages using a
single key is commonplace nowadays.

The security bound may be weak even when n is large. For example, say
n = 128 (which is the case for AES, a widely used block cipher we introduce in
Chapter 7) and we want to use CTR mode while ensuring that an IV repeats
with probability at most 2−32. Solving q2/23n/4+1 ≤ 2−32 shows that we can
safely encrypt only at most q ≈ 232 messages.

We remark further that the proof of security for CTR mode given above
assumes F is a pseudorandom function, but in practice F would be instanti-
ated by a block cipher that is a pseudorandom permutation. Although every
pseudorandom permutation F (with sufficiently large block length n) is also
a pseudorandom function (cf. Proposition 3.26), using a pseudorandom per-
mutation incurs a concrete-security loss of roughly b2/2n where b denotes the
number of invocations of F overall—e.g., in the case of CTR mode, b would be
the total number of plaintext blocks encrypted. Thus, when b is large (even
if q is small), the concrete security of CTR mode when using a block cipher
may be unacceptably low.

96 Introduction to Modern Cryptography

IV misuse. In our description and discussion of the various (secure) modes,
we have assumed a uniform IV of the appropriate length is chosen each time
a message encrypted. What happens when this assumption fails, e.g., due
to poor randomness generation or a mistaken implementation? The answer
depends on the way the assumption fails, as well as the mode being used.

We first look at what happens if an IV repeats. For the “stream-cipher
modes” (OFB and CTR), a repeated IV can be catastrophic: it implies that
the entire pseudorandom stream (that is XORed with the plaintext) is re-
peated, which means that by XORing the two ciphertexts using the same IV
the attacker learns the XOR of the underlying plaintexts (something we have
seen previously is problematic). With CBC mode, however, one expects in
practice that although some information is leaked when an IV repeats, the
inputs to the block cipher in the two encryptions using the same IV will
“diverge” after only a few plaintext blocks, and so the attacker will get no
information about the plaintext blocks after that point.

Next, consider what happens if a scheme does not choose a uniform IV
(even if we assume an IV never repeats); as an extreme case, imagine the IV
is chosen in such a way that the attacker can predict it in advance—say, the
IV is a monotonically increasing counter. CTR mode remains secure in this
case, as the proof of security only requires that an IV never repeats. CBC
mode, on the other hand, is no longer secure, as we have already discussed in
the context of chained CBC mode.

One way to address potential IV misuse is to use nonce-based encryption,
discussed in the following section.

Message tampering. In many texts, modes of operation are also compared
based on how well they protect against adversarial modification of the cipher-
text. We do not include such a comparison here because the issue of message
integrity or message authentication must be dealt with separately from se-
crecy, and we do so in the next chapter. None of the above modes achieves
message integrity in the sense we will define there.

With regard to the behavior of different modes in the presence of “benign”
(i.e., non-adversarial) transmission errors, see Exercises 3.29 and 3.30. In gen-
eral such errors can be addressed using standard non-cryptographic techniques
(e.g., error correction or re-transmission).

3.6.4 *Nonce-Based Encryption

We have so far considered one particular syntax for private-key encryption—
namely, Definition 3.7. Here we look at an alternate way of formalizing
private-key encryption that is useful in some contexts. Specifically, we con-
sider the notion of nonce-based (private-key) encryption, where the encryption
and decryption algorithms additionally accept a nonce as input. (A “nonce”
refers to a value that is supposed to be used once, and never repeated.) The
syntax of nonce-based encryption does not specify where the nonce comes

Private-Key Encryption 97

from; in practice, the nonce is provided by some higher-level application that
must ensure that the same nonce is never used to encrypt more than once—
e.g., the nonce may be a counter, or the current time.

DEFINITION 3.34 A nonce-based (private-key) encryption scheme con-
sists of probabilistic polynomial-time algorithms (Gen,Enc,Dec) such that:

1. Gen takes as input 1n and outputs a key k with |k| ≥ n.

2. Enc takes as input a key k, a nonce nonce ∈ {0, 1}∗, and a message
m ∈ {0, 1}∗, and outputs a ciphertext c.

3. Dec takes as input a key k, a nonce nonce ∈ {0, 1}∗, and a ciphertext c,
and outputs a message m ∈ {0, 1}∗ or ⊥.

We require that for every n, every k output by Gen(1n), every nonce ∈ {0, 1}∗,
and every m ∈ {0, 1}∗, it holds that Deck(nonce,Enck(nonce,m)) = m.

Some nonce-based encryption schemes only support nonces of a specific
length; all the definitions we discuss can be adapted easily to that case.

Security for nonce-based encryption can be defined by suitably adapting any
of the definitions we have seen before; for concreteness, we adapt the notion
of CPA-security for multiple encryptions (Definition 3.22). The experiment
we consider here is conceptually the same as the one considered in that earlier
definition, and in particular we again provide the attacker with access to a
“left-or-right” oracle that accepts two messages and encrypts either the “left”
or “right” message. The difference here is that we also allow the attacker to
specify the nonce used during encryption, subject to the constraint that the
attacker may never repeat a nonce.

In the following experiment, the left-or-right oracle LRk,b(·, ·, ·) takes three
inputs; LRk,b(nonce,m0,m1) computes c ← Enck(nonce,mb) and returns c.
For any nonce-based encryption scheme Π, adversary A, and security param-
eter n we define the following experiment:

The nonce-based LR-oracle experiment PrivKLR-ncpa
A,Π (n):

1. A key k is generated by running Gen(1n).

2. A uniform bit b ∈ {0, 1} is chosen.

3. The adversary A is given 1n and oracle access to LRk,b(·, ·, ·).
The adversary is not allowed to repeat the first input in any
of its queries to the oracle.

4. The adversary A outputs a bit b′.

5. The output of the experiment is defined to be 1 if b′ = b, in
which case we say that A succeeds.

98 Introduction to Modern Cryptography

The definition of security is the same as usual, except that it now refers to
the above experiment.

DEFINITION 3.35 A nonce-based private-key encryption scheme Π is
CPA-secure for multiple encryptions if for all probabilistic polynomial-time ad-
versaries A there is a negligible function negl such that

Pr
[
PrivKLR-ncpa

A,Π (n) = 1
]
≤ 1

2
+ negl(n),

where the probability is taken over the randomness used by A and the random-
ness used in the experiment.

Because “CPA-security” and “CPA-security for multiple encryptions” are
equivalent definitions (since an analogue of Theorem 3.23 can be shown for
nonce-based encryption as well), we refer simply to CPA-security for brevity.

CPA-secure nonce-based encryption. It is easy to modify CTR mode
to obtain a CPA-secure nonce-based encryption scheme: when encrypting,
the IV is now set equal to the nonce that is provided as input, rather than
being chosen uniformly. CPA-security can be shown exactly as in the proof of
Theorem 3.33, using the fact that in this context repeat cannot occur (since
the adversary is disallowed from repeating a nonce). Indeed, the concrete-
security bound obtained here is better than what is obtained in the proof
of Theorem 3.33 precisely because here repeat cannot occur. Of course, this
is predicated on the assumption that the application using the encryption
scheme ensures that nonces never repeat.

We see that a nonce-based encryption scheme can be CPA-secure even
though it is deterministic. This does not contradict Theorem 3.20, since here
we are considering an alternate syntax for encryption.

Advantages of nonce-based encryption. One may wonder what is gained
by using nonce-based encryption, in particular since any nonce-based encryp-
tion scheme can be converted to a “standard” encryption scheme by simply
choosing the nonce at random. There are several answers to this question.

First of all, CPA-secure nonce-based encryption is useful in settings where
generating high-quality randomness is expensive or impossible. It may be
much easier in such cases to use a counter as a nonce rather than to generate
a nonce uniformly.

Somewhat similarly, there may be settings where using a short nonce is
appropriate, e.g., when only very few messages will be encrypted. In such
scenarios, choosing the nonce uniformly may result in a repeated nonce with
probability that is unacceptably high.

Finally, we have already observed that tighter concrete-security bounds
can sometimes be obtained by enforcing non-repeating nonces rather than by
choosing a uniform nonce.

Private-Key Encryption 99

References and Additional Reading

The modern computational approach to cryptography was initiated in a
groundbreaking paper by Goldwasser and Micali [87]. That paper introduced
the notion of semantic security, and showed how that goal could be achieved
in the setting of public-key encryption (see Chapters 11 and 12). The pa-
per also proposed the notion of indistinguishability (cf. Definition 3.8), and
showed that it implies semantic security. The converse was shown later [142].
Goldreich’s book [83] contains further discussion of semantic security.

Blum and Micali [41] introduced the notion of pseudorandom generators and
proved their existence based on a specific, number-theoretic assumption. In
the same work, they also pointed out the connection between pseudorandom
generators and private-key encryption as in Construction 3.17. The definition
of pseudorandom generators given by Blum and Micali is different from the
definition we use in this book (Definition 3.14); the latter definition originates
in the work of Yao [205], who showed equivalence of the two formulations.
Yao also showed constructions of pseudorandom generators based on general
assumptions; we explore this topic in Chapter 8.

Formal definitions of security against chosen-plaintext attacks were given
by Luby [131] and Bellare et al. [17]. See the work of Katz and Yung [112] for
other notions of security for private-key encryption.

Pseudorandom functions were defined and constructed by Goldreich et
al. [85], and their application to encryption was demonstrated in subsequent
work by the same authors [84]. Pseudorandom permutations and strong
pseudorandom permutations were studied by Luby and Rackoff [132]. These
ideas are covered in Chapter 8. Stream ciphers and block ciphers had been
used for many years before they began to be studied in the theoretical sense
initiated by the above works. Practical constructions of stream ciphers and
block ciphers are studied in Chapter 7.

The ECB, CBC, and OFB modes of operation (as well as CFB, a mode
of operation not covered here) were standardized along with the DES block
cipher [148]. CTR mode was standardized by NIST in 2001. CBC and CTR
modes were proven CPA-secure by Bellare at al. [17]. The attack on chained
CBC was first described by Rogaway (unpublished), and was used to attack
SSL/TLS in the so-called “BEAST attack” by Duong and Rizzo. Nonce-based
encryption was first explicitly highlighted by Rogaway [172].

Exercises

3.1 Prove Proposition 3.6.

100 Introduction to Modern Cryptography

3.2 Prove that Definition 3.8 cannot be satisfied if Π can encrypt arbitrary-
length messages and the adversary is not restricted to outputting equal-
length messages in experiment PrivKeav

A,Π.

Hint: Let q(n) be a polynomial upper-bound on the length of the cipher-

text when Π is used to encrypt a single bit. Then consider an adversary

who outputs m0 ∈ {0, 1} and a uniform m1 ∈ {0, 1}q(n)+2.

3.3 Say Π = (Gen,Enc,Dec) is such that for k ∈ {0, 1}n, algorithm Enck is
only defined for messages of length at most `(n) (for some polynomial `).
Construct a scheme satisfying Definition 3.8 even when the adversary is
not restricted to outputting equal-length messages in PrivKeav

A,Π.

3.4 Prove the equivalence of Definition 3.8 and Definition 3.9.

3.5 Define G(s)
def
= s‖s (where “‖” denotes concatenation). Describe and

analyze an attack showing that G is not a pseudorandom generator.

3.6 Let G be a pseudorandom generator. In each of the following cases,
say whether G′ is necessarily a pseudorandom generator. If yes, give a
proof; if not, show a counterexample.

(a) Define G′(s)
def
= G(s̄), where s̄ is the complement of s.

(b) Define G′(s)
def
= G(s).

(c) Define G′(s)
def
= G

(
0|s|‖s

)
.

(d) Define G′(s)
def
= G(s) ‖G(s+ 1).

3.7 Let |G(s)| = `(|s|) for some `. Consider the following experiment:

The PRG indistinguishability experiment PRGA,G(n):

(a) A uniform bit b ∈ {0, 1} is chosen. If b = 0 then choose
a uniform r ∈ {0, 1}`(n); if b = 1 then choose a uniform
s ∈ {0, 1}n and set r := G(s).

(b) The adversary A is given r, and outputs a bit b′.

(c) The output of the experiment is defined to be 1 if b′ = b,
and 0 otherwise.

Provide a definition of a pseudorandom generator based on this exper-
iment, and prove that your definition is equivalent to Definition 3.14.
(That is, show that G satisfies your definition if and only if it satisfies
Definition 3.14.)

3.8 Prove the converse of Theorem 3.16. Namely, show that if G is not a
pseudorandom generator then Construction 3.17 does not have indistin-
guishable encryptions in the presence of an eavesdropper.

Private-Key Encryption 101

3.9 Consider a notion of indistinguishable encryption for multiple distinct
messages, i.e., where a scheme need not hide whether the same message
is encrypted twice.

(a) Modify Definition 3.18 to obtain a suitable definition of the above.

(b) Show that Construction 3.17 does not satisfy your definition.

(c) Give a construction of a deterministic (stateless) encryption scheme
that satisfies your definition.

3.10 Prove unconditionally the existence of a pseudorandom function F :
{0, 1}∗ × {0, 1}∗ → {0, 1} with `key(n) = n and `in(n) = log n.

Hint: Implement a uniform function with logarithmic input length.

3.11 Let F be a length preserving pseudorandom function. For the following
constructions of a keyed function F ′ : {0, 1}n × {0, 1}n−1 → {0, 1}2n,
state whether F ′ is a pseudorandom function. If yes, prove it; if not,
show an attack.

(a) F ′k(x)
def
= Fk(0‖x) ‖Fk(0‖x).

(b) F ′k(x)
def
= Fk(0‖x) ‖Fk(1‖x).

(c) F ′k(x)
def
= Fk(0‖x) ‖Fk(x‖0).

(d) F ′k(x)
def
= Fk(0‖x) ‖Fk(x‖1).

3.12 Assuming the existence of pseudorandom functions, prove that there is
an encryption scheme that has indistinguishable multiple encryptions in
the presence of an eavesdropper (i.e., satisfies Definition 3.18), but is
not CPA-secure (i.e., does not satisfy Definition 3.21).

Hint: The scheme need not be “natural.” You will need to use the fact

that in a chosen-plaintext attack the adversary can choose its queries to

the encryption oracle adaptively.

3.13 Let F be a keyed function and consider the following experiment:

The PRF indistinguishability experiment PRFA,F (n):

(a) A uniform b ∈ {0, 1} is chosen. If b = 0, choose uniform
f ∈ Funcn; if b = 1, choose uniform k ∈ {0, 1}n.

(b) A is given 1n as input. If b = 0 then A is given access
to f(·). If b = 1 then A is given access to Fk(·).

(c) A outputs a bit b′.

(d) The output of the experiment is defined to be 1 if b′ = b,
and 0 otherwise.

Define pseudorandom functions using this experiment, and prove that
your definition is equivalent to Definition 3.24.

102 Introduction to Modern Cryptography

3.14 Define the keyed function F as Fk(x)
def
= k&x, where “&” denotes

bitwise AND. Describe and analyze an attack showing that F is not a
pseudorandom function.

3.15 Consider the following keyed function F : For security parameter n, the
key is an n×n boolean matrix A and an n-bit boolean vector b. Define

FA,b : {0, 1}n → {0, 1}n by FA,b(x)
def
= Ax+ b, where all operations are

done modulo 2. Show that F is not a pseudorandom function.

3.16 Prove that if F is a length preserving pseudorandom function, then

G(s)
def
= Fs(〈1〉) ‖Fs(〈2〉) ‖ · · · ‖Fs(〈`〉), where 〈i〉 is the n-bit encoding

of i, is a pseudorandom generator with expansion factor ` · n.

3.17 Assume pseudorandom permutations exist. Show that there exists a
keyed function F that is a pseudorandom permutation but is not a
strong pseudorandom permutation.

Hint: Construct F such that Fk(k) = 0|k|.

3.18 Define a notion of perfect secrecy against chosen-plaintext attacks by
adapting Definition 3.21. Show that the definition cannot be achieved.

3.19 Let F be a pseudorandom permutation, and define a fixed-length encryp-
tion scheme (Enc,Dec) as follows: On input a key k ∈ {0, 1}n and mes-
sage m ∈ {0, 1}n/2, algorithm Enc chooses a uniform string r ∈ {0, 1}n/2
and computes c := Fk(r‖m).

Show how to decrypt, and prove that this scheme is CPA-secure for
messages of length n/2.

3.20 Let F be a length preserving pseudorandom function and G be a pseu-
dorandom generator with expansion factor `(n) = n+1. For each of the
following encryption schemes, state whether the scheme is EAV-secure
and whether it is CPA-secure. (In each case, the shared key is a uniform
k ∈ {0, 1}n.) Explain your answer in each case.

(a) To encrypt m ∈ {0, 1}n+1, choose uniform r ∈ {0, 1}n and output
the ciphertext 〈r,G(r)⊕m〉.

(b) To encrypt m ∈ {0, 1}n, output the ciphertext m⊕ Fk(0n).

(c) To encrypt m ∈ {0, 1}2n, parse m as m1‖m2 with |m1| = |m2|, then
choose uniform r ∈ {0, 1}n and send 〈r, m1⊕Fk(r), m2⊕Fk(r+1)〉.

3.21 Let Π denote Construction 3.28 instantiated with the keyed function
from Example 3.25. Describe and analyze an attack showing that Π is
not CPA-secure.

3.22 Give a formal definition of CPA-security for stateful encryption, and
prove that the synchronized stream-cipher mode of operation satisfies
your definition if the underlying stream cipher is secure.

Private-Key Encryption 103

3.23 Prove that the unsynchronized stream-cipher mode of operation (Con-
struction 3.31) is CPA-secure if the underlying stream cipher is secure.

3.24 Let F be a pseudorandom function, and consider the following construc-
tion of a stream cipher accepting an n-bit initialization vector:

� Init(s, IV) outputs st = (s, IV).

� Next(s, IV) outputs y := Fs(IV) and st′ = (s, IV + 1).

Show that this stream cipher is not secure.

3.25 Let F be a pseudorandom permutation. Consider the mode of operation
in which a uniform value IV ∈ {0, 1}n is chosen, and the ith ciphertext
block ci is computed as ci := Fk(IV + i+mi), where addition is mod-
ulo 2n. Show that this scheme is not EAV-secure.

3.26 Say CBC-mode encryption is used with a block cipher having a 256-bit
key and 128-bit block length to encrypt a 1024-bit message. What is
the length of the resulting ciphertext?

3.27 Give the details of the proof by reduction of Equation (3.13).

3.28 For any function g : {0, 1}n → {0, 1}n, define g$(·) to be a probabilis-
tic oracle that, on input 1n, chooses uniform r ∈ {0, 1}n and returns
〈r, g(r)〉. A keyed function F is a weak pseudorandom function if for all
ppt algorithms D, there exists a negligible function negl such that:∣∣∣Pr[DF $

k (·)(1n) = 1]− Pr[Df$(·)(1n) = 1]
∣∣∣ ≤ negl(n),

where k ∈ {0, 1}n and f ∈ Funcn are chosen uniformly.

(a) Prove that if F is pseudorandom then it is weakly pseudorandom.

(b) Let F ′ be a pseudorandom function, and define

Fk(x)
def
=

{
F ′k(x) if x is even

F ′k(x+ 1) if x is odd.

Prove that F is weakly pseudorandom, but not pseudorandom.

(c) Is CTR-mode encryption using a weak pseudorandom function nec-
essarily CPA-secure? Prove your answer.

(d) Prove that Construction 3.28 is CPA-secure if F is a weak pseudo-
random function.

3.29 What is the effect of a single bit flip in the ciphertext when using the
CBC, OFB, and CTR modes of operation?

104 Introduction to Modern Cryptography

3.30 What is the effect of a dropped ciphertext block (e.g., if the transmitted
ciphertext c1, c2, c3, . . . is received as c1, c3, . . .) when using the CBC,
OFB, and CTR modes of operation?

3.31 Consider a variant of CTR mode where a uniform IV ∈ {0, 1}n is chosen
and the ith ciphertext block is computed as ci := mi⊕Fk(IV +i). Prove
that this variant is CPA-secure. What concrete-security bound do you
obtain?

3.32 Show that the scheme from Exercise 3.31 is not secure as a nonce-based
encryption scheme if the nonce is used as the IV .

3.33 Show that CBC mode is not secure as a nonce-based encryption scheme
if the nonce is used as the IV .

Chapter 4

Message Authentication Codes

4.1 Message Integrity

4.1.1 Secrecy vs. Integrity

A basic goal of cryptography is to enable parties to communicate securely.
But what does “secure communication” entail? In Chapter 3 we showed how
it is possible to achieve secrecy; that is, we showed how encryption can be used
to prevent a passive eavesdropper from learning anything about messages sent
over an open channel. However, not all security concerns are related to secrecy,
and not all adversaries are limited to passive eavesdropping. In many cases, it
is of equal or greater importance to guarantee message integrity (or message
authentication) against an active adversary who can inject messages on the
channel or modify messages in transit. We consider two motivating examples
corresponding to the settings of Figures 1.1 and 1.2, respectively.

Imagine first a user communicating with her bank over the Internet. When
the bank receives a request to transfer $1,000 from the user’s account to the
account of some other user X, the bank has to consider the following:

1. Is the request authentic? That is, did the user in question really issue
this request, or was the request issued by an adversary (perhaps X itself)
who is impersonating the legitimate user?

2. Assuming a transfer request was issued by the legitimate user, is the
request received by the bank exactly the same as what was sent by that
user? Or was, e.g., the transfer amount modified as the request was sent
across the Internet?

Note that standard error-correction techniques do not suffice for the second
concern. Error-correcting codes are only intended to detect and recover from
“random” errors that affect a small portion of the transmission, but they
do nothing to protect against a malicious adversary who can choose exactly
where to introduce an arbitrary number of changes.

A very different scenario where the need for message integrity arises in
practice is with regard to web cookies. The HTTP protocol used for web
traffic is stateless, so when a client and server communicate in some session
(e.g., when a user [client] shops at a merchant’s [server’s] website), any state

105

106 Introduction to Modern Cryptography

generated as part of that session (e.g., the contents of the user’s shopping
cart) is often placed in a “cookie” that is stored by the user and included
along with each message the user sends to the merchant. Assume the cookie
stored by some user includes the items in the user’s shopping cart along with a
price for each item, as might be done if the merchant offers different prices to
different users (reflecting discounts and promotions, or user-specific pricing).
It would be undesirable for the user to be able to modify the cookie it stores
so as to alter the prices of the items in its cart. The merchant thus needs a
technique to ensure the integrity of the cookie that it stores at the user. Note
that the contents of the cookie (namely, the items and their prices) are not
secret and, in fact, must be known by the user. The problem here is purely
one of integrity.

In general, one cannot assume the integrity of communication without tak-
ing specific measures to ensure it. Indeed, any unprotected online purchase
order, online banking operation, email, or SMS message cannot, in general, be
trusted to have originated from the claimed source and to have been unmodi-
fied in transit. Unfortunately, people are generally trusting and so information
like the caller-ID or an email return address are taken to be “proofs of origin”
in many cases, even though they are relatively easy to forge. This leaves the
door open to potentially damaging attacks.

In this chapter we will show how to achieve message integrity by using
cryptographic techniques to detect any spoofed messages or any tampering
of messages sent over an unprotected communication channel. Note that we
cannot hope to prevent message injection or message tampering altogether, as
that can only be defended against at the physical level. Instead, what we will
guarantee is that any such behavior will be detected by the honest parties.

4.1.2 Encryption vs. Message Authentication

Just as the goals of secrecy and message integrity are different, so are the
techniques and tools for achieving them. Unfortunately, secrecy and integrity
are often confused and unnecessarily intertwined, so let us be clear up front:
encryption does not (in general) provide any integrity, and encryption should
not be assumed to ensure message authentication unless it is specifically de-
signed with that purpose in mind (something we will return to in Section 5.2).

One might mistakenly think that encryption solves the problem of message
authentication. (In fact, this is a common error.) This is due to the fuzzy,
and incorrect, reasoning that since a ciphertext completely hides the contents
of the message, an adversary cannot possibly modify an encrypted message in
any meaningful way. Despite its intuitive appeal, this reasoning is completely
false. We illustrate this point by showing that all the encryption schemes we
have seen thus far do not provide message integrity.

Encryption using stream ciphers. Consider encryption schemes in which
the sender generates a pseudorandom pad based on a shared key (and possibly

Message Authentication Codes 107

an IV) and then computes a ciphertext by XORing the resulting pad with a
message, as in Constructions 3.17, 3.28, and 3.31 as well as OFB and CTR
modes. Ciphertexts in this case are very easy to manipulate: flipping any bit
in the ciphertext results in the same bit being flipped in the message that
is recovered upon decryption. Thus, given a ciphertext c that encrypts a
(possibly unknown) message m, it is possible for an adversary to generate a
modified ciphertext c′ such that m′ := Deck(c′) is the same as m but with a
specific set of bits flipped. This simple attack can have severe consequences.
As an example, consider the case of a user encrypting some dollar amount she
wants to transfer from her bank account, where the amount is represented in
binary. Flipping the least significant bit has the effect of changing this amount
by $1, and flipping the 11th least significant bit changes the amount by more
than $1,000! Interestingly, the adversary does not necessarily learn whether it
is increasing or decreasing the initial amount, i.e., whether it is flipping a 0 to
a 1 or vice versa. But if the adversary has some partial knowledge about the
amount—say, that it is less than $1,000 to begin with—then the modifications
it introduces can have a predictable effect.

We stress that this attack does not contradict the secrecy of the encryption
scheme. In fact, the exact same attack applies to the one-time pad encryption
scheme, showing that even perfect secrecy is not sufficient to ensure the most
basic level of message integrity.

Encryption using block ciphers. The attack described above exploits the
fact that flipping a single bit in a ciphertext keeps the underlying plaintext
unchanged except for the corresponding bit (which is also flipped). One might
hope that encryption schemes using block ciphers in a more sophisticated way
would prevent such attacks since, for example, if decryption involves inverting
a (strong) pseudorandom permutation F on some portion x of the ciphertext
then F−1

k (x) and F−1
k (x′) will be completely uncorrelated if x and x′ differ

in even a single bit. Nevertheless, single-bit modifications of a ciphertext can
still cause partially predictable changes in the plaintext. For example, when
using ECB mode, flipping a bit in the ith block of a ciphertext affects only
the ith block of the plaintext—all other blocks remain unchanged. (Of course,
ECB mode does not even guarantee the most basic notion of secrecy, but that
is irrelevant for the present discussion.) Although the effect on the ith block
of the plaintext may be impossible to predict, changing that one block (while
leaving everything else unchanged) may represent a harmful attack. Moreover,
the order of plaintext blocks can be changed (without garbling any block) by
simply changing the order of the corresponding ciphertext blocks, and the
message can be truncated by dropping ciphertext blocks.

For CBC mode, flipping the jth bit of the IV changes only the jth bit
of the first message block m1 (since m1 := F−1

k (c1) ⊕ IV ′, where IV ′ is the
modified IV); all other plaintext blocks remain unchanged. Therefore, the
first block of a CBC-encrypted message can be modified arbitrarily. We will
see in Section 5.1.1 that this simple attack can have disastrous consequences.

108 Introduction to Modern Cryptography

Finally, observe that all the encryption schemes we have seen thus far have
the property that every string of a certain length is a valid ciphertext, and so
corresponds to some valid message. It is therefore trivial for an adversary to
“spoof” a message on behalf of one of the communicating parties—by sending
an arbitrary string of the correct length—even if the adversary has no idea
what the underlying message will be. In the context of message integrity, even
an attack of this sort should be ruled out.

4.2 Message Authentication Codes (MACs) – Definitions

We have seen that, in general, encryption does not solve the problem of
message integrity. Rather, an additional mechanism is needed that will enable
the communicating parties to know whether or not a message was tampered
with. The right tool for this task is a message authentication code (MAC).

The aim of a message authentication code is to prevent an adversary from
modifying a message sent by one party to another, or from injecting a new
message, without the receiver detecting that the message did not originate
from the intended party. As in the case of encryption, this is only possible if
the communicating parties have some secret information that the adversary
does not know (otherwise nothing can prevent an adversary from imperson-
ating the party sending the message). Here, we continue to consider the
private-key setting where the communicating parties share a secret key.

As in the case of private-key encryption, there are two canonical applica-
tion scenarios for MACs (cf. Section 1.2): ensuring integrity for two parties
communicating with each other (as in our earlier example of a user commu-
nicating with her bank), or for one user communicating “with himself” over
time (as in our earlier example involving web cookies, or a user protecting the
contents of his hard drive).

The Syntax of a Message Authentication Code

Before formally defining security of a message authentication code, we first
define what a MAC is and how it is used. Two users who wish to communicate
in an authenticated manner begin by generating and sharing a secret key k in
advance of their communication. When one party wants to send a message m
to the other, she computes a tag t based on the message and the shared key,
and sends the message m along with t to the other party. The tag is computed
using a tag-generation algorithm Mac; thus, rephrasing what we have just said,
the sender of a message m computes t ← Mack(m) and transmits (m, t) to
the receiver. Upon receiving (m, t), the second party verifies whether t is a
valid tag on the message m (with respect to the shared key) or not. This is

Message Authentication Codes 109

done by running a verification algorithm Vrfy that takes as input the shared
key as well as a message m and a tag t, and indicates whether the given tag
is valid. Formally:

DEFINITION 4.1 A message authentication code (or MAC) consists of
three probabilistic polynomial-time algorithms (Gen,Mac,Vrfy) such that:

1. The key-generation algorithm Gen takes as input the security parameter
1n and outputs a key k with |k| ≥ n.

2. The tag-generation algorithm Mac takes as input a key k and a message
m ∈ {0, 1}∗, and outputs a tag t. Since this algorithm may be random-
ized, we write this as t← Mack(m).

3. The deterministic verification algorithm Vrfy takes as input a key k, a
message m, and a tag t. It outputs a bit b, with b = 1 meaning valid and
b = 0 meaning invalid. We write this as b := Vrfyk(m, t).

It is required that for every n, every key k output by Gen(1n), and every
m ∈ {0, 1}∗, it holds that Vrfyk(m,Mack(m)) = 1.

If there is a function ` such that for every k output by Gen(1n), algorithm
Mack is only defined for messages m ∈ {0, 1}`(n), then we call the scheme a
fixed-length MAC for messages of length `(n).

As with private-key encryption, Gen(1n) almost always simply chooses a
uniform key k ∈ {0, 1}n, and we omit Gen in that case.

Canonical verification. For deterministic message authentication codes
(i.e., where Mac is a deterministic algorithm), the canonical way to perform
verification is simply to re-compute the tag and check for equality. In other
words, Vrfyk(m, t) first computes t̃ := Mack(m) and then outputs 1 if and only
if t̃ = t. Even for deterministic MACs, though, it is useful to define a sepa-
rate Vrfy algorithm to explicitly distinguish the semantics of authenticating a
message to be sent vs. verifying authenticity of a message that was received.

Security of Message Authentication Codes

We now define the default notion of security for message authentication
codes. The intuitive idea behind the definition is that no efficient adversary
should be able to generate a valid tag on any “new” message that was not
previously sent (and authenticated) by one of the communicating parties.

As with any security definition, to formalize this notion we need to define
both the adversary’s power as well as what should be considered a “break” of a
scheme. As usual, we consider only probabilistic polynomial-time adversaries1

1See Section 4.6 for a discussion of information-theoretic message authentication, where no
computational restrictions are placed on the adversary.

110 Introduction to Modern Cryptography

and so the real question is how we model the adversary’s interaction with the
communicating parties. In the setting of message authentication, an adversary
observing the communication between the honest parties may be able to see
all the messages sent by those parties along with their corresponding tags.
The adversary may also be able to influence the content of those messages,
whether directly or indirectly (if, e.g., external actions of the adversary affect
the messages sent by the parties). This is true, for example, in the web cookie
example from earlier, where the user’s own actions influence the contents of
the cookie being stored on his computer.

To model the above, we allow the adversary to request tags for any messages
of its choice. Formally, we give the adversary access to a MAC oracle Mack(·);
the adversary can repeatedly submit any message m of its choice to this oracle,
and is given in return a tag t ← Mack(m). (For a fixed-length MAC, only
messages of the correct length can be submitted.)

An attacker “breaks” the scheme if it succeeds in outputting a forgery, i.e.,
if it outputs a message m along with a tag t such that (1) t is a valid tag
on the message m (i.e., Vrfyk(m, t) = 1), and (2) the honest parties had not
previously authenticated m (i.e., the adversary had not previously requested
a tag on the message m from its oracle). These conditions imply that if the
adversary were to send (m, t) to one of the honest parties, then that party
would be mistakenly fooled into thinking that m originated from the other
legitimate party (since Vrfyk(m, t) = 1) even though it did not.

A MAC that cannot be broken in the above sense is said to be existentially
unforgeable under an adaptive chosen-message attack. “Existentially unforge-
able” refers to the fact that the adversary is unable to forge a valid tag on
any message; this should hold even if the attacker can carry out an “adap-
tive chosen-message attack” by which it is able to obtain tags on arbitrary
messages chosen adaptively during its attack.

The above discussion leads us to consider the following experiment for a
message authentication code Π = (Gen,Mac,Vrfy), an adversary A, and secu-
rity parameter n:

The message authentication experiment Mac-forgeA,Π(n):

1. A key k is generated by running Gen(1n).

2. The adversary A is given input 1n and oracle access to Mack(·).
The adversary eventually outputs (m, t). Let Q denote the set
of all queries that A submitted to its oracle.

3. A succeeds if and only if (1) Vrfyk(m, t) = 1 and (2) m 6∈ Q.
In that case the output of the experiment is defined to be 1.

A MAC is secure if no efficient adversary can succeed in the above experi-
ment with non-negligible probability.

DEFINITION 4.2 A message authentication code Π = (Gen,Mac,Vrfy)
is existentially unforgeable under an adaptive chosen-message attack, or just se-

Message Authentication Codes 111

cure, if for all probabilistic polynomial-time adversaries A, there is a negligible
function negl such that:

Pr[Mac-forgeA,Π(n) = 1] ≤ negl(n).

Is the definition too strong? The above definition is rather strong in two
respects. First, the adversary is allowed to repeatedly request tags for any
messages of its choice. Second, the adversary is considered to have “broken”
the scheme if it can output a valid tag on any previously unauthenticated
message. One might object that both these components of the definition
are unrealistic and overly strong, as in “real-world” usage of a MAC the
honest parties would only authenticate “meaningful” messages (over which
the adversary might have only limited control), and a forgery would only be
damaging if it involved forging a valid tag on a “meaningful” message. Why
not tailor the definition to capture this?

The crucial point is that what constitutes a meaningful message is entirely
application dependent. While some applications of a MAC may only ever
authenticate English-language messages, other applications may authenticate
spreadsheet files, others database entries, and others raw data. Protocols
may also be designed where anything will be authenticated—in fact, certain
user-authentication protocols do exactly this. By making the definition of
security for MACs as strong as possible, we ensure that secure MACs are
broadly applicable for a wide range of purposes, without having to worry
about compatibility of the MAC with the semantics of specific applications.

Replay attacks. The above definition, and message authentication codes
by themselves, offer no protection against replay attacks in which an attacker
simply re-sends a previously authenticated message along with its (valid) tag.
The fact that replay attacks are not accounted for in the definition does not
mean they are not a serious security concern! Consider again the scenario
where a user (say, Alice) sends a request to her bank to transfer $1,000 from
her account to some other user (say, Bob). In doing so, Alice can compute a
tag and append it to her request so the bank knows the request is authentic.
If the MAC is secure, Bob will be unable to intercept the request and change
the amount to $10,000 because this would involve forging a valid tag on a
previously unauthenticated message. However, nothing prevents Bob from
replaying Alice’s message (along with its tag) ten times to the bank. If the
bank accepts each of those messages, the net effect is still that $10,000 will
be transferred to Bob’s account rather than the desired $1,000.

Despite the real threat that replay attacks represent, a MAC by itself can-
not protect against such attacks since verification is stateless (and so every
time a valid pair (m, t) is presented to the verification algorithm, it will always
output 1). Instead, protection against replay attacks—if such protection is
necessary in a given scenario—must be handled by some higher-level appli-
cation. The reason the definition of a MAC is structured this way is, once
again, because we are unwilling to assume any semantics for applications that

112 Introduction to Modern Cryptography

use MACs; in particular, the decision as to whether or not a replayed message
should be treated as “valid” may be application dependent.

Two common techniques for preventing replay attacks are to use sequence
numbers (also known as counters) or time-stamps. The first approach re-
quires the communicating users to maintain (synchronized) state, and can be
problematic when users communicate over a lossy channel where messages are
occasionally dropped (though this problem can be mitigated). In the second
approach using time-stamps, the sender appends the current time T (say, to
the nearest millisecond) to the message before authenticating, and sends T
along with the message and the resulting tag t. When the receiver obtains
T,m, t, it verifies that t is a valid tag on m‖T and that T is within some
acceptable clock skew of its own current time T ′. This method has its own
drawbacks, including the need for the sender and receiver to maintain closely
synchronized clocks, and the possibility that a replay attack can still take
place if it is done quickly enough (specifically, within the acceptable time
window). We will discuss replay attacks further (in a more general context)
in Section 5.4.

Strong unforgeability. As defined, a secure MAC ensures that an adversary
cannot generate a valid tag on a message that was never previously authen-
ticated. But it does not rule out the possibility that an attacker might be
able to generate a new, valid tag on a previously authenticated message. In
other words, a secure MAC guarantees that an attacker who learns tags t1, . . .
on messages m1, . . . will be unable to forge a valid tag t on any message
m 6∈ {m1, . . .}. However, it may be possible for that adversary to generate
a different valid tag t′i 6= ti on some previously authenticated message mi.
In standard applications of MACs, this type of adversarial behavior is not
a concern. Nevertheless, in some settings it is useful to consider a stronger
definition of security for MACs where such behavior is ruled out.

To model this formally, we consider a modified experiment Mac-sforge that
is defined in exactly the same way as Mac-forge, except that now the set
Q contains pairs of oracle queries and their associated responses. (That is,
(m, t) ∈ Q if A queried Mack(m) and received in response the tag t.) The
adversary A succeeds (and experiment Mac-sforge evaluates to 1) if and only
if A outputs (m, t) such that Vrfyk(m, t) = 1 and (m, t) /∈ Q.

DEFINITION 4.3 A message authentication code Π = (Gen,Mac,Vrfy)
is strongly secure if for all probabilistic polynomial-time adversaries A, there
is a negligible function negl such that:

Pr[Mac-sforgeA,Π(n) = 1] ≤ negl(n).

It is not hard to see that if a secure MAC uses canonical verification then
it is also strongly secure. This is important since many real-world MACs use
canonical verification. We leave the proof of the following as an exercise.

Message Authentication Codes 113

PROPOSITION 4.4 Let Π = (Gen,Mac,Vrfy) be a secure (deterministic)
MAC that uses canonical verification. Then Π is strongly secure.

Verification queries. Definitions 4.2 and 4.3 consider an adversary given
access to a MAC oracle, which corresponds to a real-world adversary who can
influence an honest sender to generate a tag for some message m. One could
also consider an adversary who interacts with an honest receiver, sending
(m, t) to the receiver to learn whether Vrfyk(m, t) = 1. Such an adversary
could be captured formally in the natural way by giving the adversary in the
above definitions access to a verification oracle as well.

A definition that incorporates a verification oracle in this way is, perhaps,
the “right” way to define security for message authentication codes. It turns
out, however, that for MACs that use canonical verification it makes no differ-
ence: any such MAC that satisfies Definition 4.2 also satisfies the definitional
variant in which verification queries are allowed. Moreover, any strongly se-
cure MAC remains strongly secure even if verification queries are possible. In
general, however, allowing verification queries can make a difference. Since
most MACs covered in this book (as well as MACs used in practice) use canon-
ical verification and/or are strongly secure, we use the traditional definitions
that omit access to a verification oracle.

A potential timing attack. One issue not addressed by the above discussion
of verification queries is the possibility of carrying out a timing attack on MAC
verification. Here, we consider an adversary who can send message/tag pairs
to the receiver—thus using the receiver as a verification oracle—and learn not
only whether the receiver accepts or rejects, but also the time it takes for the
receiver to make this decision. We show that if such an attack is possible then
a natural implementation of MAC verification leads to an easily exploitable
vulnerability. (In our usual cryptographic definitions of security, the attacker
learns only the output of the oracles it has access to, but nothing else. The
attack we describe here, which is an example of a side-channel attack, shows
that certain real-world attacks are not captured by the usual definitions.)

Concretely, assume a MAC using canonical verification. To verify a tag t
on a message m, the receiver computes t′ := Mack(m) and then compares t′

to t, outputting 1 if and only if t′ and t are equal. Assume this comparison
is implemented using a standard routine (like strncmp in C) that compares
t and t′ one byte at a time, and rejects as soon as the first unequal byte is
encountered. The observation is that, when implemented in this way, the time
to reject differs depending on the position of the first unequal byte.

It is possible to use this seemingly inconsequential information to forge a
tag on any desired message m. Say the attacker knows the first i bytes of the
(unique) valid tag for m. (At the outset, i = 0.) The attacker can learn the
next byte of the valid tag by sending (m, t0), . . . , (m, t255) to the receiver,
where tj is the string with the first i bytes set correctly, the (i+1)st byte equal
to j (in hexadecimal), and the remaining bytes set to 0x00. All these tags

114 Introduction to Modern Cryptography

will likely be rejected (if not, then the attacker succeeds anyway); however,
for exactly one of these tags the first (i+1) bytes will be correct and rejection
will take slightly longer than the rest. If tj is the tag that caused rejection to
take the longest, the attacker learns that the (i + 1)st byte of the valid tag
is j. In this way, the attacker learns each byte of the valid tag using at most
256 queries to the verification oracle. For a 16-byte tag, this attack requires
at most 16 · 256 = 4096 verification queries to learn the entire tag.

One might wonder whether this attack is realistic, as it requires access to
a verification oracle as well as the ability to measure the difference in time
taken to compare i vs. i+ 1 bytes. In fact, such attacks have been carried out
against real systems! As just one example, MACs were used to verify code
updates in the Xbox 360, and the implementation of MAC verification took
roughly 2.2 milliseconds to compare each byte. Attackers were able to exploit
this and load pirated games onto the hardware.

Based on the above, we conclude that MAC verification should use time-
independent string comparison that always compares all bytes.

4.3 Constructing Secure Message Authentication Codes

4.3.1 A Fixed-Length MAC

Pseudorandom functions are a natural tool for constructing secure mes-
sage authentication codes. Intuitively, if the tag t is obtained by applying a
pseudorandom function to the message m, then forging a tag on a previously
unauthenticated message requires the adversary to correctly guess the value
of the pseudorandom function at a “new” input point. The probability of
guessing the value of a random function on a new point is 2−n (if the output
length of the function is n). The probability of guessing such a value for a
pseudorandom function can be only negligibly greater.

The above idea, shown in Construction 4.5, gives a secure fixed-length MAC
for short messages. In Section 4.3.2, we show how to extend this to handle
messages of arbitrary length. We explore more efficient constructions of MACs
for arbitrary-length messages in Sections 4.4, 4.5, and 6.3.2.

THEOREM 4.6 If F is a pseudorandom function, then Construction 4.5
is a secure fixed-length MAC for messages of length n.

PROOF As in the analysis of previous schemes based on pseudorandom
functions, we first replace the pseudorandom function with a truly random
function and show that this has limited impact on an adversary’s success
probability. We then analyze the scheme when using a truly random function.

Let A be a probabilistic polynomial-time adversary. Consider the message

Message Authentication Codes 115

CONSTRUCTION 4.5

Let F be a (length preserving) pseudorandom function. Define a fixed-
length MAC for messages of length n as follows:

� Mac: on input a key k ∈ {0, 1}n and a message m ∈ {0, 1}n,
output the tag t := Fk(m).

� Vrfy: on input a key k ∈ {0, 1}n, a message m ∈ {0, 1}n, and a

tag t ∈ {0, 1}n, output 1 if and only if t
?
= Fk(m).

A fixed-length MAC from any pseudorandom function.

authentication code Π̃ = (G̃en, M̃ac, Ṽrfy) which is the same as Π = (Mac,Vrfy)
in Construction 4.5 except that a truly random function f is used instead of

the pseudorandom function Fk. That is, G̃en(1n) works by choosing a uniform

function f ∈ Funcn, and M̃ac computes a tag just as Mac does except that f
is used instead of Fk.

We show that there is a negligible function negl such that∣∣∣Pr[Mac-forgeA,Π(n) = 1]− Pr[Mac-forgeA,Π̃(n) = 1]
∣∣∣ ≤ negl(n). (4.1)

To prove this, we construct a polynomial-time distinguisher D that is given
oracle access to some function O, and whose goal is to determine whether O
is pseudorandom (i.e., equal to Fk for uniform k ∈ {0, 1}n) or random (i.e.,
equal to f for uniform f ∈ Funcn). To do this, D simulates the message au-
thentication experiment for A and observes whether A succeeds in outputting
a valid tag on a “new” message. If so, D guesses that its oracle is a pseudo-
random function; otherwise, D guesses that its oracle is a random function.
In detail:

Distinguisher D:
D is given input 1n and access to an oracle O : {0, 1}n → {0, 1}n,
and works as follows:

1. RunA(1n). WheneverA queries its MAC oracle on a message
m (i.e., whenever A requests a tag on a message m), answer
this query in the following way:

Query O with m and obtain response t; return t to A.

2. When A outputs (m, t) at the end of its execution, do:

(a) Query O with m and obtain response t′.

(b) If (1) t′ = t and (2) A never queried its MAC oracle
on m, then output 1; otherwise, output 0.

It is clear that D runs in polynomial time.
If D’s oracle is Fk for a uniform k, then the view of A when run as a

subroutine by D is distributed identically to the view of A in experiment

116 Introduction to Modern Cryptography

Mac-forgeA,Π(n). Moreover, D outputs 1 exactly when Mac-forgeA,Π(n) = 1.
Therefore

Pr
[
DFk(·)(1n) = 1

]
= Pr

[
Mac-forgeA,Π(n) = 1

]
,

where k ∈ {0, 1}n is chosen uniformly on the left-hand side above. If D’s
oracle is a random function, then the view of A when run as a subroutine by
D is distributed identically to the view of A in experiment Mac-forgeA,Π̃(n),

and again D outputs 1 exactly when Mac-forgeA,Π̃(n) = 1. Thus,

Pr
[
Df(·)(1n) = 1

]
= Pr

[
Mac-forgeA,Π̃(n) = 1

]
,

where f ∈ Funcn is chosen uniformly. Since F is a pseudorandom function
and D runs in polynomial time, there is a negligible function negl such that∣∣∣Pr

[
DFk(·)(1n) = 1

]
− Pr

[
Df(·)(1n) = 1

]∣∣∣ ≤ negl(n).

This implies Equation (4.1).
To complete the proof, we observe that

Pr[Mac-forgeA,Π̃(n) = 1] ≤ 2−n (4.2)

because for any message m /∈ Q that A did not query to its MAC oracle,
the tag t′ = f(m) is uniformly distributed in {0, 1}n from A’s point of view
(since the values of f on all inputs are uniform and independent). Thus, the
probability that A can correctly guess t′ (for any m /∈ Q) is 2−n.

Equations (4.1) and (4.2) together show that

Pr[Mac-forgeA,Π(n) = 1] ≤ 2−n + negl(n),

completing the proof of the theorem.

4.3.2 Domain Extension for MACs

Construction 4.5 is important in that it shows a general paradigm for con-
structing secure message authentication codes from pseudorandom functions.
Unfortunately, the construction is only capable of handling fixed-length mes-
sages that are furthermore rather short.2 These limitations are unacceptable
in most real-world applications. We show here how a MAC handling arbitrary-
length messages can be constructed from any fixed-length MAC for messages

2Given a pseudorandom function taking arbitrary-length inputs, Construction 4.5 would
yield a secure MAC for messages of arbitrary length. Likewise, a pseudorandom function
with a larger domain would yield a secure MAC for longer messages. However, existing
practical pseudorandom functions (i.e., block ciphers) take short, fixed-length inputs.

Message Authentication Codes 117

of length n. The construction we show is not very efficient and is unlikely to be
used in practice; far more efficient constructions of secure MACs are known,
as we will see later. We include the present construction for its simplicity and
generality, and for pedagogical purposes.

Let Π′ = (Mac′,Vrfy′) be a secure fixed-length MAC for messages of length n.
Before presenting the construction of a MAC for arbitrary-length messages
based on Π′, we rule out some simple ideas and describe some canonical at-
tacks that must be prevented.

1. A natural first idea is to parse the message m as a sequence of n-bit
blocks m1, . . . ,md and authenticate each block separately, i.e., compute
ti := Mac′k(mi) and output 〈t1, . . . , td〉 as the tag. This prevents an
adversary from sending any previously unauthenticated block without
being detected. However, it does not prevent a block re-ordering attack
in which the attacker shuffles the order of blocks in an authenticated
message. Specifically, if 〈t1, t2〉 is a valid tag on the message m1,m2

(withm1 6= m2), then an attacker can construct a valid tag 〈t2, t1〉 on the
(new) message m2,m1, something that is not allowed by Definition 4.2.

2. We can prevent the previous attack by authenticating a block index
along with each block. That is, we now compute ti = Mac′k(i‖mi) for
all i, and output 〈t1, . . . , td〉 as the tag. (Note that now |mi| < n.) This
does not prevent a truncation attack whereby an attacker simply drops
blocks from the end of the message (and drops the corresponding blocks
of the tag as well).

3. A truncation attack can be thwarted by additionally authenticating the
message length along with each block. (Authenticating the message
length as a separate block does not work. Do you see why?) That
is, compute ti = Mac′k(`‖i‖mi) for all i, where ` denotes the length
of the message in bits. (Once again, the block length |mi| will need to
decrease.) This scheme is vulnerable to a “mix-and-match” attack where
the adversary combines blocks from different messages. For example,
if the adversary obtains tags 〈t1, . . . , td〉 and 〈t′1, . . . , t′d〉 on messages
m = m1, . . . ,md and m′ = m′1, . . . ,m

′
d, respectively, it can output the

valid tag 〈t1, t′2, t3, t′4, . . .〉 on the message m1,m
′
2,m3,m

′
4,

We can prevent this last attack by also including a random “message iden-
tifier” in each block that prevents the attacker from combining blocks from
different messages. This leads us to Construction 4.7. (The scheme only
handles messages of length less than 2n/4, but this is an exponential bound.)

THEOREM 4.8 If Π′ is a secure fixed-length MAC for messages of length n,
then Construction 4.7 is a secure MAC (for arbitrary-length messages).

118 Introduction to Modern Cryptography

CONSTRUCTION 4.7

Let Π′ = (Mac′,Vrfy′) be a fixed-length MAC for messages of length n.
Define a MAC as follows:

� Mac: on input a key k ∈ {0, 1}n and a message m ∈ {0, 1}∗ of
(nonzero) length ` < 2n/4, parse m as d blocks m1, . . . ,md, each
of length n/4. (The final block is padded with 0s if necessary.)
Choose a uniform message identifier r ∈ {0, 1}n/4.

For i = 1, . . . , d, compute ti ← Mac′k(r‖`‖i‖mi), where i, ` are en-
coded as strings of length n/4.† Output the tag t := 〈r, t1, . . . , td〉.

� Vrfy: on input a key k ∈ {0, 1}n, a message m ∈ {0, 1}∗ of
nonzero length ` < 2n/4, and a tag t = 〈r, t1, . . . , td′〉, parse m
as d blocks m1, . . . ,md, each of length n/4. (The final block is
padded with 0s if necessary.) Output 1 if and only if d′ = d and
Vrfy′k(r‖`‖i‖mi, ti) = 1 for 1 ≤ i ≤ d.

† Note that i and ` can be encoded using n/4 bits because i, ` < 2n/4.

A MAC for arbitrary-length messages from any fixed-length MAC.

PROOF The intuition is that since Π′ is secure, an adversary cannot in-
troduce a new block with a valid tag (with respect to Π′). Furthermore, the
extra information included in each block prevents the various attacks (drop-
ping blocks, re-ordering blocks, etc.) sketched earlier. We prove security by
showing that those attacks are the only ones possible.

Let Π be the MAC given by Construction 4.7, and let A be a probabilistic
polynomial-time adversary. We show that Pr[Mac-forgeA,Π(n) = 1] is negli-
gible. We first introduce some notation that will be used in the proof. Let
repeat denote the event that the same random identifier is used in two of the
tags returned by the MAC oracle in experiment Mac-forgeA,Π(n). Denoting
the final output of A by (m, t = 〈r, t1, . . .〉), where m has length ` and is
parsed as m = m1, . . ., we let NewBlock be the event that at least one of the
blocks r‖`‖i‖mi was never previously authenticated by Mac′ in the course of
answering A’s Mac queries. (Note that, by construction of Π, it is easy to tell
exactly which blocks are authenticated by Mac′k when computing Mack(m).)
Informally, NewBlock is the event that A tries to forge a valid tag on a block
that was never authenticated by the underlying fixed-length MAC Π′.

We have:

Pr[Mac-forgeA,Π(n) = 1] = Pr[Mac-forgeA,Π(n) = 1 ∧ repeat]

+ Pr[Mac-forgeA,Π(n) = 1 ∧ repeat ∧ NewBlock]

+ Pr[Mac-forgeA,Π(n) = 1 ∧ repeat ∧ NewBlock]

≤ Pr[repeat] (4.3)

+ Pr[Mac-forgeA,Π(n) = 1 ∧ NewBlock]

+ Pr[Mac-forgeA,Π(n) = 1 ∧ repeat ∧ NewBlock].

Message Authentication Codes 119

We show that the first two terms of Equation (4.3) are negligible, and the
final term is 0. This implies Pr[Mac-forgeA,Π(n) = 1] is negligible, as desired.

To see that Pr[repeat] is negligible, let q = q(n) be the number of MAC
oracle queries made by A. To answer the ith oracle query of A, the oracle
chooses ri uniformly from a set of size 2n/4. The probability of event repeat
is exactly the probability that ri = rj for some i 6= j. Applying Lemma A.15,
we have Pr[repeat] ≤ q2/2n/4. Since q is polynomial (because A is a ppt
adversary), this value is negligible.

We next consider the final term in Equation (4.3). We argue that if
Mac-forgeA,Π(n) = 1, but repeat did not occur, then it must be the case
that NewBlock occurred. In other words,

Pr[Mac-forgeA,Π(n) = 1 ∧ repeat ∧ NewBlock] = 0.

This is, in some sense, the heart of the proof.
Again let q = q(n) denote the number of MAC oracle queries made by A,

and let ri denote the random identifier used to answer the ith oracle query
of A. If repeat does not occur then the values r1, . . . , rq are distinct. Recall
that (m, t = 〈r, t1, . . .〉) is the output of A. If r 6∈ {r1, . . . , rq}, then NewBlock
clearly occurs. If not, then r = rj for some unique j (because repeat did
not occur), and the blocks r‖`‖1‖m1, . . . could then not possibly have been
authenticated during the course of answering any Mac queries other than the
jth such query. Let m(j) be the message that was used by A for its jth oracle
query, and let `j be its length. There are two cases to consider:

Case 1: ` 6= `j. The blocks authenticated when answering the jth Mac query
all have `j 6= ` in the second position. So r‖`‖1‖m1, in particular, was
never authenticated in the course of answering the jth Mac query, and
NewBlock occurs.

Case 2: ` = `j. If Mac-forgeA,Π(n) = 1, then we must have m 6= m(j). Let

m(j) = m
(j)
1 , Since m and m(j) have equal length, there must be at

least one index i for which mi 6= m
(j)
i . The block r‖`‖i‖mi was then

never authenticated in the course of answering the jth Mac query. (Be-
cause i is included in the third position of the block, the block r‖`‖i‖mi

could only possibly have been authenticated if r‖`‖i‖mi = rj‖`j‖i‖m(j)
i ,

but this is not true since mi 6= m
(j)
i .)

To complete the proof of the theorem, we bound the second term on the
right-hand side of Equation (4.3). Here we rely on the security of Π′. We
construct a ppt adversary A′ who attacks the fixed-length MAC Π′ and suc-
ceeds in outputting a valid tag on a previously unauthenticated message with
probability

Pr[Mac-forgeA′,Π′(n) = 1] ≥ Pr[Mac-forgeA,Π(n) = 1 ∧ NewBlock]. (4.4)

120 Introduction to Modern Cryptography

Security of Π′ means that the left-hand side is negligible, implying that
Pr[Mac-forgeA,Π(n) = 1 ∧ NewBlock] is negligible as well.

The construction of A′ is the obvious one and so we describe it briefly.
A′ runs A as a subroutine, and answers the request by A for a tag on m
by choosing r ← {0, 1}n/4 itself, parsing m appropriately, and making the
necessary queries to its own MAC oracle Mac′k(·). When A outputs (m, t =
〈r, t1, . . .〉), then A′ checks whether NewBlock occurs. (This is easy to do since
A′ can keep track of all the queries it makes to its own oracle.) If so, then
A′ finds the first block r‖`‖i‖mi that was never previously authenticated by
Mac′ and outputs (r‖`‖i‖mi, ti). (If not, A′ outputs nothing.)

The view of A when run as a subroutine by A′ is distributed identically
to the view of A in experiment Mac-forgeA,Π(n), and so the probabilities of
events Mac-forgeA,Π(n) = 1 and NewBlock do not change. If NewBlock occurs
then A′ outputs a block r‖`‖i‖mi that was never previously authenticated
by its own MAC oracle; if Mac-forgeA,Π(n) = 1 then the tag on every block
is valid (with respect to Π′), and so in particular this is true for the block
output by A′. This means that whenever Mac-forgeA,Π(n) = 1 and NewBlock
occur we have Mac-forgeA′,Π′(n) = 1, proving Equation (4.4) and completing
the proof of the theorem.

4.4 CBC-MAC

Theorems 4.6 and 4.8 show that it is possible to construct a secure mes-
sage authentication code for arbitrary-length messages from a pseudorandom
function with block length n. This demonstrates, in principle, that secure
MACs can be constructed from block ciphers. Unfortunately, the resulting
construction is extremely inefficient: to compute a tag on a message of length
dn, the block cipher is evaluated 4d times, and the tag is more than 4dn bits
long. Fortunately, far more efficient constructions are available. We begin by
exploring one such construction that relies solely on block ciphers.

4.4.1 The Basic Construction

CBC-MAC was one of the first message authentication codes to be stan-
dardized. A basic version of CBC-MAC, secure when authenticating messages
of any fixed length, is given as Construction 4.9. (See also Figure 4.1.) We
caution that this basic scheme is not secure in the general case when messages
of different lengths may be authenticated; see further discussion below.

THEOREM 4.10 Let ` be a polynomial. If F is a pseudorandom function,
then Construction 4.9 is a secure MAC for messages of length `(n) · n.

Message Authentication Codes 121

CONSTRUCTION 4.9

Let F be a pseudorandom function, and fix a length function `(n) > 0.
The basic CBC-MAC construction is as follows:

� Mac: on input a key k ∈ {0, 1}n and a message m of length `(n)·n,
do the following (set ` = `(n) in what follows):

1. Parse m as m = m1, . . . ,m` where each mi is of length n.

2. Set t0 := 0n. Then, for i = 1 to `, set ti := Fk(ti−1 ⊕mi).

Output t` as the tag.

� Vrfy: on input a key k ∈ {0, 1}n, a message m, and a tag t, do: If
m is not of length `(n) · n then output 0. Otherwise, output 1 if

and only if t
?
= Mack(m).

Basic CBC-MAC (for fixed-length messages).

The proof of Theorem 4.10 is fairly complex. In the following section we
will prove a more general result from which the above theorem follows.

Although Construction 4.9 can be extended in the obvious way to handle
messages of different lengths, the construction is only secure when the length
of the messages being authenticated is fixed and agreed upon in advance by the
sender and receiver. (See Exercise 4.13.) The advantage of this construction
over Construction 4.5, which also gives a fixed-length MAC, is that basic CBC-
MAC can authenticate longer messages. Compared to Construction 4.7, basic
CBC-MAC is much more efficient, requiring only d block-cipher evaluations
for a message of length dn, and with a tag of length n.

CBC-MAC vs. CBC-mode encryption. Basic CBC-MAC is similar to
the CBC mode of operation. There are, however, some important differences:

1. CBC-mode encryption uses a random IV and this is crucial for security.
In contrast, CBC-MAC uses no IV (alternately, it can be viewed as

Fk

m2

Fk

m3

Fk

t

m1

FIGURE 4.1: Basic CBC-MAC (for fixed-length messages).

122 Introduction to Modern Cryptography

using the fixed value IV = 0n) and this is also crucial for security.
Specifically, CBC-MAC using a random IV is not secure.

2. In CBC-mode encryption all intermediate values ti (called ci in the
case of CBC-mode encryption) are output by the encryption algorithm
as part of the ciphertext, whereas in CBC-MAC only the final block
is output as the tag. If CBC-MAC is modified to output all the {ti}
obtained during the course of the computation then it is no longer secure.

In Exercise 4.14 you are asked to verify that the modifications of CBC-MAC
discussed above are insecure. These examples illustrate the fact that harmless-
looking modifications to cryptographic constructions can render them inse-
cure. One should always implement a cryptographic construction exactly as
specified and not introduce any variations (unless the variations themselves
can be proven secure). Furthermore, it is essential to understand the details of
an implementation being used. In many cases cryptographic libraries provide
the programmer with a “CBC function,” but do not distinguish between the
use of this function for encryption or message authentication.

Secure CBC-MAC for arbitrary-length messages. We briefly describe
two ways Construction 4.9 can be modified, in a provably secure manner,
to handle arbitrary-length messages. (Here for simplicity we assume that all
messages being authenticated have length a multiple of n, and that Vrfy rejects
any message whose length is not a multiple of n. In the following section we
treat the more general case where messages can have arbitrary length.)

1. Prepend the message m with its length |m| (encoded as an n-bit string),
and then compute basic CBC-MAC on the result; see Figure 4.2. Secu-
rity of this variant follows from the results proved in the next section.

Note that appending |m| to the end of the message and then computing
basic CBC-MAC is not secure.

Fk

m1

Fk Fk

m2 m3

Fk

m

t

FIGURE 4.2: A version of CBC-MAC secure for authenticating
arbitrary-length messages.

Message Authentication Codes 123

2. Change the scheme so that key generation chooses two independent,
uniform keys k1 ∈ {0, 1}n and k2 ∈ {0, 1}n. Then to authenticate a
message m, first compute the basic CBC-MAC of m using k1 and let t
be the result; output the tag t̂ := Fk2(t).

The second option has the advantage of not needing to know the message
length in advance (i.e., when beginning to compute the tag). However, it
has the drawback of using two keys for F . Note that, at the expense of
two additional applications of F , it is possible to store a single key k and
then derive the keys k1 := Fk(1) and k2 := Fk(2) at the beginning of the
computation. Despite this, in practice, the operation of initializing a block
cipher with a new key is considered relatively expensive, and so this option is
not always desirable.

4.4.2 *Proof of Security

In this section we prove security of different variants of CBC-MAC. We
begin by summarizing the results, and then give the details of the proof. The
proof in this section is quite involved, and is intended for advanced readers.

Throughout this section, fix a keyed function F that, for security parame-
ter n, maps n-bit keys and n-bit inputs to n-bit outputs. We define a keyed
function CBC that, for security parameter n, maps n-bit keys and inputs in
({0, 1}n)

+
(i.e., nonempty strings whose length is a multiple of n) to n-bit

outputs. This function is defined as

CBCk(x1, . . . , x`)
def
= Fk (Fk (· · ·Fk(Fk(x1)⊕ x2)⊕ · · ·)⊕ x`) ,

where |x1| = · · · = |x`| = n. (We leave CBCk undefined on the empty string.)
Note that CBC is computed in the same way as basic CBC-MAC, although
here we explicitly allow inputs of different lengths.

A set of strings P ⊂ ({0, 1}n)
∗

is prefix-free if it does not contain the empty
string, and no string X ∈ P is a prefix of any other string X ′ ∈ P . We show:

THEOREM 4.11 If F is a pseudorandom function, then CBC is a pseudo-
random function as long as the set of inputs on which it is queried is prefix-free.
Formally, for any ppt distinguisher D that queries its oracle on a prefix-free
set of inputs, there is a negligible function negl such that∣∣∣Pr[DCBCk(·)(1n) = 1]− Pr[Df(·)(1n) = 1]

∣∣∣ ≤ negl(n),

where k is chosen uniformly from {0, 1}n and f is chosen uniformly from the
set of functions mapping ({0, 1}n)

∗
to {0, 1}n (i.e., the value of f at each

input is uniform and independent of the values of f at all other inputs).

Thus, we can convert a pseudorandom function F for fixed-length inputs
into a pseudorandom function CBC for arbitrary-length inputs (subject to a

124 Introduction to Modern Cryptography

constraint on which inputs can be queried). To use this for message authen-
tication, we adapt the idea of Construction 4.5 as follows: to authenticate
a message m, first apply some encoding function encode to obtain a string
encode(m) ∈ ({0, 1}n)

+
; then output the tag CBCk(encode(m)). For this to

be secure, the encoding needs to be prefix-free, namely, to have the property
that for any distinct (allowed) messages m1,m2, the string encode(m1) is not
a prefix of encode(m2). This implies that for any set of (allowed) messages
{m1, . . .}, the set of encoded messages {encode(m1), . . .} is prefix-free.

We now examine two concrete applications of this idea:

� Fix `, and let the set of allowed messages be {0, 1}`(n)·n. Then we can
take the trivial encoding encode(m) = m, which is prefix-free since a
string cannot be a prefix of a different string of the same length. This is
exactly basic CBC-MAC, and what we have said above implies that basic
CBC-MAC is secure for messages of any fixed length (cf. Theorem 4.10).

� One way of handling arbitrary-length messages (technically, messages of
length less than 2n) is to encode a string m ∈ {0, 1}∗ by prepending its
length |m| (encoded as an n-bit string), and then appending as many 0s
as needed to make the length of the resulting string a multiple of n. (This
is essentially what is shown in Figure 4.2.) This encoding is prefix-free,
and we therefore obtain a secure MAC for arbitrary-length messages.

The rest of this section is devoted to a proof of Theorem 4.11. In proving
the theorem, we analyze CBC when it is “keyed” with a random function g
rather than a random key k for some underlying pseudorandom function F .
That is, we consider the keyed function CBCg defined as

CBCg(x1, . . . , x`)
def
= g (g (· · · g(g(x1)⊕ x2)⊕ · · ·)⊕ x`)

where, for security parameter n, the function g maps n-bit inputs to n-bit
outputs, and |x1| = · · · = |x`| = n. Note that CBCg as defined here is
not efficient (since the representation of g requires space exponential in n);
nevertheless, it is still a well-defined, keyed function.

We show that if g is chosen uniformly from Funcn, then CBCg is indistin-
guishable from a random function mapping ({0, 1}n)

∗
to n-bit strings, as long

as a prefix-free set of inputs is queried. More precisely:

THEOREM 4.12 Fix any n ≥ 1. For any distinguisher D that queries its
oracle on a prefix-free set of q inputs, where the longest such input contains `
blocks, it holds that:∣∣∣Pr[DCBCg(·)(1n) = 1]− Pr[Df(·)(1n) = 1]

∣∣∣ ≤ q2`2

2n
,

where g is chosen uniformly from Funcn, and f is chosen uniformly from the
set of functions mapping ({0, 1}n)

∗
to {0, 1}n.

Message Authentication Codes 125

(The theorem is unconditional, and does not impose any constraints on
the running time of D. Thus we may take D to be deterministic.) The above
implies Theorem 4.11 using standard techniques that we have already seen. In
particular, for any D running in polynomial time q(n) and `(n) are polynomial
and so q(n)2`(n)2/2n is negligible.

PROOF (of Theorem 4.12) Fix some n ≥ 1. The proof proceeds in two
steps: We first define a notion of smoothness and prove that CBC is smooth;
we then show that smoothness implies the claim.

Let P = {X1, . . . , Xq} be a prefix-free set of q inputs, where each Xi is
in ({0, 1}n)

∗
and the longest string in P contains ` blocks (i.e., each Xi ∈ P

contains at most ` blocks of length n). Note that for any t1, . . . , tq ∈ {0, 1}n
it holds that Pr [∀i : f(Xi) = ti] = 2−nq, where the probability is over uni-
form choice of the function f from the set of functions mapping ({0, 1}n)

∗

to {0, 1}n. We say that CBC is (q, `, δ)-smooth if for every prefix-free set P =
{X1, . . . , Xq} as above and every t1, . . . , tq ∈ {0, 1}n, it holds that

Pr [∀i : CBCg(Xi) = ti] ≥ (1− δ) · 2−nq,

where the probability is over uniform choice of g ∈ Funcn.

In words, CBC is (q, `, δ)-smooth if for every fixed set of input/output pairs
{(Xi, ti)}, where the {Xi} form a prefix-free set and each contain at most
` blocks, the probability that CBCg(Xi) = ti for all i (where g is a random
function from {0, 1}n to {0, 1}n) is at least 1 − δ times the probability that
f(Xi) = ti for all i (where f is a random function from ({0, 1}n)∗ to {0, 1}n).

CLAIM 4.13 CBC is (q, `, δ)-smooth, for δ = q2`2/2n.

PROOF Fix P as above. For X ∈ P , with X = x1, . . . and xi ∈ {0, 1}n,
let Cg(X) denote the ordered list of inputs on which g is evaluated during the
computation of CBCg(X); i.e., if X ∈ ({0, 1}n)

m
then

Cg(X)
def
= (x1, CBCg(x1)⊕ x2, . . . , CBCg(x1, . . . , xm−1)⊕ xm) .

For X ∈ ({0, 1}n)
m

and X ′ ∈ ({0, 1}n)
m′

, with Cg(X) = (I1, . . . , Im) and
Cg(X ′) = (I ′1, . . . , I

′
m′), say there is a non-trivial collision in X if Ii = Ij for

some i 6= j, and say there is a non-trivial collision between X and X ′ if Ii = I ′j
but (x1, . . . , xi) 6= (x′1, . . . , x

′
j). We say there is a non-trivial collision in P if

there is a non-trivial collision in some X ∈ P or between some pair of strings
X,X ′ ∈ P . Let Coll be the event that there is a non-trivial collision in P .

We prove the claim in two steps. First, we show that conditioned on the
event that Coll does not occur, the probability that CBCg(Xi) = ti for all i is
exactly 2−nq. Next, we show that Pr[Coll] < δ = q2`2/2n.

126 Introduction to Modern Cryptography

Consider choosing a uniform g by choosing, one-by-one, uniform values for
the outputs of g on different inputs. Determining whether there is a non-trivial
collision between two strings X,X ′ ∈ P can be done by first choosing the
values of g(I1) and g(I ′1) (if I ′1 = I1, these values are the same), then choosing
values for g(I2) and g(I ′2) (note that I2 = g(I1) ⊕ x2 and I ′2 = g(I ′1) ⊕ x′2
are defined once g(I1), g(I ′1) have been fixed), and continuing in this way
until we choose values for g(Im−1) and g(I ′m′−1). Observe that the values
of g(Im), g(I ′m′) need not be chosen in order to determine whether there is a
non-trivial collision between X and X ′. Similarly, the value of g(Im) need not
be chosen in order to determine whether there is a non-trivial collision in X.
Thus, it is possible to determine whether Coll occurs by choosing the values
of g on all but the final entries of each of Cg(X1), . . . , Cg(Xq).

Assume Coll has not occurred after fixing the values of g on various inputs
as described above. Consider the final entries in each of Cg(X1), . . . , Cg(Xq).
These entries are all distinct (this is immediate from the fact that Coll has
not occurred), and we claim that the value of g on each of those points has
not yet been fixed. Indeed, the only way the value of g could already be fixed
on any of those points is if the final entry Im of some Cg(X) is equal to a
non-final entry Ij of some Cg(X ′). But since Coll has not occurred, this can
only happen if X 6= X ′ and (x′1, . . . , x

′
j) = (x1, . . . , xm). But then X would

be a prefix of X ′, contradicting the assumption that P is prefix-free.
Since g is a random function, the above means that CBCg(X1), . . . ,CBCg(Xq)

are uniform and independent of each other as well as all the other values of g
that have already been fixed. (This is because CBCg(Xi) is the value of g
when evaluated at the final entry of Cg(Xi), an input value which is different
from all the other inputs at which g has already been fixed.) Thus, for any
t1, . . . , tq ∈ {0, 1}n we have:

Pr
[
∀i : CBCg(Xi) = ti | Coll

]
= 2−nq. (4.5)

We next show that Coll occurs with high probability by upper-bounding
Pr[Coll]. For distinct Xi, Xj ∈ P , let Colli,j be the event that there is a non-
trivial collision in Xi or in Xj , or a non-trivial collision between Xi and Xj .
We have Coll =

∨
i,j Colli,j and so a union bound gives

Pr[Coll] ≤
∑

i,j: i<j

Pr[Colli,j] <
q2

2
·max
i<j
{Pr[Colli,j]} . (4.6)

Fixing distinct X = Xi and X ′ = Xj in P , we now bound maxi<j{Pr[Colli,j]}.
It is clear that the probability is maximized when X and X ′ are both as
long as possible, and thus we assume they are each ` blocks long. Let X =
(x1, . . . , x`) and X ′ = (x′1, . . . , x

′
`), and let t be the largest integer such that

(x1, . . . , xt) = (x′1, . . . , x
′
t). (Note that t < ` or else X = X ′.) We assume

t > 0, but the analysis below can be easily modified, giving the same result,
if t = 0. We continue to let I1, I2, . . . (resp., I ′1, I

′
2, . . .) denote the inputs

Message Authentication Codes 127

to g during the course of computing CBCg(X) (resp., CBCg(X
′)); note that

(I ′1, . . . , I
′
t) = (I1, . . . , It). Consider choosing g by choosing uniform values for

the outputs of g, one-by-one. We do this in 2`− t− 2 steps as follows:

Steps 1 through t− 1 (if t > 1): In each step i, choose a uniform value for
g(Ii), thus defining Ii+1 and I ′i+1 (which are equal).

Step t: Choose a uniform value for g(It), thus defining It+1 and I ′t+1.

Steps t+ 1 to `− 1 (if t < `− 1): Choose, in turn, uniform values for each
of g(It+1), g(It+2), . . . , g(I`−1), thus defining It+2, It+3, . . . , I`.

Steps ` to 2`− t− 2 (if t < `− 1): Choose, in turn, uniform values for each
of g(I ′t+1), g(I ′t+2), . . . , g(I ′`−1), thus defining I ′t+2, I ′t+3, . . . , I ′`.

Let Coll(k) be the event that a non-trivial collision occurs by step k. Then

Pr[Colli,j] =Pr [
∨
k Coll(k)]

≤ Pr[Coll(1)] +

2`−t−2∑
k=2

Pr[Coll(k) |Coll(k − 1)], (4.7)

using Proposition A.9. For k < t, we claim Pr[Coll(k) | Coll(k − 1)] = k/2n;
indeed, if no non-trivial collision has occurred by step k − 1, the value of
g(Ik) is chosen uniformly in step k; a non-trivial collision occurs only if it
happens that Ik+1 = g(Ik) ⊕ xk+1 is equal to one of {I1, . . . , Ik} (which are
all distinct, since Coll(k − 1) has not occurred). By similar reasoning, we
have Pr[Coll(t) | Coll(t− 1)] ≤ 2t/2n (here there are two values It+1, I

′
t+1 to

consider; note that they cannot be equal to each other). Finally, arguing
as before, for k > t we have Pr[Coll(k) | Coll(k − 1)] = (k + 1)/2n. Using
Equation (4.7), we thus have

Pr[Colli,j] ≤ 2−n ·

(
t−1∑
k=1

k + 2t+

2`−t−2∑
k=t+1

(k + 1)

)

= 2−n ·
2`−t−1∑
k=2

k < 2`2 · 2−n.

From Equation (4.6) we get Pr[Coll] < q2`2 · 2−n = δ. Finally, using Equa-
tion (4.5) we see that

Pr [∀i : CBCg(Xi) = ti] ≥ Pr
[
∀i : CBCg(Xi) = ti | Coll

]
· Pr[Coll]

= 2−nq · Pr[Coll] ≥ (1− δ) · 2−nq,

as claimed.

We now show that smoothness implies the theorem. Assume without loss of
generality that D always makes q (distinct) queries, each containing at most `

128 Introduction to Modern Cryptography

blocks. D may choose its queries adaptively (i.e., depending on the answers
to previous queries), but the set of D’s queries must be prefix-free.

For distinct X1, . . . , Xq ∈ ({0, 1}n)
∗

and arbitrary t1, . . . , tq ∈ {0, 1}n, de-
fine α(X1, . . . , Xq; t1, . . . , tq) to be 1 if and only if D outputs 1 when mak-
ing queries X1, . . . , Xq and getting responses t1, . . . , tq. (If, say, D does
not make query X1 as its first query, then α(X1, . . . ; . . .) = 0.) Letting
X̄ = (X1, . . . , Xq) and t̄ = (t1, . . . , tq), we then have

Pr[DCBCg(·)(1n) = 1] =
∑

X̄ prefix-free; ~t

α(X̄, t̄) · Pr[∀i : CBCg(Xi) = ti]

≥
∑

~X prefix-free; ~t

α(X̄, t̄) · (1− δ) · Pr[∀i : f(Xi) = ti]

= (1− δ) · Pr[Df(·)(1n) = 1]

where, above, g is chosen uniformly from Funcn, and f is chosen uniformly
from the set of functions mapping ({0, 1}n)

∗
to {0, 1}n. This implies

Pr[Df(·)(1n) = 1]− Pr[DCBCg(·)(1n) = 1] ≤ δ · Pr[Df(·)(1n) = 1] ≤ δ.

A symmetric argument for when D outputs 0 completes the proof.

4.5 GMAC and Poly1305

One drawback of CBC-MAC is that it requires a number of cryptographic
operations (specifically, block-cipher evaluations) linear in the length of the
message being authenticated. We show here two (related) constructions of se-
cure MACs that can be much more efficient. These MACs have been adopted
by several internet standards.

We present a general paradigm for building secure MACs in Section 4.5.1,
and then look at two concrete instantiations of that paradigm—GMAC and
Poly1305—in Section 4.5.2.

4.5.1 MACs from Difference-Universal Functions

In this section we show a general approach for constructing MACs based on
a combinatorial object called a difference-universal function. The paradigm
we describe here is inspired by a construction of an information-theoretic MAC
that we show in Section 4.6.2; nevertheless, our treatment is self contained
and does not directly rely on any results from that section.

Let h be a keyed function that, for security parameter n, maps keys in Kn
and inputs in Mn to outputs in Tn. (We require also that h is efficiently

Message Authentication Codes 129

computable, and that elements in {Kn}, {Mn}, and {Tn} can be sampled
efficiently, but for simplicity we omit this from the definition.) As usual, we
write hk(m) instead of h(k,m). We assume that Tn is a group for each n.
(The reader unfamiliar with the notion of a group can refer to Section 9.1;
in this section, nothing beyond the definition of a group is needed.) We now
define what it means for h to be difference universal.

DEFINITION 4.14 A keyed function h as above is ε(n)-difference univer-
sal if for all n, any distinct m,m′ ∈Mn, and any ∆ ∈ Tn it holds that

Pr
[
hk(m)− hk(m′) = ∆

]
≤ ε(n) ,

where the probability is taken over uniform choice of k ∈ Kn.

Note that we must have ε(n) ≥ 1/|Tn|. Difference-universal functions with
ε(n) negligible can be constructed without any assumptions. For now we sim-
ply assume their existence (though a simple example is given in Section 4.6.2),
and defer further discussion to the next section.

In Construction 4.15 we show how to use a difference-universal function h
in conjunction with a pseudorandom function F to construct a message au-
thentication code. Roughly, the shared key consists of a key kh for h as well
as a key kF for F ; a tag on a message m ∈ Mn is computed by choosing a
uniform value r ∈ {0, 1}n and masking hkh(m) using FkF (r). In the construc-
tion we assume for simplicity that for security parameter n the keyed function
F maps n-bit keys and n-bit inputs to elements of Tn.

Interestingly, this is the first (and only) example we will see of a randomized
MAC. For this reason, we explicitly consider strong security.

THEOREM 4.16 Let h be an ε(n)-difference-universal function for a neg-
ligible function ε, and let F be a pseudorandom function. Then Construc-
tion 4.15 is a strongly secure MAC for messages in {Mn}.

CONSTRUCTION 4.15

Let h, F be as in the text. Define a MAC for messages in {Mn} as
follows:

� Gen: on input 1n, choose uniform kh ∈ Kn and kF ∈ {0, 1}n;
output the key (kh, kF).

� Mac: on input a key (kh, kF) and a message m ∈ Mn, choose a
uniform r ∈ {0, 1}n and output the tag t := 〈r, hkh(m)+FkF (r)〉.

� Vrfy: on input a key (kh, kF), a message m ∈ Mn, and a tag

t = 〈r, s〉, output 1 if and only if s
?
= hkh(m) + FkF (r).

A MAC based on a difference-universal function.

130 Introduction to Modern Cryptography

PROOF Let A be a ppt adversary, let q = q(n) be a polynomial upper
bound on the number of queries A makes to its Mac oracle, and let Π denote
Construction 4.15. As usual, we first define a scheme Π̃ that is the same as
Π except that it uses a truly random function f with the appropriate domain
and range in place of FkF . As in previous proofs involving pseudorandom
functions, one can show that there is a negligible function negl such that∣∣∣Pr

[
Mac-sforgeA,Π̃(n) = 1

]
− Pr

[
Mac-sforgeA,Π(n) = 1

]∣∣∣ ≤ negl(n).

In the remainder of the proof, we analyze Π̃.

Let repeat denote the event that the same random value r is used to answer
two different oracle queries in Mac-sforgeA,Π̃(n), and let new-r denote the event

that A outputs (m, 〈r, s〉) where r was not used to answer any oracle query.
We have

Pr
[
Mac-sforgeA,Π̃(n) = 1

]
≤ Pr[repeat] + Pr

[
Mac-sforgeA,Π̃(n) = 1 ∧ new-r

]
+ Pr

[
Mac-sforgeA,Π̃(n) = 1 ∧ repeat ∧ new-r

]
.

Bounding the first two terms of this sum is easy. Using Lemma A.15, we have
Pr[repeat] ≤ q2/2n+1. Next, observe that if A outputs (m, 〈r, s〉) where r was
not used to answer any oracle query, then the value f(r) is uniform in Tn and
independent of A’s view, and so the probability that 〈r, s〉 is a valid tag for m
(i.e., the probability that s = hkh(m) + f(r)) is 1/|Tn| ≤ ε(n). It follows that
Pr[Mac-sforgeA,Π̃(n) = 1 ∧ new-r] ≤ ε(n).

To complete the proof, we show that

Pr
[
Mac-sforgeA,Π̃(n) = 1 ∧ repeat ∧ new-r

]
≤ ε(n).

Here we rely on the fact that h is ε-difference universal. Consider an execu-
tion of experiment Mac-sforge in which neither repeat nor new-r occurs. Let
m1, . . . ,mq be the messages queried by A to its oracle, let 〈r1, s1〉, . . . , 〈rq, sq〉
be the responses, and let (m, 〈r, s〉) be the final output of A. Since repeat did
not occur the {ri} are distinct; since new-r did not occur we therefore have
r = ri for some unique i. Moreover, we may assume m 6= mi as otherwise
there is no way A’s output can be a valid forgery.

The crucial observations are:

1. Since the {ri} are all distinct, the values {f(ri)} are all uniform and
independent. Those values thus serve to perfectly hide any information
about kh from A (by analogy with the one-time pad). Formally, this
means that kh is independent ofA’s view in experiment Mac-sforgeA,Π̃(n).

2. A’s output is a valid forgery if and only if hkh(m)− hkh(mi) = s− si.

Message Authentication Codes 131

Letting ∆ = s− si, the above imply that

Pr
[
Mac-sforgeA,Π̃(n) = 1 ∧ repeat ∧ new-r

]
≤ Pr

k←Kn

[hkh(m)− hkh(mi) = ∆]

≤ ε(n).

Putting everything together, we conclude that

Pr
[
Mac-sforgeA,Π̃(n) = 1

]
≤ 2 · ε(n) +

q2

2n+1
,

completing the proof.

Nonce-based MACs. The only property of r used in the proof above is
that r is unique across all tags (i.e., that repeat not occur). Thus, one can
also prove security for Construction 4.15 in a nonce-based setting similar to
what was formalized (for private-key encryption) in Section 3.6.4.

4.5.2 Instantiations

There is a clever and efficient way to instantiate the difference-universal
function required by Construction 4.15 using polynomials over a finite field.
(The reader unfamiliar with finite fields may consult Section A.5. The only
results we require are that a finite field Fq containing q elements exists for
any prime power q, and that a nonzero polynomial of degree ` over a finite
field has at most ` roots.) Different realizations of that approach are, in turn,
used by the standardized schemes GMAC and Poly1305.

For simplicity of exposition in this section (and because it matches current
standards) we omit the security parameter and focus on a concrete setting.

An ε-difference-universal function. Fix a finite field F. The idea is to
let the key k ∈ K be a point in F and to view m ∈ M as a polynomial (of
bounded degree) over F; evaluating hk(m) then corresponds to evaluating m
at the point k.

Formally, fix a constant ` and letM = F<`, i.e.,M consists of vectors over
F containing fewer than ` entries. For any m = (m1, . . . ,m`′−1) ∈ M, where
`′ ≤ `, let m`′ ∈ F be an encoding of the length of m (i.e., `′ − 1), and define
the polynomial

m(X)
def
= m1 ·X`′ +m2 ·X`′−1 + · · ·+m`′ ·X.

Finally, define the keyed function h : F× F<` → F as

hk(m) = m(k).

THEOREM 4.17 The function h above is `/|F|-difference universal.

132 Introduction to Modern Cryptography

PROOF Fix distinct m,m′ ∈ F<` and ∆ ∈ F. Define the polynomial

P (X)
def
= m(X)−m′(X)−∆.

P is a nonzero polynomial of degree at most `. (If the lengths of m and m′

are equal then that fact that P is nonzero is immediate; otherwise, m(X) and
m′(X) differ in their coefficients of the linear term.) So

Pr
k∈F

[hk(m)− hk(m′) = ∆] = Pr
k∈F

[P (k) = 0] ≤ `/|F|,

where the final inequality is because P has at most ` roots.

Efficiency. The function h is extremely efficient in several respects. First, the
key can be much shorter than the input. Second h can be evaluated quickly
using Horner’s rule. That is, to evaluate

m1 · k`
′
+ · · ·+m`′ · k

set y0 := 0 and then, for i = 1 to `′, set yi := (yi−1 +mi) · k; output y`′ . This
requires only `′ ≤ ` field multiplications and O(1) memory, even if entries of
m arrive in a streaming fashion and the length of m is not known in advance.

GMAC. The GMAC message authentication code is just3 Construction 4.15
using a block cipher F with a 128-bit block length and the polynomial-based
difference-universal function just described over the field F = F2128 with 2128

elements. Field elements are 128-bit strings; addition corresponds to bit-wise
XOR, and multiplication can be done very efficiently using hardware-level
instructions available in many modern processors.

Poly1305. The Poly1305 message authentication code is4 defined similarly,
but uses the field F = Fp = {0, . . . , p − 1} where the prime p = 2130 − 5
was chosen for efficient implementation. Field operations here correspond to
addition and multiplication modulo p. Observe that now there is a mismatch
between the output of F (which is a 128-bit string) and the output of h (which
lies in the range {0, . . . , p− 1}); to address this, the final tag is computed as〈

r, [hkh(m) + FkF (r) mod 2128]
〉
.

This small difference from Construction 4.15 can be accounted for in the
security proof.

Comparison to CBC-MAC. Besides the fact that MACs based on Con-
struction 4.15 can be more efficient than CBC-MAC, such MACs can also

3The GMAC standard does not correspond exactly to the construction described here; in
particular, it supports messages whose length is not a multiple of 128.
4Again, we are omitting some details from the actual standard.

Message Authentication Codes 133

obtain a better concrete-security bound. Specifically, consider a setting in
which q messages, each of length `, are authenticated, and treat the block
cipher F as a random function. The proof of security for CBC-MAC given in
Section 4.4.2 guarantees that an attacker’s probability of outputting a valid
forgery is at most q2 · `2/2n, though this can be improved to O(q2 · `/2n) for
small `. In contrast, the security bounds obtained for the MACs described
in this section show that an attacker’s forgery probability is O((q2 + `)/2n),
a significant improvement. Concretely, take n = 128, q = 240, and ` = 220.
CBC-MAC gives a security bound of approximately 2−8, whereas GMAC and
Poly1305 have security bounds of approximately 2−48. The latter can be
further improved in the nonce-based setting.

We remark further that in all cases the actual concrete-security bound in-
cludes a term that depends on an adversary’s advantage in distinguishing
the block cipher from a pseudorandom function. This term grows larger as
the number of block-cipher evaluations increases. MACs based on Construc-
tion 4.15 have the advantage here as well in that they only evaluate the block
cipher q times, as opposed to q · ` times for CBC-MAC.

4.6 *Information-Theoretic MACs

Until now we have explored message authentication codes with computa-
tional security, i.e., where we assume bounds on the attacker’s running time.
But inspired by the results of Chapter 2, it is natural to ask whether message
authentication in the presence of an unbounded adversary is possible. In this
section, we show conditions under which information-theoretic (as opposed to
computational) security is attainable.

A first observation is that it is impossible to achieve “perfect” security
in this context. Namely, we cannot hope to have a message authentication
code for which the probability that an adversary outputs a valid tag on a
previously unauthenticated message is 0. The reason is that an adversary
can simply guess a valid tag t on any message, and this guess will be correct
with probability (at least) 1/|T | (where T denotes the space of possible tags).
Similarly, an attacker can always guess the key and generate a tag that is
correct with probability 1/|K| (where K denotes the space of possible keys).

The above examples tell us what we can hope to achieve: a MAC where
the probability of forgery is at most max{1/|T |, 1/|K|}, even for unbounded
adversaries. We will see that this is achievable, but only under restrictions on
how many messages are authenticated by the honest parties.

We first define information-theoretic security for message authentication
codes. A starting point is to take experiment Mac-forgeA,Π(n) that is used
to computationally secure MACs (cf. Definition 4.2), but drop the security

134 Introduction to Modern Cryptography

parameter n and require simply that Pr[Mac-forgeA,Π = 1] be “small” for
all adversaries A (and not just adversaries running in polynomial time). As
mentioned above (and as will be proved formally in Section 4.6.3), however,
such a definition is impossible to achieve unless we place some bound on the
number of messages authenticated by the honest parties. We look here at
the most basic setting, where the honest parties authenticate just a single
message. We refer to this as one-time message authentication. The following
experiment modifies Mac-forgeA,Π(n) following the above discussion:

The one-time message authentication experiment Mac-forge1-time
A,Π :

1. A key k is generated by running Gen.

2. The adversary A outputs a message m′, and is given in return
a tag t′ ← Mack(m′).

3. A outputs (m, t).

4. The output of the experiment is defined to be 1 if and only if
(1) Vrfyk(m, t) = 1 and (2) m 6= m′.

DEFINITION 4.18 Π = (Gen,Mac,Vrfy) is an ε-secure one-time MAC if
for all (even unbounded) adversaries A:

Pr
[
Mac-forge1-time

A,Π = 1
]
≤ ε.

4.6.1 One-Time MACs from Strongly Universal Functions

In this section we show how to construct a one-time MAC based on any
strongly universal function. We then show a simple construction of the latter.

Let h : K ×M → T be a keyed function whose first input is a key k ∈ K
and whose second input is taken from some domain M; the output is in
some set T . As usual, we write hk(m) instead of h(k,m). Then h is strongly
universal (or pairwise independent) if for any two distinct inputs m,m′ the
values hk(m) and hk(m′) are uniformly and independently distributed in T
when k is a uniform key. This is equivalent to saying that the probability that
hk(m), hk(m′) take on any particular values t, t′ is exactly 1/|T |2. That is:

DEFINITION 4.19 A function h : K×M→ T is strongly universal if for
all distinct m,m′ ∈M and all (not necessarily distinct) t, t′ ∈ T it holds that

Pr
[
hk(m) = t ∧ hk(m′) = t′

]
=

1

|T |2
,

where the probability is taken over uniform choice of k ∈ K.

The above should motivate the construction of a one-time message authen-
tication code from any strongly universal function h. The tag t on a message

Message Authentication Codes 135

m is obtained by computing hk(m), where the key k is uniform; see Construc-
tion 4.20. Intuitively, even after an adversary observes the tag t′ = hk(m′)
for any message m′, the correct tag hk(m) for any other message m is still
uniformly distributed in T from the adversary’s point of view. Thus, the ad-
versary can do nothing more than blindly guess the tag, and this guess will
be correct only with probability 1/|T |.

CONSTRUCTION 4.20

Let h : K×M→ T be a strongly universal function. Define a MAC for
messages in M as follows:

� Gen: choose uniform k ∈ K and output it as the key.

� Mac: on input a key k ∈ K and a message m ∈M, output the tag
t := hk(m).

� Vrfy: on input a key k ∈ K, a message m ∈ M, and a tag t ∈ T ,

output 1 if and only if t
?
= hk(m). (If m 6∈ M, then output 0.)

A one-time MAC from any strongly universal function.

The above construction can be viewed as analogous to Construction 4.5.
This is because a strongly universal function h behaves like a random function
as long as it is evaluated at most twice.

THEOREM 4.21 Let h : K ×M → T be a strongly universal function.
Then Construction 4.20 is a 1/|T |-secure one-time MAC for messages in M.

PROOF Let A be an adversary and let Π denote Construction 4.20. Since
A may be all-powerful, we may assume A is deterministic. So the message
m′ on which A requests a tag at the outset of the experiment is fixed. Fur-
thermore, the pair (m, t) that A outputs at the end of the experiment is a
deterministic function of the tag t′ on m′ that A receives. We thus have

Pr
[
Mac-forge1-time

A,Π = 1
]

=
∑
t′∈T

Pr
[
Mac-forge1-time

A,Π = 1 ∧ hk(m′) = t′
]

=
∑
t′ ∈ T

(m, t) := A(t′)

Pr
[
hk(m) = t ∧ hk(m′) = t′

]

=
∑
t′ ∈ T

(m, t) := A(t′)

1

|T |2
=

1

|T |
.

This proves the theorem.

136 Introduction to Modern Cryptography

It remains to construct a strongly universal function. We assume some basic
knowledge about arithmetic modulo a prime number; readers may refer to
Sections 9.1.1 and 9.1.2 for necessary background. (Alternatively, everything
we say generalizes to an arbitrary finite field, and the interested reader may

consult Section A.5.) Fix a prime p, and let Zp
def
= {0, . . . , p− 1}. We take as

our message spaceM = Zp; the space of possible tags will be T = Zp. A key
(a, b) consists of a pair of elements from Zp; thus, K = Zp × Zp. Define h as

ha,b(m)
def
= [a ·m+ b mod p],

where the notation [X mod p] refers to the result of reducing X modulo p.

THEOREM 4.22 For any prime p, the function h defined above is strongly
universal.

PROOF Fix any distinct m,m′ ∈ Zp and any t, t′ ∈ Zp. For which keys
(a, b) does it hold that both ha,b(m) = t and ha,b(m

′) = t′? This holds only if

a ·m+ b = t mod p and a ·m′ + b = t′ mod p.

We thus have two linear equations in the two unknowns a, b. These two
equations are both satisfied exactly when a = [(t− t′) · (m−m′)−1 mod p] and
b = [t−a ·m mod p]; note that [(m−m′)−1 mod p] exists because m 6= m′ and
so m−m′ 6= 0 mod p. Restated, this means that for any m,m′, t, t′ as above
there is a unique key (a, b) with ha,b(m) = t and ha,b(m

′) = t′. We conclude
that the probability (over uniform choice of the key) that ha,b(m) = t and
ha,b(m

′) = t′ is exactly 1/|K| = 1/|T |2 as required.

Parameters of Construction 4.20. We briefly discuss the parameters
of Construction 4.20 when instantiated with the strongly universal function
described above. The construction is a 1/|T |-secure one-time MAC, so is
optimal as far as the level of security achieved vs. the number of tags.

Let M = Zp be some message space for which we want to construct a
one-time MAC. Construction 4.20 gives a 1/|M|-secure one-time MAC with
keys that are (roughly) twice the message length. The reader may notice two
problems here, at opposite ends of the spectrum: First, if |M| is small then a
1/|M| probability of forgery may be unacceptably large. On the flip side, if
|M| is large then a 1/|M| probability of forgery may be overkill; one might
be willing to accept a (somewhat) larger probability of forgery if that level
of security can be achieved with shorter tags. The first problem (when |M|
is small) is easy to deal with by simply embedding M into a larger message
space M′ by, e.g., padding messages with 0s. The second problem can be
addressed as well by using Construction 4.20 and then truncating the tag.
We omit details, and refer instead to the references at the end of this chapter.

Message Authentication Codes 137

4.6.2 One-Time MACs from Difference-Universal Functions

Here we explore a second construction of one-time MACs. In contrast
to the construction given in the previous section, this approach can have
shorter keys and better computational efficiency. Perhaps more importantly,
it can be adapted to give a computationally secure scheme (for authenticating
polynomially many messages), as shown in Section 4.5.

We begin by defining a difference-universal function. (In contrast to Def-
inition 4.14, here we give a concrete version of the definition.) We assume
familiarity with the notion of a group (cf. Section 9.1), but in this section
nothing beyond the definition of a group is needed.

DEFINITION 4.23 Let T be a group. A function h : K ×M → T is
ε-difference universal if for all distinct m,m′ ∈M and all ∆ ∈ T it holds that

Pr
[
hk(m)− hk(m′) = ∆

]
≤ ε ,

where the probability is taken over uniform choice of k ∈ K.

Being difference universal is weaker than being strongly universal; in par-
ticular, any h : K×M→ T that is strongly universal is also 1/|T |-difference
universal, but the converse is not true. To see this, fix a prime p, let K =
M = T = Zp, and define h as

hk(m) = [k ·m mod p].

It is easy to see that h is not strongly universal (since hk(0) = 0 for all k),
but for any distinct m,m′ and any ∆ we have

Pr[hk(m)− hk(m′) = ∆] = Pr[k · (m−m′) = ∆ mod p]

= Pr[k = ∆ · (m−m′)−1 mod p] = 1/p,

showing that h is 1/|T |-difference universal. (In Section 4.5 we show a con-
struction of an ε-difference-universal function with |K| � |M|.)

Construction 4.24 shows how a difference-universal function h : K×M→ T
can be used to construct a one-time MAC. The shared key now consists of
both a key k ∈ K for h as well as a uniform r ∈ T that will be used as a
one-time pad. To authenticate a message m ∈ M, the sender first computes
hk(m) and then “masks” that value using r. (Note the similarity to Con-
struction 4.15, which uses a block cipher to generate masks for polynomially
many messages.) As intuition for the security of this scheme, note that even
after observing the tag t′ = hk(m′) + r for a message m′, an adversary learns
nothing about hk(m′). Moreover, if the attacker outputs a tag t on another
message m, this is a successful forgery only if t = hk(m) + r, i.e., if

t− t′ = hk(m)− hk(m′).

138 Introduction to Modern Cryptography

CONSTRUCTION 4.24

Let h : K ×M → T be a difference-universal function. Define a MAC
for messages in M as follows:

� Gen: choose uniform k ∈ K and r ∈ T ; output the key (k, r).

� Mac: on input a key (k, r) and a message m ∈M, output the tag
t := hk(m) + r. (Addition here is done in the group T .)

� Vrfy: on input a key (k, r), a message m ∈ M, and a tag t ∈ T ,

output 1 if and only if t
?
= hk(m) + r.

A one-time MAC from any difference-universal function.

If h is ε-difference universal then the probability of the above (taken over
choice of k) is at most ε.

THEOREM 4.25 Let h be an ε-difference-universal function. Then Con-
struction 4.24 is an ε-secure one-time MAC for messages in M.

PROOF Let Π denote Construction 4.24. The proof is similar to that of
Theorem 4.21. As in that proof, fix an adversary A and let m′ be the message
whose tag is requested by A at the outset of the experiment. The message/tag
pair output by A is then a deterministic function of the tag t′ on m′. So

Pr
[
Mac-forge1-time

A,Π = 1
]

=
∑
t′ ∈ T

(m, t) := A(t′)

Pr
[
hk(m) + r = t ∧ hk(m′) + r = t′

]
.

Now, for any m 6= m′ and t, t′ we have hk(m) + r = t and hk(m′) + r = t′ if

and only if hk(m) + r = t and hk(m)− hk(m′) = t− t′ def
= ∆. Thus,

Pr
[
hk(m) + r = t ∧ hk(m′) + r = t′

]
= Pr

[
hk(m) + r = t ∧ hk(m)− hk(m′) = ∆

]
= Pr

[
r = t− hk(m) | hk(m)− hk(m′) = ∆

]
· Pr

[
hk(m)− hk(m′) = ∆

]
=

(
1

|T |

)
· ε,

using the facts that h is ε-difference universal and that r is uniform and
independent of k. The theorem follows.

Message Authentication Codes 139

4.6.3 Limitations on Information-Theoretic MACs

Here we explore limitations on information-theoretic message authentica-
tion, showing that any ε-secure one-time MAC must have keys of length at
least 1/ε2. An extension of the proof shows that any ε-secure `-time MAC
(where security is defined by modifying Definition 4.19 to allow the attacker
to request tags on ` messages) requires keys of length at least 1/ε(`+1). A
corollary is that no MAC can provide information-theoretic security for au-
thenticating an unbounded number of messages.

In the following, we assume the message space contains at least two mes-
sages; if not, there is no point in communicating, let alone authenticating.

THEOREM 4.26 Let Π = (Gen,Mac,Vrfy) be an ε-secure one-time MAC
with key space K. Then |K| ≥ ε−2.

PROOF Fix distinct messages m0,m1. The intuition is that there must
be at least ε−1 possibilities for the tag of m0 (or else the adversary could
guess it with probability better than ε); furthermore, even conditioned on the
value of the tag for m0, there must be ε−1 possibilities for the tag of m1 (or
else the adversary could forge a tag on m1 with probability better than ε).
Since each key defines tags for m0 and m1, this means there must be at least
ε−1 × ε−1 = ε−2 keys. We make this formal below.

Let K denote the key space (i.e., the set of all possible keys that can be
output by Gen). For any possible tag t0, let K(t0) denote the set of keys for
which t0 is a valid tag on m0; i.e.,

K(t0)
def
= {k | Vrfyk(m0, t0) = 1}.

For any t0 we must have |K(t0)| ≤ ε·|K|. Otherwise the adversary could simply
output (m0, t0) as its forgery; this would be a valid forgery with probability
at least |K(t0)|/|K| > ε, contradicting the claimed security.

Consider now the adversary A who requests a tag on m0, receives in return
a tag t0, chooses a uniform key k ∈ K(t0), and outputs (m1,Mack(m1)) as its
forgery. The probability that A outputs a valid forgery is at least∑

t0

Pr[Mack(m0) = t0] · 1

|K(t0)|
≥
∑
t0

Pr[Mack(m0) = t0] · 1

ε · |K|

=
1

ε · |K|
.

By the claimed security of the scheme, the probability that the adversary can
output a valid forgery is at most ε. Thus, we must have |K| ≥ ε−2.

As a corollary, a 2−n-secure one-time MAC for which all keys have the same
length must have keys of length at least 2n.

140 Introduction to Modern Cryptography

References and Additional Reading

The definition of security for message authentication codes was adapted by
Bellare et al. [20] from the definition of security for digital signatures [88] (see
Chapter 13). Later work of Bellare et al. [19] highlighted the importance of
the definitional variant where verification queries are allowed.

The paradigm of using pseudorandom functions for message authentication
(as in Construction 4.5) was introduced by Goldreich et al. [84]. Construc-
tion 4.7 is due to Goldreich [83].

CBC-MAC was standardized in the early 1980s [102, 11]. Basic CBC-
MAC was proven secure (for authenticating fixed-length messages) by Bellare
et al. [20]. Bernstein [30] gives a more direct proof that we have adapted
in Section 4.4.2. An improved bound on the security of basic CBC-MAC,
which also directly takes into account reliance on a pseudorandom permutation
rather than a pseudorandom function, was given by Bellare et al. [23].

As noted in this chapter, basic CBC-MAC is insecure when used to authen-
ticate messages of different lengths. One way to fix this is to prepend the
length to the message. Alternate approaches were explored by Petrank and
Rackoff [158], Black and Rogaway [36], and Iwata and Kurosawa [103]; these
led to a new proposed standard called CMAC [191].

GMAC was introduced as part of the GCM authenticated encryption scheme
by McGrew and Viega [136], based on work of Kohno et al. [119]. Poly1305
is due to Bernstein [31].

Information-theoretic MACs were first studied by Gilbert et al. [80]. Carter
and Wegman [48, 203] introduced the notion of strongly universal functions,
and noted their application to one-time message authentication. They also
showed how to reduce the key length for this task by using an almost strongly
universal function. Construction 4.24 is based on an idea of Wegman and
Carter [203], though difference-universal functions were not introduced until
several years later [120, 121]. (Note that difference-universal functions are
called XOR-universal or almost ∆-universal in the literature.) The reader
interested in learning more about information-theoretic MACs is referred to
the paper by Stinson [193], the survey by Simmons [187], or the first edition
of Stinson’s textbook [194, Chapter 10].

Exercises

4.1 Consider an extension of the definition of secure message authentication
where the adversary is provided with both a Mac and a Vrfy oracle.

Message Authentication Codes 141

(a) Provide a formal definition of security for this case.

(b) Assume Π is a deterministic MAC using canonical verification that
satisfies Definition 4.2. Prove that Π also satisfies your definition
from part (a).

4.2 Assume secure MACs exist. Give a construction of a MAC that is secure
with respect to Definition 4.2 but that is not secure when the adversary
is additionally given access to a Vrfy oracle (cf. the previous exercise).

4.3 Prove Proposition 4.4.

4.4 Assume secure MACs exist. Prove that there exists a MAC that is
secure (Definition 4.2) but is not strongly secure (Definition 4.3).

4.5 Consider the following MAC for messages of length `(n) = 2n − 2 us-
ing a pseudorandom function F : On input a message m0‖m1 (with
|m0| = |m1| = n − 1) and key k ∈ {0, 1}n, algorithm Mac outputs
t = Fk(0‖m0) ‖Fk(1‖m1). Algorithm Vrfy is defined in the natural way.
Is this MAC secure? Prove your answer.

4.6 Let F be a pseudorandom function. Show that each of the following
MACs is insecure, even if used to authenticate fixed-length messages.
(In each case Gen outputs a uniform k ∈ {0, 1}n; we let 〈i〉 denote an
n/2-bit encoding of the integer i.)

(a) To authenticate a message m = m1, . . . ,m`, where mi ∈ {0, 1}n,
compute t := Fk(m1)⊕ · · · ⊕ Fk(m`).

(b) To authenticate a message m = m1, . . . ,m`, where mi ∈ {0, 1}n/2,
compute t := Fk(〈1〉‖m1)⊕ · · · ⊕ Fk(〈`〉‖m`).

(c) To authenticate a message m = m1, . . . ,m`, where mi ∈ {0, 1}n/2,
choose uniform r ∈ {0, 1}n, compute

t := Fk(r)⊕ Fk(〈1〉‖m1)⊕ · · · ⊕ Fk(〈`〉‖m`),

and let the tag be 〈r, t〉.

4.7 Let F be a pseudorandom function. Show that the following MAC for
messages of length 2n is insecure: Gen outputs a uniform k ∈ {0, 1}n.
To authenticate a message m1‖m2 with |m1| = |m2| = n, compute the
tag Fk(m1) ‖Fk(Fk(m2)).

4.8 Given any deterministic MAC (Mac,Vrfy), we may view Mac as a keyed
function. In both Constructions 4.5 and 4.9, Mac is a pseudorandom
function. Give a construction of a secure, deterministic MAC in which
Mac is not a pseudorandom function.

4.9 Is Construction 4.5 necessarily secure when instantiated using a weak
pseudorandom function (cf. Exercise 3.28)? Explain.

142 Introduction to Modern Cryptography

4.10 Prove that Construction 4.7 is a secure MAC even when the adversary
is additionally given access to a Vrfy oracle (cf. Exercise 4.1), assuming
Π′ is a secure MAC that uses canonical verification.

4.11 Prove that Construction 4.7 is strongly secure if Π′ is strongly secure.

4.12 Prove that Construction 4.7 is secure if it is changed as follows: Set
ti := Fk(r‖b‖i‖mi) where b is a single bit such that b = 0 in all blocks
but the last one, and b = 1 in the last block. (Assume for simplicity
that the length of any message being authenticated is always an integer
multiple of n/2− 1.) What is the advantage of this modification?

4.13 We explore what happens when the basic CBC-MAC construction is
used with messages of different lengths.

(a) Say the sender and receiver do not agree on the message length

in advance (and so Vrfyk(m, t) = 1 iff t
?
= Mack(m), regardless of

the length of m), but the sender is careful to only authenticate
messages of length 2n. Show that an adversary can forge a valid
tag on a message of length 4n.

(b) Say the receiver only accepts 3-block messages (so Vrfyk(m, t) = 1

only if m has length 3n and t
?
= Mack(m)), but the sender au-

thenticates messages of any length a multiple of n. Show that an
adversary can forge a valid tag on a new message.

4.14 Prove that the following modifications of basic CBC-MAC do not yield
a secure MAC (even for fixed-length messages):

(a) Mac outputs all blocks t1, . . . , t`, rather than just t`. (Verification
only checks whether t` is correct.)

(b) A random initial block is used each time a message is authenticated.
That is, change Construction 4.9 by choosing uniform t0 ∈ {0, 1}n,
computing t` as before, and then outputting the tag 〈t0, t`〉; verifi-
cation is done in the natural way.

4.15 Show that appending the message length to the end of the message
before applying basic CBC-MAC does not result in a secure MAC for
arbitrary-length messages.

4.16 Define a version of CBC-MAC for messages of length at most ` · 2n as
follows: given a message m, pad it with 0s so that it has length exactly
` · 2n; apply basic CBC-MAC to the result. Is this secure?

4.17 Consider the following encoding that handles messages whose length is
less than n · 2n: We encode a string m ∈ {0, 1}∗ by first appending
as many 0s as needed to make the length of the resulting string m̂ a
nonzero multiple of n. Then we prepend the number of blocks in m̂

Message Authentication Codes 143

(equivalently, prepend the integer |m̂|/n), encoded as an n-bit string.
Show that this encoding is not prefix-free.

4.18 Prove that the encoding for arbitrary-length messages described in Sec-
tion 4.4.2 is prefix-free.

4.19 Prove that the following modification of basic CBC-MAC gives a se-
cure MAC for arbitrary-length messages if F is a pseudorandom func-
tion. (Assume all messages have length a multiple of the block length.)
Mack(m) first computes k` := Fk(`), where ` is the length of m. The
tag is then computed using basic CBC-MAC with key k`.

4.20 Let F be a keyed function that is a secure (deterministic) MAC for mes-
sages of length n. (Note that F need not be a pseudorandom function.)
Show that basic CBC-MAC is not necessarily a secure MAC (even for
fixed-length messages) when instantiated with F .

4.21 Assume the same nonce r is used to authenticate two different messages
in GMAC or Poly1305. Show how to construct a forgery in that case,
with high probability.

Hint: You may assume only single-block messages are authenticated.

4.22 Prove or disprove whether the following functions are `/|F|-difference
universal. In each case assume K = F andM = F<`, and for a message
m = (m1, . . . ,m`′−1) let m`′ ∈ F be an encoding of `′ − 1.

(a) h′k(m) = m′(k), where

m′(X)
def
= m1 ·X` +m2 ·X`−1 + · · ·+m`′ ·X`−`′+1.

(b) h′′k(m) = m′′(k), where

m′′(X)
def
= m1 ·X`′−1 +m2 ·X`′−2 + · · ·+m`′ .

(c) h′′′k (m) = m′′′(k), where

m′′′(X)
def
= m1 ·X +m2 ·X2 + · · ·+m`′ ·X`′ .

4.23 Show that the polynomial-based difference-universal function from Sec-
tion 4.5.2 is not strongly universal.

4.24 Fix ` > 0 and a prime p. Let K = Z`+1
p , M = Z`p, and T = Zp. Define

h : K ×M→ T as

hk0,k1,...,k`(m1, . . . ,m`) =
[
k0 +

∑
i kimi mod p

]
.

Prove that h is strongly universal.

144 Introduction to Modern Cryptography

4.25 Fix `, n > 0. Let K = {0, 1}`×n × {0, 1}` (interpreted as a boolean
` × n matrix and an `-dimensional vector), let M = {0, 1}n, and let
T = {0, 1}`. Define h : K ×M→ T as hK,v(m) = K ·m⊕ v, where all
operations are performed modulo 2. Prove that h is strongly universal.

4.26 A Toeplitz matrix K is a matrix in which Ki,j = Ki−1,j−1 when i, j > 1;
i.e., the values along any diagonal are equal. So an `×n Toeplitz matrix
has the form

Kn Kn−1 Kn−2 · · · K1

Kn+1 Kn Kn−1 · · · K2

Kn+2 Kn+1 Kn · · · K3

...
...

...
...

...
Kn+`−1 Kn+`−2 Kn+`−3 · · · K`

 .
Let K = T `×n × {0, 1}` (where T `×n denotes the set of ` × n Toeplitz
matrices), and let M = {0, 1}n. Define h : K × M → {0, 1}` as
hK,v(m) = K · m ⊕ v, where all operations are performed modulo 2.
Prove that h is strongly universal. What is the advantage here as com-
pared to the construction in the previous exercise?

4.27 Define an appropriate notion of a ε-secure two-time MAC, and give a
construction that meets your definition.

Chapter 5

CCA-Security and Authenticated
Encryption

In previous chapters we studied two different notions of security for parties
communicating over an open communication channel. In Chapter 3 we focused
on the goal of secrecy against a passive adversary who simply eavesdrops on
the parties’ communication, and showed CPA-secure encryption schemes real-
izing this goal. In Chapter 4 we explored integrity against an active adversary
who can inject messages on the channel or otherwise tamper with the parties’
communication, and described how message authentication codes can be used
to achieve this notion. We consider the missing piece—secrecy in the presence
of an active adversary—in Section 5.1, and introduce the notion of relevant
notion of CCA-security there. Beginning in Section 5.2, we then consider the
natural question of how to construct encryption schemes that achieve both
secrecy and integrity simultaneously.

5.1 Chosen-Ciphertext Attacks and CCA-Security

We have so far considered encryption schemes secure only against passive
(eavesdropping) adversaries. (Even though chosen-plaintext attacks allow an
adversary to control what gets encrypted, the adversary in that setting is still
limited to passively observing ciphertexts transmitted by the honest parties.)
In the previous chapter, we discussed the importance of also defending against
active attackers who may interfere with or modify the communication between
the honest parties, focusing there on the case of message integrity. What might
the effect of active attacks be when it comes to secrecy?

Consider a scenario in which a sender encrypts a message m and then
transmits the resulting ciphertext c. An attacker who can tamper with the
communication can modify c to generate another ciphertext c′ that is received
by the other party. This receiver will then decrypt c′ to obtain a message m′.
If m′ 6= m (and m′ 6=⊥), this is a violation of integrity. What is of interest
to us here, however, is the potential impact on secrecy. In particular, if the
attacker learns partial information about m′—say, from subsequent behavior
of the receiver—might that reveal information about the original message m?

145

146 Introduction to Modern Cryptography

This type of attack, in which an adversary causes a receiver to decrypt
ciphertexts that the adversary generates, is called a chosen-ciphertext attack.
Chosen-ciphertext attacks are possible, in principle, any time an attacker has
the ability to inject traffic on the channel between the sender and receiver.
There are many scenarios in which this can occur. (See also the discussion
in Section 12.2.3 regarding chosen-ciphertext attacks in the public-key set-
ting.) In the Midway example from Section 3.4.2, for example, US cryptan-
alysts could have sent encrypted messages containing the fragment AF to the
Japanese; by monitoring their subsequent behavior (e.g., movement of troops
and the like), the US could have learned information about what AF meant.

Alternatively, imagine a client sending encrypted messages to a server. If an
adversary can impersonate the client and send ciphertexts to the server that
appear to originate from the client, the server will decrypt those ciphertexts
and the adversary may learn something about the result; for example, the
attacker may be able to deduce when a ciphertext decrypts to an ill-formed
plaintext (e.g., one that is not formatted correctly) based on the server’s
reaction (e.g., if the server sends an error message). In Section 5.1.1 we
describe in detail an attack of exactly this sort where an attacker is able to
leverage the information leaked from these decryptions to learn the entire
contents of some other encrypted message! Such attacks have been carried
out in practice on web servers to learn the contents of encrypted TLS sessions.

5.1.1 Padding-Oracle Attacks

We motivate the importance of security against chosen-ciphertext attacks
by showing a real-world example where such attacks can be devastating. We
consider a setting in which a client sends messages encrypted using CBC-
mode encryption to a server. We assume the attacker can impersonate the
client and send ciphertexts of its choice to the server, which the server will
then decrypt. We assume further that the attacker can tell when the resulting
decrypted messages are valid (in a sense we will define below) or not. Such
information is frequently easy to obtain since, for example, the server might
request retransmission or terminate a session if it receives a ciphertext that
does not decrypt correctly, and either of those events would be detectable
by the attacker. The attack has been shown to work in practice on various
deployed protocols.

In our discussion of CBC-mode encryption in Section 3.6.3, we only dealt
with the case where the message length was a multiple of the block length of
the underlying block cipher F . If a message does not satisfy this property,
it must be padded before CBC mode is applied; we refer to the result after
padding as the encoded data. The padding must allow the receiver to unam-
biguously recover the original message from the encoded data. One popular
padding scheme is defined by the PKCS #7 standard, and works as follows.
Assume the original message has an integral number of bytes, and let L de-
note the block length (in bytes) of the block cipher F . Let b > 0 denote the

CCA-Security and Authenticated Encryption 147

number of bytes that need to be appended to the message in order to make
the total length of the resulting encoded data a multiple of the block length.
Then we append to the message the integer b (represented in one byte, i.e.,
two hexadecimal digits) repeated b times. That is, if one byte of padding is
needed then the 1-byte string 0x01 (written in hexadecimal) is appended; if
four bytes of padding are needed then 0x04040404 is appended; etc. (Note
that b is an integer between 1 and L, inclusive—we cannot have b = 0 since
this would lead to ambiguous padding. Thus, if the original message length
is already a multiple of the block length, then b = L.) After padding, the
encoded data is encrypted using regular CBC-mode encryption.

When decrypting, the server first uses CBC-mode decryption as usual to
recover the encoded data, and then checks whether the encoded data is cor-
rectly padded. (This is easily done: simply read the value b of the final byte
and then verify that the final b bytes of the result all have value b.) If so,
the padding is stripped off and the original message returned. Otherwise, the
standard procedure is to return a “bad padding” error. This means the server
is serving as a “padding oracle” for the adversary: i.e., the adversary can
send an arbitrary ciphertext to the server and learn (based on whether a “bad
padding” error is returned) whether the underlying encoded data is padded
correctly or not. Although this may seem like meaningless information, we
show that it enables an adversary to completely recover the original message
corresponding to any ciphertext of its choice.

We describe the attack on a 3-block ciphertext for simplicity. Let IV, c1, c2
be a ciphertext observed by the attacker, and let m1,m2 be the underlying en-
coded data (unknown to the attacker) that corresponds to a padded message,
as discussed above. (Each block is L bytes long.) Note that

m2 = F−1
k (c2)⊕ c1, (5.1)

where k is the key (which is, of course, not known to the attacker) being used
by the honest parties. The second block m2 ends in 0xb · · · 0xb︸ ︷︷ ︸

b times

, where we let

0xb denote the 1-byte representation of some integer b. The key property used
in the attack is that certain changes to the ciphertext yield predictable changes
in the underlying encoded data after CBC-mode decryption. Specifically, let
c′1 be identical to c1 except for a modification in the final byte, and consider
decryption of the modified ciphertext IV, c′1, c2. This will result in encoded
data m′1,m

′
2 where m′2 = F−1

k (c2) ⊕ c′1. Comparing to Equation (5.1) we
see that m′2 will be identical to m2 except for a modification in the final
byte. (The value of m′1 is unpredictable, but this will not adversely affect the
attack.) Similarly, if c′1 is the same as c1 except for a change in its ith byte,
then decryption of IV, c′1, c2 will result in m′1,m

′
2 where m′2 is the same as

m2 except for a change in its ith byte. More generally, if c′1 = c1 ⊕ ∆ for
any string ∆, then decryption of IV, c′1, c2 yields m′1,m

′
2 where m′2 = m2⊕∆.

The upshot is that the attacker can exercise significant control over the final
block of the encoded data.

148 Introduction to Modern Cryptography

As a warmup, let us see how the adversary can exploit this to learn b, the
amount of padding. (This reveals the length of the original message.) Recall
that upon decryption, the server looks at the value b of the final byte of the
encoded data, and then verifies that the final b bytes all have the same value.
The attacker begins by modifying the first byte of c1 and sending the resulting
ciphertext IV, c′1, c2 to the server. If decryption fails (i.e., the server returns
an error) then it must be the case that the server is checking all L bytes of
m′2, and therefore b = L! Otherwise, the attacker learns that b < L, and it
can then repeat the process with the second byte, and so on. The left-most
modified byte for which decryption fails reveals exactly the left-most byte
being checked by the server, and so reveals exactly b.

With b known, the attacker can proceed to learn the bytes of the message
one-by-one. We illustrate the idea for the final byte of the message, which we
denote by M . The attacker knows that m2 ends in 0xM0xb · · · 0xb (with 0xb
repeated b times) and wishes to learn M . For 0 ≤ i < 28 define

∆i
def
= 0x00 · · · 0x00 0xi

b times︷ ︸︸ ︷
0x(b+ 1) · · · 0x(b+ 1)

⊕ 0x00 · · · 0x00 0x00

b times︷ ︸︸ ︷
0xb · · · 0xb ;

i.e., the final b+ 1 bytes of ∆i contain the integer i (in hexadecimal) followed
by the value (b + 1) ⊕ b (in hexadecimal) repeated b times. If the attacker
submits the ciphertext IV, c1 ⊕ ∆i, c2 to the server then, after CBC-mode
decryption, the final b + 1 bytes of the resulting encoded data will equal
0x(M⊕i)0x(b+1) · · · 0x(b+1) (with 0x(b+1) repeated b times), and decryption
will fail unless 0x(M ⊕ i) = 0x(b + 1). The attacker tries at most 28 values
∆0, . . . ,∆28−1 until decryption succeeds for some ∆i, at which point it learns
that M = 0x(b+ 1)⊕ 0xi. We leave it as an exercise to extend this attack so
as to learn the next byte of m2, as well as all of m1.

A padding-oracle attack on CAPTCHAs. We have already mentioned
that padding-oracle attacks have been carried out on encrypted web traffic.
Here we give a second example.

A CAPTCHA is a distorted image of, say, an English word that is easy for
humans to read, but hard for a computer to process. CAPTCHAs are used
in order to ensure that a human user—and not some automated software—is
interacting with a webpage.

CAPTCHAs can be provided as a separate service run on an independent
server. To see how this works, we denote a web server by SW , a CAPTCHA
server by SC , and a user by U . When U loads a webpage served by SW ,
the following events occur: SW encrypts a random English word w using a
key k that was initially shared between SW and SC , and sends the resulting
ciphertext (along with the webpage) to the user. U forwards the ciphertext
to SC , who decrypts it, obtains w, and renders a distorted image of w (i.e.,

CCA-Security and Authenticated Encryption 149

the CAPTCHA) to U . Finally, U sends w back to SW for verification. Note
that SC decrypts any ciphertext it receives from U and will issue a “bad
padding” error message if decryption fails, as described earlier. This presents
U with an opportunity to carry out a padding-oracle attack, and thus to
solve the CAPTCHA (i.e., to determine w) automatically without any human
involvement, rendering the CAPTCHA ineffective.

5.1.2 Defining CCA-Security

What would it mean for an encryption scheme to be secure against chosen-
ciphertext attacks? As usual, to define an appropriate notion of security we
need to define two things: the assumed abilities of the attacker, and what
constitutes a successful attack. For the latter, we will follow the approach
we have taken in several previous definitions of security for encryption (e.g.,
in Definitions 3.8 and 3.21): namely, we give the attacker a challenge cipher-
text c that is generated by encrypting one of two possible messages m0,m1

(each chosen with equal probability), and consider the scheme to be broken
if the attacker can determine which message was encrypted with probability
significantly better than 1/2.

How should we model the attacker’s capabilities in the present setting?
Now, the adversary should have the ability not only to obtain the encryption
of messages of its choice (as in a chosen-plaintext attack), but also to ob-
tain the decryption of ciphertexts of its choice (with one exception discussed
later). Formally, we give the adversary access to a decryption oracle Deck(·)
in addition to an encryption oracle Enck(·). We present the formal definition
and defer further discussion.

Consider the following experiment for any private-key encryption scheme
Π = (Gen,Enc,Dec), adversary A, and value n for the security parameter.

The CCA indistinguishability experiment PrivKcca
A,Π(n):

1. A key k is generated by running Gen(1n).

2. A is given input 1n and oracle access to Enck(·) and Deck(·).
It outputs a pair of equal-length messages m0,m1.

3. A uniform bit b ∈ {0, 1} is chosen, and then a challenge ci-
phertext c← Enck(mb) is computed and given to A.

4. The adversary A continues to have oracle access to Enck(·)
and Deck(·), but is not allowed to query the latter on the
challenge ciphertext itself. Eventually, A outputs a bit b′.

5. The output of the experiment is 1 if b′ = b, and 0 otherwise.
If the output of the experiment is 1, we say that A succeeds.

DEFINITION 5.1 A private-key encryption scheme Π has indistinguish-
able encryptions under a chosen-ciphertext attack, or is CCA-secure, if for all

150 Introduction to Modern Cryptography

probabilistic polynomial-time adversaries A there is a negligible function negl
such that:

Pr[PrivKcca
A,Π(n) = 1] ≤ 1

2
+ negl(n),

where the probability is taken over all randomness used in the experiment.

For completeness, we remark that the natural analogue of Theorem 3.23
holds for CCA-security as well—namely, if a scheme has indistinguishable
encryptions under a chosen-ciphertext attack then it has indistinguishable
multiple encryptions under a chosen-ciphertext attack, defined appropriately.

Discussion. In the experiment considered above, the adversary is given
access to a decryption oracle that returns the entire result of decrypting a
ciphertext provided by the attacker. In general, this might be much more
information than what is available to an attacker in the real world; for exam-
ple, in the padding-oracle scenario described earlier, the attacker only learns
whether decryption results in an error or not. As usual, however, we want
to make cryptographic definitions as strong as possible so they are broadly
applicable. Since we don’t know what information an attacker might be able
to learn when a ciphertext it sends is decrypted by a receiver, we make the
worst-case assumption that the attacker learns everything.

There is one caveat. In the experiment, the adversary is allowed to submit
any ciphertexts of its choice to the decryption oracle except that it may not
request decryption of the challenge ciphertext itself. This restriction is clearly
necessary or else there is no hope for any encryption scheme to satisfy the def-
inition. Even with this restriction in place, the definition provides meaningful
security. In particular, note that in the context of a padding-oracle attack
the attacker does not learn anything by getting the receiver to decrypt the
challenge ciphertext (since the attacker knows that it will not cause an error),
and so a CCA-secure scheme would not be vulnerable to that attack.

Insecurity of the schemes we have studied. None of the encryption
schemes we have seen thus far is CCA-secure. We demonstrate this for Con-
struction 3.28, where encryption of a message m takes the form 〈r, Fk(r)⊕m〉.
Consider an adversary A running in the CCA indistinguishability experiment
who chooses m0 = 0n and m1 = 1n. Then, upon receiving a ciphertext
c = 〈r, s〉, the adversary flips the first bit of s and asks for a decryption of the
resulting ciphertext c′. Since c′ 6= c, this query is allowed and the decryption
oracle answers with either 10n−1 (in which case it is clear that b = 0) or
01n−1 (in which case b = 1). This example demonstrates that CCA-security
is quite stringent. Any encryption scheme that allows ciphertexts to be “ma-
nipulated” in a controlled way cannot be CCA-secure. Thus, CCA-security
implies a very important property called non-malleability. Loosely speaking,
a non-malleable encryption scheme has the property that if the adversary
modifies a given ciphertext, the result decrypts to a plaintext that bears no

CCA-Security and Authenticated Encryption 151

relation to the original one. This is a very useful property for encryption
schemes used in complex cryptographic protocols.

5.2 Authenticated Encryption

CCA-security is extremely important, but is subsumed by an even stronger
notion of security we introduce here. Until now, we have considered how to
obtain secrecy (using encryption) and integrity (using message authentication
codes) separately. The aim of authenticated encryption, defined below, is
to achieve both goals simultaneously. It is best practice to always ensure
secrecy and integrity by default in the private-key setting. Indeed, in many
applications where secrecy is required it turns out that integrity is essential
also. Moreover, a lack of integrity can sometimes lead to a breach of secrecy,
as illustrated in the previous section.

5.2.1 Defining Authenticated Encryption

We begin, as usual, by defining precisely what we wish to achieve. One way
to proceed is to define secrecy and integrity separately. Since we are explicitly
concerned with an active adversary here, the natural notion of secrecy is CCA-
security. The natural way to define integrity for encryption is via an analogue
of the notion of existential unforgeability under an adaptive chosen-message
attack that we considered for MACs. (We need a new definition because
the syntax of an encryption scheme does not match the syntax of a MAC.)
Consider the following experiment defined for a private-key encryption scheme
Π = (Gen,Enc,Dec), adversary A, and value n for the security parameter:

The unforgeable encryption experiment Enc-ForgeA,Π(n):

1. A key k is generated by running Gen(1n).

2. The adversary A is given input 1n and access to an encryp-
tion oracle Enck(·). The adversary eventually outputs a ci-
phertext c. Let m := Deck(c) and let Q denote the set of all
queries that A submitted to its oracle.

3. A succeeds if and only if (1) m 6=⊥ and (2) m 6∈ Q. In that
case the output of the experiment is defined to be 1.

DEFINITION 5.2 A private-key encryption scheme Π is unforgeable if for
all probabilistic polynomial-time adversaries A, there is a negligible function
negl such that:

Pr[Enc-ForgeA,Π(n) = 1] ≤ negl(n).

152 Introduction to Modern Cryptography

We may now define an authenticated encryption scheme.

DEFINITION 5.3 A private-key encryption scheme is an authenticated
encryption (AE) scheme if it is CCA-secure and unforgeable.

It is also possible to capture both the above requirements in a definition
involving a single experiment. The experiment is somewhat different from pre-
vious experiments we have considered, so we provide some motivation before
giving the details. The idea is to consider two different scenarios, and require
that they be indistinguishable to an attacker. In the first scenario, which can
be viewed as corresponding to the real-world context in which the adversary
operates, the attacker is given access to both an encryption oracle and a de-
cryption oracle. In the second case, which can be viewed as corresponding to
an “ideal” scenario, these two oracles are changed as follows:

� In place of an encryption oracle, the attacker is given access to an oracle
that encrypts a 0-string of the correct length. Formally, the attacker
is given access to an oracle Enc0

k(·) where Enc0
k(m) = Enck(0|m|). I.e.,

when requesting an encryption of m, the attacker is instead given an
encryption of a 0-string of the same length as m.

� In place of a decryption oracle, the attacker is given access to an oracle
Dec⊥(·) that always returns the error symbol ⊥.

If an attacker cannot distinguish the first scenario from the second, then this
means (1) any new ciphertexts the attacker generates in the real world will be
invalid (i.e., will generate an error upon decryption). This not only implies
a strong form of integrity, but also makes chosen-ciphertext attacks useless.
Moreover, (2) the attacker cannot distinguish a real encryption oracle from
an oracle that always encrypts 0s, which implies secrecy.

Formally, for a private-key encryption scheme Π, adversary A, and value n
for the security parameter, define the following experiment:

The authenticated-encryption experiment PrivKae
A,Π(n):

1. A key k is generated by running Gen(1n).

2. A uniform bit b ∈ {0, 1} is chosen.

3. The adversary A is given input 1n and access to two oracles:

(a) If b = 0, then A is given access to Enck(·) and Deck(·).
(b) If b = 1, then A is given access to Enc0

k(·) and Dec⊥(·).
A is not allowed to query a ciphertext c to its second oracle
that it previously received as the response from its first oracle.

4. The adversary outputs a bit b′.

CCA-Security and Authenticated Encryption 153

5. The output of the experiment is defined to be 1 if b′ = b, and
0 otherwise. In the former case, we say that A succeeds.

In the experiment, the attacker is not allowed to submit ciphertexts to the
decryption oracle that it received from its encryption oracle, since this would
lead to a trivial way to distinguish the two scenarios. We remark that in the
“real” case (i.e., when b = 0) the attacker already knows the decryption of
those ciphertexts, so there is not much point in making such queries, anyway.

DEFINITION 5.4 A private-key encryption scheme is an authenticated
encryption (AE) scheme if for all probabilistic polynomial-time adversaries A
there is a negligible function negl such that

Pr
[
PrivKae

A,Π(n) = 1
]
≤ 1

2
+ negl(n).

We have given two definitions of authenticated encryption. Fortunately, the
definitions are equivalent:

THEOREM 5.5 A private-key encryption scheme satisfies Definition 5.3
if and only if it satisfies Definition 5.4.

Authenticated encryption with associated data. Often, a message m
requires both secrecy and integrity but various associated data (e.g., header
information) sent along with the message requires integrity only. While it
is possible to simply concatenate the message and the associated data (in
some way that allows for unambiguous parsing) and then use an AE scheme
to encrypt them both, better efficiency can be achieved by providing the
associated data with integrity protection only. We omit further details, but
note that AE schemes with support for associated data are called authenticated
encryption with associated data (AEAD) schemes in the literature.

5.2.2 CCA Security vs. Authenticated Encryption

It follows directly from Definition 5.3 that any authenticated encryption
scheme is also CCA-secure. The converse, however, is not true, and there
are private-key encryption schemes that are CCA-secure but that are not
authenticated encryption schemes. You are asked to prove this in Exercise 5.9.

One can imagine applications where CCA-security is needed but authenti-
cated encryption is not. One example might be when private-key encryption
is used for key transport. As a concrete example, say a server gives a tamper-
proof hardware token to a user, where the token stores a long-term key k. The
server can share a fresh, short-term key k′ with the token (that will remain
unknown to the user) by giving the user Enck(k′); the user is supposed to give
this ciphertext to the token, which will decrypt it to obtain k′. CCA-security

154 Introduction to Modern Cryptography

is necessary here because chosen-ciphertext attacks can be easily carried out
by the user in this context. On the other hand, not much harm is done if
the user can generate a valid ciphertext that causes the token to use some
arbitrary key k′′ that is uncorrelated with k′. (Of course, this depends on
what the token does with this short-term key.)

Notwithstanding the above, most applications of private-key encryption in
the presence of an active adversary do require integrity. Fortunately, most
natural constructions of CCA-secure encryption schemes satisfy the stronger
definition of authenticated encryption, anyway. Put differently, there is no
reason to ever use a CCA-secure scheme that is not also an authenticated
encryption scheme, simply because we don’t have any constructions of the
former that are more efficient than constructions of the latter.

From a conceptual point of view, however, the notions of CCA-security and
authenticated encryption are distinct. With regard to CCA-security we are
not interested in message integrity per se; rather, we wish to ensure secrecy
even against an active adversary who can interfere with the communication
from sender to receiver. In contrast, with regard to authenticated encryption
we are explicitly interested in the twin goals of secrecy and integrity.

5.3 Authenticated Encryption Schemes

5.3.1 Generic Constructions

It is tempting to think that any reasonable combination of a CPA-secure
encryption scheme and a secure message authentication code should result
in an authenticated encryption scheme. In this section we show that this is
not the case. This demonstrates that even secure cryptographic tools can be
combined in such a way that the result is insecure, and highlights once again
the importance of definitions and proofs of security. On the positive side, we
show how encryption and message authentication can be combined properly
to achieve joint secrecy and integrity.

Throughout, let ΠE = (Enc,Dec) be a CPA-secure encryption scheme and
let ΠM = (Mac,Vrfy) denote a strongly secure MAC, where key generation in
both schemes simply involves choosing a uniform n-bit key. There are three
natural approaches to combining encryption and message authentication using
independent1 keys kE and kM for ΠE and ΠM , respectively:

1. Encrypt-and-authenticate: In this approach, encryption and message
authentication are computed independently in parallel. That is, given

1Independent cryptographic keys should always be used when different schemes are com-
bined. We return to this point at the end of this section.

CCA-Security and Authenticated Encryption 155

a message m, the sender transmits the ciphertext 〈c, t〉 where:

c← EnckE (m) and t← MackM (m).

The receiver decrypts c to recover m; assuming no error occurred, it
then verifies the tag t. If VrfykM (m, t) = 1, the receiver outputs m;
otherwise, it outputs an error.

2. Authenticate-then-encrypt: Here a tag t is first computed, and then the
message and tag are encrypted together. That is, given a message m,
the sender transmits the ciphertext c computed as:

t← MackM (m) and c← EnckE (m‖t).

The receiver decrypts c to obtain m‖t; assuming no error occurred,
it then verifies the tag t. As before, if VrfykM (m, t) = 1 the receiver
outputs m; otherwise, it outputs an error.

3. Encrypt-then-authenticate: In this case, the message m is first encrypted
and then a tag is computed over the result. That is, the ciphertext is
the pair 〈c, t〉 where:

c← EnckE (m) and t← MackM (c).

(See also Construction 5.6.) If VrfykM (c, t) = 1, then the receiver de-
crypts c and outputs the result; otherwise, it outputs an error.

We analyze each of the above approaches when they are instantiated with
“generic” secure components, i.e., when instantiated with an arbitrary CPA-
secure encryption scheme and an arbitrary strongly secure MAC (cf. Defini-
tion 4.3). We are looking for an approach that provides joint secrecy and
integrity when using any (secure) components, and so reject as “unsafe” any
approach for which this is not the case. This reduces the likelihood of imple-
mentation flaws. Specifically, an approach might be implemented by making
calls to an “encryption subroutine” and a “message authentication subrou-
tine,” and the implementation of those subroutines may be changed at some
later point in time. (This commonly occurs when cryptographic libraries
are updated, or when standards are modified.) An approach whose security
depends on the details of how its underlying components are implemented—
rather than on the security they provide—is therefore dangerous.

We stress that if an approach is rejected this does not mean that it is
insecure for all possible instantiations of the components; it does, however,
mean that any instantiation of the approach must be carefully analyzed and
proven secure before it is used.

Encrypt-and-authenticate. Recall that in this approach encryption and
message authentication are carried out independently. Given a message m, the
ciphertext is 〈c, t〉 where c ← EnckE (m) and t ← MackM (m). This approach

156 Introduction to Modern Cryptography

is problematic since it may not achieve even the most basic level of secrecy.
To see this, note that even a strongly secure MAC does not guarantee any
secrecy and so it is possible for the tag t to leak information about m to an
eavesdropper. (As a trivial example, consider a strongly secure MAC where
the first bit of the tag is always equal to the first bit of the message.) So
the encrypt-and-authenticate approach may yield a scheme that is not even
EAV-secure.

The encrypt-and-authenticate approach is insecure against chosen-plaintext
attacks even when instantiated with standard components (as opposed to the
somewhat contrived example in the previous paragraph). In particular, if
a deterministic MAC like CBC-MAC is used, then the tag computed on a
message (for some fixed key kM) is the same every time. This allows an
eavesdropper to identify when the same message is sent twice, something that
is not possible for a CPA-secure scheme. Many MACs used in practice are
deterministic, so this represents a real concern.

Authenticate-then-encrypt. Here, a tag t← MackM (m) is first computed;
then m‖t is encrypted and the ciphertext c ← EnckE (m‖t) is transmitted.
This combination also does not necessarily yield an authenticated encryp-
tion scheme. We have already encountered a CPA-secure encryption scheme
for which this approach is insecure: the CBC-mode-with-padding scheme dis-
cussed in Section 5.1.1. (We assume in what follows that the reader is familiar
with that section.) Recall that this scheme works by first padding the plain-
text (which in our case will be m‖t) in a specific way so the result is a multiple
of the block length, and then encrypting the result using CBC mode. During
decryption, if an error in the padding is detected after performing the CBC-
mode decryption, then a “bad padding” error is returned. With regard to the
authenticate-then-encrypt approach, this means there are now two sources of
potential decryption failure: the padding may be incorrect, or the tag may not
verify. Schematically, the decryption algorithm Dec′ in the combined scheme
works as follows:

Dec′kE ,kM (c):

1. Compute m̃ := DeckE (c). If an error in the padding is de-
tected (i.e., m̃ =⊥), return “bad padding” and stop.

2. Otherwise, parse m̃ as m‖t. If VrfykM (m, t) = 1 return m;
else, output “authentication failure.”

Assuming the attacker can distinguish between the two error messages, the
attacker can apply the chosen-ciphertext attack described in Section 5.1.1 to
recover the entire original plaintext from a given ciphertext. (This is due to
the fact that the padding-oracle attack shown in Section 5.1.1 relies only on
the ability to learn whether or not there was a padding error, something that
is revealed by Dec′.) This type of attack has been carried out successfully

CCA-Security and Authenticated Encryption 157

in the real world in various settings, e.g., in configurations of TLS that used
authenticate-then-encrypt.

One way to fix the above would be to ensure that only a single error mes-
sage is returned, regardless of the source of decryption failure. This is an
unsatisfying solution for several reasons: (1) there may be legitimate reasons
(e.g., usability, debugging) to have multiple error messages; (2) forcing the
error messages to be the same means that the combination is no longer truly
generic, i.e., it requires the implementer of the authenticate-then-encrypt ap-
proach to be aware of what error messages are returned by the underlying
CPA-secure encryption scheme; (3) most of all, it is extraordinarily hard to
ensure that the different errors cannot be distinguished since, e.g., even a
difference in the time to return each of these errors may allow an adversary
to distinguish between them (cf. our earlier discussion of timing attacks at
the end of Section 4.2). Some versions of TLS tried using only a single error
message with the authenticate-then-encrypt approach, but a padding-oracle
attack was still successfully carried out using small differences in timing.

Finally, we note that there are other counterexamples (that do not rely
on distinguishing between different errors) showing that authenticate-then-
encrypt does not necessarily provide authenticated encryption.

CONSTRUCTION 5.6

Let ΠE = (Enc,Dec) be a private-key encryption scheme and let ΠM =
(Mac,Vrfy) be a message authentication code, where in each case key
generation is done by simply choosing a uniform n-bit key. Define a
private-key encryption scheme (Gen′,Enc′,Dec′) as follows:

� Gen′: on input 1n, choose independent, uniform kE , kM ∈ {0, 1}n
and output the key (kE , kM).

� Enc′: on input a key (kE , kM) and a plaintext message m, compute
c← EnckE (m) and t← MackM (c). Output the ciphertext 〈c, t〉.

� Dec′: on input a key (kE , kM) and a ciphertext 〈c, t〉, first check

if VrfykM (c, t)
?
= 1. If yes, output DeckE (c); if no, output ⊥.

The encrypt-then-authenticate approach.

Encrypt-then-authenticate. In this approach, the message is first en-
crypted and then a MAC is computed over the result. That is, the ciphertext
is now the pair 〈c, t〉 where

c← EnckE (m) and t← MackM (c).

Decryption of 〈c, t〉 outputs an error if VrfykM (c, t) 6= 1, and otherwise outputs
DeckE (c). See Construction 5.6 for a formal description.

158 Introduction to Modern Cryptography

This approach is sound. As intuition for why, say a ciphertext 〈c, t〉 is
valid if t is a valid tag on c. Strong security of the MAC ensures that an
adversary will be unable to generate any valid ciphertext that it did not receive
from its encryption oracle. This immediately implies that Construction 5.6
is unforgeable. Moreover, it effectively renders the decryption oracle useless:
for every ciphertext 〈c, t〉 the adversary submits to its decryption oracle, the
adversary either already knows the decryption (if it received 〈c, t〉 from its
encryption oracle) or will receive an error. (Observe also that the tag is
verified before decryption takes place; thus, errors during decryption cannot
leak anything about the plaintext, in contrast to the padding-oracle attack
we saw against the authenticate-then-encrypt approach.) Therefore, CCA-
security of the combined scheme reduces to CPA-security of ΠE .

THEOREM 5.7 Let ΠE be a CPA-secure private-key encryption scheme,
and let ΠM be a strongly secure message authentication code. Then Construc-
tion 5.6 is an authenticated encryption scheme.

PROOF We show that the scheme Π resulting from Construction 5.6 is
unforgeable, and that it is CCA-secure. (See Definition 5.3.) Toward this end,
we first show that strong security of ΠM implies that (except with negligible
probability) any “new” ciphertexts an adversary submits to its decryption
oracle will result in an error. This immediately implies unforgeability. (In
fact, it is stronger than unforgeability.) It also renders the decryption oracle
useless, and allows us to reduce CCA-security of Π to CPA-security of ΠE .

In more detail, let A be a ppt adversary attacking Construction 5.6 in a
chosen-ciphertext attack (cf. Definition 5.1). Say a ciphertext that A submits
to its decryption oracle is new if A did not receive it from its encryption oracle
or as the challenge ciphertext. A ciphertext 〈c, t〉 is valid (with respect to
the secret key (kE , kM) chosen as part of the experiment) if VrfykM (c, t) = 1.
Let ValidQuery be the event that A submits a new, valid ciphertext to its
decryption oracle. We prove:

CLAIM 5.8 Pr[ValidQuery] is negligible.

PROOF Intuitively, this is because if ValidQuery occurs then the adversary
has forged a new, valid pair (c, t) in the Mac-sforge experiment. Let q(·)
be a polynomial upper bound on the number of decryption-oracle queries
made by A, and consider the following adversary AM attacking the message
authentication code ΠM :

Adversary AM :
AM is given input 1n and has access to a MAC oracle MackM (·).

1. Choose uniform kE ∈ {0, 1}n and i ∈ {1, . . . , q(n)}.

CCA-Security and Authenticated Encryption 159

2. Run A on input 1n. When A makes an encryption-oracle
query for the message m, answer it as follows:

(i) Compute c← EnckE (m).

(ii) Query c to the MAC oracle and receive t in response.
Return 〈c, t〉 to A.

The challenge ciphertext is prepared in the exact same way
(with a uniform bit b ∈ {0, 1} chosen to select the message
mb that gets encrypted).

When A makes a decryption-oracle query for the ciphertext
〈c, t〉, answer it as follows: If this is the ith decryption-oracle
query, output (c, t) and halt. Otherwise:

(i) If 〈c, t〉 was a response to a previous encryption-oracle
query for a message m, return m.

(ii) Otherwise, return ⊥.

In essence, AM is “guessing” that the ith decryption-oracle query of A is the
first new, valid query A makes. In that case, AM indeed outputs a new, valid
message/tag pair (c, t).

Clearly AM runs in polynomial time. We now analyze the probability
that AM outputs a new, valid message/tag pair. The key point is that the
view of A when run as a subroutine by AM is distributed identically to the
view of A in experiment PrivKcca

A,Π(n) until event ValidQuery occurs. To see
this, note that responses to the encryption-oracle queries of A (as well as the
challenge ciphertext) are simulated perfectly by AM . As for the decryption-
oracle queries of A, until ValidQuery occurs these are all simulated properly.
In case (i) this is obvious. As for case (ii), if the ciphertext 〈c, t〉 submitted to
the decryption oracle is new, then as long as ValidQuery has not yet occurred
the correct answer to that query is indeed ⊥. (Recall also that A is disallowed
from submitting the challenge ciphertext to the decryption oracle.)

Because the view of A when run as a subroutine by AM is distributed
identically to the view of A in experiment PrivKcca

A,Π(n) until event ValidQuery
occurs, the probability of event ValidQuery in experiment Mac-sforgeAM ,ΠM

(n)
is the same as the probability of that event in experiment PrivKcca

A,Π(n).

If AM correctly guesses the first index i for which ValidQuery occurs, AM
outputs (c, t) for which VrfykM (c, t) = 1 (since 〈c, t〉 is valid) and for which
it was never given tag t in response to the query MackM (c) (since 〈c, t〉 is
new). In this case, then, AM succeeds in experiment Mac-sforgeAM ,ΠM

(n).
The probability that AM guesses i correctly is 1/q(n). Therefore

Pr[Mac-sforgeAM ,ΠM
(n) = 1] ≥ Pr[ValidQuery]/q(n).

Since ΠM is a strongly secure MAC and q is polynomial, we conclude that
Pr[ValidQuery] is negligible.

160 Introduction to Modern Cryptography

We use Claim 5.8 to prove security of Π. The easier step is to prove that Π
is unforgeable. This follows immediately from the claim, and so we just pro-
vide informal reasoning. Observe first that the adversary in the unforgeable
encryption experiment is a restricted version of the adversary in the chosen-
ciphertext experiment. (In the former, the adversary only has access to an
encryption oracle.) An attacker succeeds in the unforgeable encryption exper-
iment only if it outputs a ciphertext 〈c, t〉 that is valid and new. But Claim 5.8
shows precisely that the probability of doing so is negligible.

It is slightly more involved to prove that Π is CCA-secure. Let A again be
a probabilistic polynomial-time adversary attacking Π in a chosen-ciphertext
attack. We have

Pr[PrivKcca
A,Π(n) = 1]

≤ Pr[ValidQuery] + Pr[PrivKcca
A,Π(n) = 1 ∧ ValidQuery]. (5.2)

We have already shown that Pr[ValidQuery] is negligible. We show next that
there is a negligible function negl such that

Pr[PrivKcca
A,Π(n) = 1 ∧ ValidQuery] ≤ 1

2
+ negl(n).

To prove this, we rely on CPA-security of ΠE . Consider the following
adversary AE attacking ΠE in a chosen-plaintext attack:

Adversary AE:
AE is given input 1n and has access to EnckE (·).

1. Choose uniform kM ∈ {0, 1}n.

2. Run A on input 1n. When A makes an encryption-oracle
query for the message m, answer it as follows:

(i) Query m to EnckE (·) and receive c in response.

(ii) Compute t← MackM (c) and return 〈c, t〉 to A.

When A makes a decryption-oracle query for the ciphertext
〈c, t〉, answer it as follows: If 〈c, t〉 was a response to a pre-
vious encryption-oracle query for a message m, return m.
Otherwise, return ⊥.

3. When A outputs messages (m0,m1), output those same mes-
sages and receive a challenge ciphertext c in response. Com-
pute t ← MackM (c), and return 〈c, t〉 to A as the challenge
ciphertext. Continue answering A’s oracle queries as above.

4. Output the same bit b′ that is output by A.

Notice that AE does not need a decryption oracle because it simply as-
sumes that any decryption query by A that was not the result of a previous
encryption-oracle query is invalid.

CCA-Security and Authenticated Encryption 161

Clearly, AE runs in probabilistic polynomial time. Furthermore, the view
of A when run as a subroutine by AE is distributed identically to the view
of A in experiment PrivKcca

A,Π(n) as long as event ValidQuery never occurs.
Therefore, the probability that AE succeeds is at least the probability that A
succeeds and ValidQuery does not occur; i.e.,

Pr[PrivKcpa
AE ,ΠE

(n) = 1] ≥ Pr[PrivKcpa
AE ,ΠE

(n) = 1 ∧ ValidQuery]

= Pr[PrivKcca
A,Π(n) = 1 ∧ ValidQuery].

Since ΠE is CPA-secure, there exists a negligible function negl such that
Pr[PrivKcpa

AE ,ΠE
(n) = 1] ≤ 1

2 + negl(n). Together with Equation (5.2), this

proves that Π is CCA-secure.

The need for independent keys. We conclude this section by stressing a
basic principle of cryptography: different instances of cryptographic primitives
should always use independent keys. To illustrate this, we consider what can
happen to the encrypt-then-authenticate methodology if the same key k is
used for both encryption and authentication. Let F be a strong pseudorandom
permutation. It follows that F−1 is a strong pseudorandom permutation also.
Define Enck(m) = Fk(m‖r) for m ∈ {0, 1}n/2 and a uniform r ∈ {0, 1}n/2;
it can be shown that this encryption scheme is CPA-secure. (In fact, it is
even CCA-secure; see Exercise 5.9.) Define Mack(c) = F−1

k (c); this is just
Construction 4.5, so is strongly secure. However, using these schemes with
the same key k to encrypt-then-authenticate a message m yields:

Enck(m),Mack(Enck(m)) = Fk(m‖r), F−1
k (Fk(m‖r)) = Fk(m‖r),m‖r,

and so the message m is revealed in the clear! This does not in any way
contradict Theorem 5.7, since Construction 5.6 expressly requires that kM , kE
be chosen independently. We encourage the reader to determine where this
independence is used in the proof of Theorem 5.7.

Authenticated encryption with associated data. As described at the
end of Section 5.2.1, there are settings where a message m is encrypted along
with associated data d that requires integrity but not secrecy. It is easy to
modify the encrypt-then-authenticate approach to handle this: simply com-
pute c← EnckE (m) followed by t← MackM (d‖c).

5.3.2 Standardized Schemes

We close this chapter by briefly describing three AE schemes used in practice
that are each inspired by one of the approaches discussed earlier. As usual,
our aim here is not to provide an exact description of these schemes, but
rather just a high-level understanding of the constructions.

GCM (Galois/counter mode). GCM can be viewed as following the
encrypt-then-authenticate paradigm, with CTR mode (cf. Section 3.6.3) as

162 Introduction to Modern Cryptography

the underlying encryption scheme and GMAC (cf. Section 4.5.2) as the un-
derlying message authentication code. The main differences from the generic
combination described in the previous section are that (1) the keys used for
encryption and authentication are not independent and (2) the same IV is
used both for CTR-mode encryption and as the nonce for GMAC. Both these
changes can be proven secure for the particular way they are done by GCM.

One important property to be aware of when using GCM is that if the IV
ever repeats, then not only does secrecy fail for the two messages encrypted
using the same IV , but integrity of the scheme may be completely broken.
This is due to a property of GMAC discussed in Exercise 4.21. For this reason,
great care must be taken to ensure that IV s do not repeat when using GCM.

When GCM is instantiated with the AES block cipher (see Section 7.2.5)
it is extremely fast on most modern processors due to dedicated hardware
instructions for both AES and the field operations used in GMAC. The scheme
is also highly parallelizable.

CCM (Counter with CBC-MAC). CCM follows the authenticate-then-
encrypt approach, with CTR mode as the underlying encryption scheme and
CBC-MAC (cf. Section 4.4.1) as the underlying message authentication code.
Moreover, the same key k is used for both. Although—as discussed in the pre-
vious section—the authenticate-then-encrypt approach is not secure in gen-
eral, and problems can occur when the keys used for encryption and authen-
tication are not independent, CCM itself can be proven secure.

Because CCM relies only on a block cipher using a single key, it is easy
to implement. However, CCM is relatively slow (it requires two block-cipher
evaluations per plaintext block) and cannot be fully parallelized. In addition,
it does not work in an on-line fashion, since it requires the message length to
be known before encryption begins. (This is because the length is prepended
to the message before CBC-MAC is computed, as discussed in Section 4.4.1.)

ChaCha20–Poly1305. This scheme relies on the encrypt-then-authenticate
approach, where the underlying encryption is done using the stream cipher
ChaCha20 (cf. Section 7.1.5) in unsynchronized mode (cf. Section 3.6.2) and
the MAC used is Poly1305 (cf. Section 4.5.2) with ChaCha20 used here to
instantiate the pseudorandom function. This scheme is extremely fast in soft-
ware, and is becoming the method of choice on platforms where the dedicated
hardware instructions used by GCM are not available.

5.4 Secure Communication Sessions

We briefly describe the application of authenticated encryption to the set-
ting of two parties who wish to communicate “securely”—namely, with joint
secrecy and integrity—over the course of a communication session. (For the

CCA-Security and Authenticated Encryption 163

purposes of this section, a communication session is simply a period of time
during which the communicating parties maintain state.) In our treatment
here we are deliberately informal; a formal definition is quite involved, and this
topic arguably lies more in the area of network security than cryptography.

Let Π = (Enc,Dec) be an authenticated encryption scheme. Consider two
parties A and B who share a key k and wish to use this key to secure their
communication over the course of a session. The obvious thing to do here is to
use Π: Whenever, say, A wants to transmit a message m to B, she computes
c ← Enck(m) and sends c to B; in turn, B decrypts c to recover the result
(ignoring the result if decryption returns ⊥). Likewise, the same procedure
is followed when B wants to send a message to A. This simple approach,
however, is vulnerable to various potential attacks:

Re-ordering attack: An attacker can swap the order of messages. For ex-
ample, if A transmits c1 (an encryption of m1) and subsequently trans-
mits c2 (an encryption of m2), an attacker who has some control over
the network can deliver c2 before c1 and thus cause B to output the
messages in the wrong order.

Replay attack: An attacker can replay a (valid) ciphertext c sent previously
by one of the parties. This would cause one party to output a message
twice, even though the other party only sent it once.

Message-dropping attack: An attacker may drop some of the messages
sent between A and B. Although nothing can prevent the attacker from
doing this, we might at least hope that such behavior would be detected
by the parties.

Reflection attack: An attacker can take a ciphertext c sent from A to B
and send it back to A. This would cause A to output a message m, even
though B never sent such a message.

The above list of attacks is not exhaustive, and is just an example of some of
the challenges involved in achieving secure communication.

The above attacks can be addressed using counters to handle the first three
and a directionality bit to prevent the fourth.2 We describe these in tandem.
Each party maintains two counters ctrA,B and ctrB,A keeping track of the
number of messages sent from A to B (resp., B to A) during the session.
These counters are initialized to 0 and incremented each time a party sends
or receives a (valid) message. The parties also agree on a bit bA,B , and define
bB,A to be its complement. (One way to do this is to set bA,B = 0 iff the
identity of A is lexicographically smaller than the identity of B.)

2In practice, reflection attacks are often solved by simply having separate keys for each
direction (i.e., the parties use a key kA for messages sent from A to B, and an independent
key kB for messages sent from B to A).

164 Introduction to Modern Cryptography

When A wants to transmit a message m to B, she computes the ciphertext
c ← Enck(bA,B‖ctrA,B‖m) and sends c; she then increments ctrA,B . Upon
receiving c, party B decrypts; if the result is ⊥, he immediately rejects.
Otherwise, he parses the decrypted message as b‖ctr‖m. If b = bA,B and
ctr = ctrA,B , then B outputs m and increments ctrA,B ; otherwise, B rejects.
The above steps, mutatis mutandis, are applied when B sends a message to A.

References and Additional Reading

Chosen-ciphertext attacks (in the context of public-key encryption) were
first formally defined by Naor and Yung [147] and Rackoff and Simon [168],
and have received much subsequent attention as well [17, 68, 112]. The
padding-oracle attack originated in the work of Vaudenay [199].

The importance of authenticated encryption was first explicitly highlighted
by Katz and Yung [111] and Bellare and Namprempre [21]. Definition 5.4
is due to Shrimpton [184], who also proves Theorem 5.5. Bellare and Nam-
prempre [21] analyze the three generic approaches discussed here, though the
idea of using encrypt-then-authenticate for achieving CCA-security goes back
at least to the work of Dolev et al. [68]. Krawczyk [122] examines other
methods for achieving secrecy and authentication, and also analyzes specific
instantiations of the authenticate-then-encrypt approach.

GCM is due to McGrew and Viega [136]. CCM was proposed by Whiting,
Housley, and Ferguson [204] and proven secure by Jonsson [104]. ChaCha20–
Poly1305 is specified in RFC 8439 [154].

Exercises

5.1 Show that the CBC, OFB, and CTR modes of operation do not give
CCA-secure encryption schemes.

5.2 Write pseudocode for obtaining the entire plaintext for a 3-block ci-
phertext via a padding-oracle attack on CBC-mode encryption using
PKCS #7 padding, as sketched in the text.

5.3 Describe a padding-oracle attack on CTR-mode encryption, assuming
PKCS #7 padding is used to pad messages to a multiple of the block
length before encrypting.

5.4 Show that Construction 5.6 is not necessarily CCA-secure if it is instan-
tiated with a secure MAC that is not strongly secure.

CCA-Security and Authenticated Encryption 165

5.5 Prove that Construction 5.6 is unforgeable when instantiated with any
encryption scheme (even if not CPA-secure) and any secure MAC (even
if not strongly secure).

5.6 Consider a strengthened version of unforgeability whereA is additionally
given access to a decryption oracle.

(a) Write a formal definition for this version of unforgeability.

(b) Prove that Construction 5.6 satisfies this stronger definition if ΠM

is a strongly secure MAC.

(c) Show by counterexample that Construction 5.6 need not satisfy
this stronger definition if ΠM is a secure MAC that is not strongly
secure. (Compare to the previous exercise.)

5.7 Prove that the authenticate-then-encrypt approach, instantiated with
any CPA-secure encryption scheme and any secure MAC, yields a CPA-
secure encryption scheme that is unforgeable.

5.8 Let F be a strong pseudorandom permutation, and define a fixed-length
encryption scheme (Enc,Dec) as follows: On input m ∈ {0, 1}n/2 and
key k ∈ {0, 1}n, algorithm Enc chooses a uniform string r ∈ {0, 1}n/2 of
length n/2 and computes c := Fk(r‖m).

Show how to decrypt, and prove that this scheme is CCA-secure for
messages of length n/2.

5.9 Show that the scheme in the previous exercise is not an authenticated
encryption scheme.

5.10 Show a CPA-secure private-key encryption scheme that is unforgeable
but is not CCA-secure.

http://taylorandfrancis.com

Chapter 6

Hash Functions and Applications

In this chapter we look beyond the problem of secure communication that
has occupied us until now, and consider a cryptographic primitive with many
applications: cryptographic hash functions. At the most basic level, a hash
function H provides a way to deterministically map a long input string to a
shorter output string sometimes called a digest. The primary requirement is
that it should be infeasible to find a collision in H: namely, two inputs that
produce the same digest. As we will see, collision-resistant hash functions
have numerous uses, including another approach—standardized as HMAC—
for domain extension for message authentication codes.

Hash functions can be viewed as lying between the worlds of private- and
public-key cryptography. On the one hand, as we will see in Chapter 7,
they are (in practice) constructed using symmetric-key techniques. From a
theoretical point of view, however, the existence of collision-resistant hash
functions appears to be a qualitatively stronger assumption than the existence
of other symmetric-key primitives, while at the same time being weaker than
what is needed for public-key encryption. Hash functions have important
applications in both the private- and public-key settings.

Hash functions have become ubiquitous in cryptography, and they are often
used in scenarios that require properties much stronger than collision resis-
tance. Indeed, it has become common to model cryptographic hash functions
as being “completely unpredictable” (a.k.a., random oracles), and we discuss
this model—and the controversy that surrounds it—in Section 6.5. In Sec-
tion 6.6 we touch on a few applications of random oracles; we will encounter
the random-oracle model again in the context of public-key cryptography.

6.1 Definitions

Hash functions are simply functions that take inputs of some length and
compress them into short, fixed-length outputs. The classic use of (non-
cryptographic) hash functions is in data structures, where they can be used to
build hash tables that enable O(1) lookup time when storing a set of elements.
Specifically, if the range of the hash function H is of size N , then element x

167

168 Introduction to Modern Cryptography

is stored in row H(x) of a table of size N . To retrieve x, it suffices to com-
pute H(x) and probe that row of the table for the elements stored there. A
“good” hash function for this purpose is one that yields few collisions, where
a collision is a pair of distinct elements x and x′ for which H(x) = H(x′);
in this case we also say that x and x′ collide. (When a collision occurs, two
elements end up being stored in the same cell, increasing the lookup time.)

Collision-resistant hash functions are similar in spirit; again, the goal is
to avoid collisions. However, there are fundamental differences. For one,
the desire to minimize collisions in the setting of data structures becomes a
requirement to avoid collisions in the setting of cryptography. Furthermore, in
the context of data structures we assume that the set of elements being hashed
is chosen independently of H and without any intention to cause collisions. In
the context of cryptography, in contrast, we are faced with an adversary who
may select elements with the explicit goal of causing collisions. This means
that collision-resistant hash functions are much harder to design.

6.1.1 Collision Resistance

Informally, a function H is collision resistant if it is infeasible for any prob-
abilistic polynomial-time algorithm to find a collision in H. We will only be
interested in hash functions whose domain is larger than their range. In this
case collisions must exist, but such collisions should be hard to find.

Formally, we consider keyed hash functions. That is, H is a two-input
function that takes as input a key s and a string x, and outputs a string

Hs(x)
def
= H(s, x). The requirement is that it must be hard to find a collision

in Hs for a randomly generated key s. We highlight one major difference
between keys in this context and the keys we have considered until now: In the
present context, the key s is (generally) not kept secret, and collision resistance
is required even when the adversary is given s. In order to emphasize that the
key may not be secret, we superscript the key and write Hs rather than Hs.

DEFINITION 6.1 A hash function (with output length `(n)) is a pair of
probabilistic polynomial-time algorithms (Gen, H) satisfying the following:

� Gen is a probabilistic algorithm that takes as input a security parame-
ter 1n and outputs a key s. We assume that n is implicit in s.

� H is a deterministic algorithm that takes as input a key s and a string
x ∈ {0, 1}∗ and outputs a string Hs(x) ∈ {0, 1}`(n) (where n is the value
of the security parameter implicit in s).

If Hs is defined only for inputs x of length `′(n) > `(n), then we say that
(Gen, H) is a fixed-length hash function for inputs of length `′(n). In this case,
we also call H a compression function.

Hash Functions and Applications 169

In the fixed-length case we require that `′ be greater than `. This ensures
that Hs compresses its input. In the general case the function takes as input
strings of arbitrary length; thus, it also compresses (albeit only inputs of
length greater than `(n)). Note that without compression, collision resistance
is trivial (since one can just take the identity function Hs(x) = x).

We now proceed to define security. As usual, we first define an experiment
for a hash functionH = (Gen, H), an adversaryA, and a security parameter n:

The collision-finding experiment Hash-collA,H(n):

1. A key s is generated by running Gen(1n).

2. The adversary A is given s, and outputs x, x′. (If H is a
fixed-length hash function for inputs of length `′(n), then we
require x, x′ ∈ {0, 1}`′(n).)

3. The output of the experiment is defined to be 1 if and only if
x 6= x′ and Hs(x) = Hs(x′). In such a case we say that A
has found a collision.

The definition of collision resistance states that no efficient adversary can
find a collision in the above experiment except with negligible probability.

DEFINITION 6.2 A hash function H = (Gen, H) is collision resistant if
for all probabilistic polynomial-time adversaries A there is a negligible function
negl such that

Pr [Hash-collA,H(n) = 1] ≤ negl(n).

For simplicity, we sometimes refer to H or Hs as a “collision-resistant hash
function,” even though technically we should only say that H = (Gen, H) is.
This should not cause any confusion.

Cryptographic hash functions are designed with the explicit goal of being
collision resistant (among other things). We will discuss some design principles
for hash functions, along with some commonly used examples, in Chapter 7.
In Section 9.4.2 we will see how it is possible to construct hash functions with
proven collision resistance based on an assumption about the hardness of a
certain number-theoretic problem.

Unkeyed hash functions. Cryptographic hash functions used in practice
are generally unkeyed and have a fixed output length (by analogy with block
ciphers), meaning that the hash function is just a fixed, deterministic function
H : {0, 1}∗ → {0, 1}`. This is problematic from a theoretical standpoint since
for any such function there is always a constant-time algorithm that outputs a
collision in H: the algorithm simply outputs a colliding pair (x, x′) hardcoded
into the algorithm itself. Using keyed hash functions solves this technical
issue since it is impossible to hardcode a collision for every possible key using
a reasonable amount of memory (and in an asymptotic setting, it would be
impossible to hardcode a collision for every value of the security parameter).

170 Introduction to Modern Cryptography

Notwithstanding the above, the (unkeyed) cryptographic hash functions
used in the real world are collision resistant for all practical purposes since col-
liding pairs are unknown (and computationally difficult to find) even though
they must exist. Proofs of security for a scheme based on a collision-resistant
hash function are still meaningful even when an unkeyed hash function H is
used, as long as the proof shows that any efficient adversary “breaking” the
primitive can be used to efficiently find a collision in H. (All the proofs in this
book satisfy that condition.) In this case, the interpretation of the security
proof is that if an adversary can break the scheme, then it can be used to find
an explicit collision, something that is believed to be difficult.

In this chapter and throughout the rest of the book, we consider keyed hash
functions when formally proving results that rely on collision resistance, but
generally assume unkeyed hash functions otherwise.

6.1.2 Weaker Notions of Security

For some applications, security requirements weaker than collision resis-
tance suffice. Security notions that are sometimes considered include:

� Second-preimage resistance: Informally, a hash function is said to be
second-preimage resistant if given s and a uniform x it is infeasible for
a ppt adversary to find x′ 6= x such that Hs(x′) = Hs(x).

� Preimage resistance: Informally, a hash function is preimage resistant if
given s and y = Hs(x) for a uniform x, it is infeasible for a ppt adversary
to find a value x′ (whether equal to x or not) with Hs(x′) = y. (Looking
ahead to Chapter 8, this basically means that Hs is one-way.)

It is immediate that any hash function that is collision resistant is also second-
preimage resistant. It is also true that if a hash function is second-preimage
resistant then it is preimage resistant. We do not formally define the above
notions or prove these implications, since they are not used in the rest of the
book. You are asked to formalize the above in Exercise 6.1.

6.2 The Merkle–Damg̊ard Transform

Many applications require “full-fledged” collision-resistant hash functions
that can handle very long inputs, or even inputs of arbitrary length. But
it is much easier to construct fixed-length hash functions (i.e., compression
functions) that only accept “short” inputs—something we will return to in
Section 7.3. Fortunately, the Merkle–Damg̊ard transform allows us to convert
the latter to the former. This approach for domain extension of hash functions
has been used frequently in practice, including for the hash function MD5 and

Hash Functions and Applications 171

the SHA hash family (cf. Section 7.3). The Merkle–Damg̊ard transform is also
interesting from a theoretical point of view since it implies that compressing
by a single bit is as easy (or as hard) as compressing by an arbitrary amount.

For concreteness, assume the compression function (Gen, h) takes inputs of
length n + n′ ≥ 2n, and generates outputs of length n. (The construction
can be generalized for other input/output lengths, as long as h compresses.)
Applying the Merkle–Damg̊ard transform, defined in Construction 6.3 and
depicted in Figure 6.1, yields a hash function (Gen, H) that maps inputs of
arbitrary length to outputs of length n.

CONSTRUCTION 6.3

Let (Gen, h) be a compression function for inputs of length n+ n′ ≥ 2n
with output length n. Fix ` ≤ n′ and IV ∈ {0, 1}n. Construct hash
function (Gen, H) as follows:

� Gen: remains unchanged.

� H: on input a key s and a string x ∈ {0, 1}∗ of length L < 2`, do:

1. Append a 1 to x, followed by enough zeros so that the length
of the resulting string is ` less than a multiple of n′. Then
append L, encoded as an `-bit string. Parse the resulting
string as the sequence of n′-bit blocks x1, . . . , xB .

2. Set z0 := IV .

3. For i = 1, . . . , B, compute zi := hs(zi−1‖xi).
4. Output zB .

The Merkle–Damg̊ard transform.

THEOREM 6.4 If (Gen, h) is collision resistant, then so is (Gen, H).

PROOF We show that for any s, a collision in Hs yields a collision in hs.
Let x and x′ be two different strings of length L and L′, respectively, such
that Hs(x) = Hs(x′). Let x1, . . . , xB be the B blocks of the padded x, and
let x′1, . . . , x

′
B′ be the B′ blocks of the padded x′. Let z0, z1, . . . , zB (resp.,

z′0, z
′
1, . . . , z

′
B′) be the intermediate results during computation ofHs(x) (resp.,

Hs(x′)). There are two cases to consider:

Case 1: L 6= L′. In this case, the last step of the computation of Hs(x) is
zB := hs(zB−1‖xB), and the last step of the computation of Hs(x′) is
z′B′ := hs(z′B′−1‖x′B′). Since Hs(x) = Hs(x′) we have hs(zB−1‖xB) =
hs(z′B′−1‖x′B′). However, L 6= L′ and so xB 6= x′B′ . (Recall that the
last ` bits of xB encode L, and the last ` bits of x′B′ encode L′.) Thus,
zB−1‖xB and z′B′−1‖x′B′ are a collision with respect to hs.

172 Introduction to Modern Cryptography

-

FIGURE 6.1: The Merkle–Damg̊ard transform.

Case 2: L = L′. This means that B = B′. Let Ii
def
= zi−1‖xi denote the

ith input to hs during computation of Hs(x), and define IB+1
def
= zB .

Define I ′1, . . . , I
′
B+1 analogously with respect to x′. Let N be the largest

index for which IN 6= I ′N . Since |x| = |x′| but x 6= x′, there is an i with
xi 6= x′i and so such an N certainly exists. Because

IB+1 = zB = Hs(x) = Hs(x′) = z′B = I ′B+1,

we have N ≤ B. By maximality of N , we have IN+1 = I ′N+1 and in
particular zN = z′N . But this means that IN , I

′
N collide under hs.

We leave it as an exercise to turn the above into a proof by reduction.

6.3 Message Authentication Using Hash Functions

We have already seen several constructions of message authentication codes
for arbitrary-length messages. In this section we will see another approach
that relies on collision-resistant hash functions. We then discuss a standard-
ized and widely used scheme called HMAC that can be viewed as a specific
instantiation of this approach.

6.3.1 Hash-and-MAC

Collision-resistant hash functions can naturally be used for domain exten-
sion of message authentication codes. Say we have a fixed-length MAC for
`(n)-bit messages, and a collision-resistant hash function with `(n)-bit output
length. Then we can authenticate an arbitrary-length message m by using
the MAC to authenticate the hash of m. (See Construction 6.5.) Intuitively,
this is secure because the MAC ensures that the attacker cannot authenticate
any new hash value, while collision resistance ensures that the attacker will be
unable to find any new message that hashes to a previously used hash value.

Hash Functions and Applications 173

CONSTRUCTION 6.5

Let Π = (Mac,Vrfy) be a MAC for messages of length `(n), and let
H = (GenH , H) be a hash function with output length `(n). Construct
a MAC Π′ = (Gen′,Mac′,Vrfy′) for arbitrary-length messages as follows:

� Gen′: on input 1n, choose uniform k ∈ {0, 1}n and run GenH(1n)
to obtain s; output the key (k, s).

� Mac′: on input a key (k, s) and a message m ∈ {0, 1}∗, output
t← Mack(Hs(m)).

� Vrfy′: on input a key (k, s), a message m ∈ {0, 1}∗, and a tag t,

output 1 if and only if Vrfyk(Hs(m), t)
?
= 1.

The hash-and-MAC paradigm.

A bit more formally, say a sender uses Construction 6.5 to authenticate
some set of messages Q, and an attacker A is then able to forge a valid tag
on a new message m∗ 6∈ Q. There are two possibilities:

Case 1: there is a message m ∈ Q such that Hs(m∗) = Hs(m). Then A has
found a collision in Hs, contradicting collision resistance of (GenH , H).

Case 2: for every message m ∈ Q it holds that Hs(m∗) 6= Hs(m). Let

Hs(Q)
def
= {Hs(m) | m ∈ Q}. Then Hs(m∗) /∈ Hs(Q). In this case, A

has forged a valid tag on the “new message” h∗ = Hs(m∗) with respect
to the (fixed-length) message authentication code Π. This contradicts
the assumption that Π is a secure MAC.

We now turn the above into a formal proof.

THEOREM 6.6 If Π is a secure MAC for messages of length `(n) and H
is collision resistant, then Construction 6.5 is a secure MAC (for arbitrary-
length messages).

PROOF Let Π′ denote Construction 6.5, and let A′ be a ppt adversary at-
tacking Π′. In an execution of experiment Mac-forgeA′,Π′(n), let (k, s) denote
the key (of Π′), let Q denote the set of messages whose tags were requested
by A′, and let (m∗, t) be the final output of A′. We assume without loss
of generality that m∗ 6∈ Q. Define coll to be the event that, in experiment
Mac-forgeA′,Π′(n), there is an m ∈ Q for which Hs(m∗) = Hs(m). We have

Pr[Mac-forgeA′,Π′(n) = 1]

= Pr[Mac-forgeA′,Π′(n) = 1 ∧ coll] + Pr[Mac-forgeA′,Π′(n) = 1 ∧ coll]

≤ Pr[coll] + Pr[Mac-forgeA′,Π′(n) = 1 ∧ coll]. (6.1)

174 Introduction to Modern Cryptography

We show that both terms in Equation (6.1) are negligible, thus completing
the proof. Intuitively, the first term is negligible by collision resistance of H,
and the second term is negligible by security of Π.

Consider the following algorithm C for finding a collision in H:

Algorithm C:
The algorithm is given input s (with n implicit).

� Choose uniform k ∈ {0, 1}n.

� Run A′(1n). When A′ requests a tag on the ith message
mi ∈ {0, 1}∗, compute ti ← Mack(Hs(mi)) and give ti to A′.

� When A′ outputs (m∗, t), then if there exists an i for which
Hs(m∗) = Hs(mi), output (m∗,mi).

It is clear that C runs in polynomial time. Let us analyze its behavior. When
the input to C is generated by running GenH(1n) to obtain s, the view of A′
when run as a subroutine by C is distributed identically to the view of A′ in
experiment Mac-forgeA′,Π′(n). Thus, the probability that coll occurs is the
same in both cases. Since C outputs a collision when coll occurs, we have

Pr[Hash-collC,H(n) = 1] = Pr[coll].

Collision resistance of H thus implies that Pr[coll] is negligible.
We now proceed to prove that the second term in Equation (6.1) is negli-

gible. Consider the following adversary A attacking Π in Mac-forgeA,Π(n):

Adversary A:
The adversary is given 1n and access to an oracle Mack(·).

� Compute GenH(1n) to obtain s.

� Run A′(1n). When A′ requests a tag on the ith message
mi ∈ {0, 1}∗, then: (1) compute hi := Hs(mi); (2) obtain a
tag ti on hi from the MAC oracle; and (3) give ti to A′.

� When A′ outputs (m∗, t), set h∗ := Hs(m∗) and then output
(h∗, t).

A runs in polynomial time. If A′ outputs (m∗, t) with Vrfyk(Hs(m∗), t) = 1,
and coll did not occur, then A outputs a valid forgery. (In that case t is a valid
tag on h∗ = Hs(m∗) in scheme Π with respect to k. The fact that coll did
not occur means that h∗ was never asked by A to its own MAC oracle and so
this is indeed a forgery.) Moreover, the view of A′ when run as a subroutine
by A in experiment Mac-forgeA,Π(n) is distributed identically to the view of
A′ in experiment Mac-forgeA′,Π′(n). We conclude that

Pr[Mac-forgeA,Π(n) = 1] = Pr[Mac-forgeA′,Π′(n) = 1 ∧ coll],

and security of Π implies that the former probability is negligible. This con-
cludes the proof of the theorem.

Hash Functions and Applications 175

6.3.2 HMAC

In principle, the hash-and-MAC approach from the previous section could
be instantiated by combining an arbitrary collision-resistant hash function
with the fixed-length MAC of Construction 4.5. This way of realizing the
hash-and-MAC approach has at least two drawbacks in practice. First, it
requires implementing two cryptographic primitives: a hash function and a
block cipher. (Recall that Construction 4.5 is based on a block cipher, and
supports messages of length equal to the block length of the cipher.) This can
be a problem, e.g., in constrained devices, where it is desirable to keep the size
of the code implementing a cryptographic scheme as small as possible. A more
fundamental difficulty is that there is often a mismatch between the output
length of hash functions and the block length of block ciphers. (This is in part
due to a difference between the parameters needed to achieve security for a
block cipher vs. a hash function, as will be explored in the next section.) For
example, the block cipher AES has a 128-bit block length, whereas modern
hash functions have output lengths of at least 256 bits—and a 128-bit output
length would be far too short to ensure meaningful collision resistance.

CONSTRUCTION 6.7

Let (GenH , H) be a hash function constructed by applying the Merkle–
Damg̊ard transform to a compression function (GenH , h) that takes in-
puts of length n+ n′ > 2n+ logn+ 2 and generates output of length n.
Fix distinct constants opad, ipad ∈ {0, 1}n

′
. Define a MAC as follows:

� Gen: on input 1n, run GenH(1n) to obtain a key s. Also choose

uniform k ∈ {0, 1}n
′
. Output the key (s, k).

� Mac: on input a key (s, k) and a message m ∈ {0, 1}∗, output

t := Hs
(

(k ⊕ opad) ‖Hs((k ⊕ ipad) ‖m
))
.

� Vrfy: on input a key (s, k), a message m ∈ {0, 1}∗, and a tag t,

output 1 if and only if t
?
= Hs

(
(k ⊕ opad) ‖Hs

(
(k ⊕ ipad) ‖m

))
.

HMAC.

The above concerns motivated the design of HMAC, a message authentica-
tion code for arbitrary-length messages that can be based on any hash func-
tion (GenH , H) constructed using the Merkle–Damg̊ard transform applied to a
compression function (GenH , h). See Construction 6.7 for a high-level overview
that abstracts out the underlying compression function, and Figure 6.2 for a
graphical depiction that makes the compression function explicit.

Referring to Figure 6.2, we see that computation of HMAC on a message
m = m1,m2, . . . using key k can be separated into an “inner” hash evaluation

176 Introduction to Modern Cryptography

k m1

. . .

t

IV

k

IV

opad

hs hs hs

hs hs

ipad

kin

kout

. . .

append
padding

FIGURE 6.2: HMAC, pictorially.

and an “outer” hash evaluation. The inner hash evaluation involves comput-
ing m̂ := Hs((k ⊕ ipad)‖m), where ipad is some fixed constant. As per the
definition of the Merkle–Damg̊ard transform, the input to Hs—which, in this
case, is the string (k ⊕ ipad)‖m—is padded as part of the hash computation;
this padding is left implicit in Figure 6.2. The outer hash evaluation involves
computation of the tag t := Hs((k ⊕ opad)‖m̂), where opad is another fixed
constant; note that k, ipad, and opad are all exactly n′ bits long. Once again,
padding is applied to the (n′+n)-bit input string (k⊕opad)‖m̂ as part of the
hash computation; parameters are set such that the padded string is exactly

two blocks long. That is, if we let kout
def
= hs(IV ‖(k⊕ opad)) as in the figure,

then t = hs(kout ‖ m̂∗), where m̂∗ is the second block after padding.

Given this perspective, we see that HMAC can be viewed as an instan-
tiation of the hash-and-MAC paradigm from the previous section, where
the inner computation corresponds to hashing the message m to an n′-bit
string m̂∗ (including the padding), and the outer computation corresponds
to computing a fixed-length message authentication code on m̂∗. Formally,

let Π̃s = (G̃ens, M̃acs, Ṽrfys) be the message authentication code in which

M̃acskout
(m̂∗) = hs(kout‖m̂∗) (We view s here as a fixed, public value.) In-

tuitively, then, if (GenH , h) is collision resistant and Π̃s is secure, HMAC is
secure. As a technical matter, though, since the key kout used by the MAC
Π̃s is derived from an underlying key k that is also used in the inner hash
evaluation, we need one additional assumption regarding the “computational

independence” of kin
def
= hs(IV ‖ (k ⊕ ipad)) and kout. Specifically, define

Gs(k)
def
= hs

(
IV ‖ (k ⊕ ipad)

)
‖ hs

(
IV ‖ (k ⊕ opad)

)
= kin ‖ kout.

Then it is possible to prove:

Hash Functions and Applications 177

THEOREM 6.8 Assume Gs is a pseudorandom generator, Π̃s is a se-
cure fixed-length MAC for messages of length n′, and (GenH , h) is collision
resistant. Then HMAC is a secure MAC (for arbitrary-length messages).

(We require the first two assumptions in the theorem to hold for all s. Even
if Gs is not expanding, it is still meaningful to speak of its output as being
pseudorandom.) Because of the way the compression function h is typically
designed (see Section 7.3.1), the first two assumptions are reasonable.

The roles of ipad and opad. One might wonder why it is necessary to in-
corporate kin (or k itself) in the “inner” computation at all. In particular, for
the hash-and-MAC approach all that is required is for the inner computation
to be collision resistant, which does not require any secret key. The reason
for including a secret key as part of the inner computation is that this allows
security of HMAC to be based on the assumption that (GenH , H) is weakly
collision resistant, where (informally) this refers to an experiment in which
an attacker needs to find collisions in a secretly keyed hash function. This is
a weaker condition than collision resistance, and hence is potentially easier
to satisfy. The defensive design strategy of HMAC paid off when it was dis-
covered that the hash function MD5 (see Section 7.3.2) used in HMAC–MD5
was not collision resistant. The attacks on MD5 did not violate weak colli-
sion resistance, and so HMAC–MD5 was not broken even though MD5 was.
(Despite this, HMAC–MD5 should no longer be used now that weaknesses
in MD5 are known.) This gave developers time to replace MD5 in HMAC
implementations, without immediate fear of attack.

Ideally, independent keys kin, kout should have been used in the inner and
outer computations. To reduce the key length of HMAC, a single key k is
used to derive kin and kout using ipad and opad. (Moreover, in practice it
is typical for the length of k to be much shorter than n′—in which case k is
simply padded with 0s before being XORed with ipad and opad.) If we assume
that Gs (as defined above) is a pseudorandom generator for any s, then kin
and kout can be treated as independent, uniform keys when k is uniform.

6.4 Generic Attacks on Hash Functions

In the context of the symmetric-key primitives we have studied so far (block
ciphers, private-key encryption schemes, etc.), we noted that any scheme using
an n-bit secret key is vulnerable to a brute-force attack in which an attacker
enumerates all 2n possible keys until it finds the right one. (Of course, this
does not apply to information-theoretic schemes.) Put differently, if we want
to achieve security against attackers running in time 2n then we need to use
secret keys that are at least n bits long.

178 Introduction to Modern Cryptography

What can we say about the security of hash functions against brute-force
attacks? We show here that a birthday attack allows an attacker to find a
collision in any hash function having an `-bit output length in time 2`/2.
Thus, if we want to ensure collision resistance against attackers running in
time 2n we need to use hash functions whose output is at least 2n bits long—
twice the length of secret keys providing comparable security guarantees.

While on the topic of generic attacks (i.e., attacks that apply to arbitrary
hash functions), we also consider attacks on preimage resistance, where the
attacker’s goal is to find an input x that hashes to a given value y. Here the
question is complicated by the attacker’s ability to use preprocessing and a
large amount of storage to speed up the attack. This has important ramifi-
cations in practice when hashing users’ passwords, something we touch on in
Section 6.6.3.

6.4.1 Birthday Attacks for Finding Collisions

Let H : {0, 1}∗ → {0, 1}` be a hash function. For any such H, there is
always a trivial collision-finding attack running in time O(2`): simply evaluate
H on q = 2`+1 distinct inputs; by the pigeonhole principle, two of the outputs
must be equal. Is this the best possible attack?

Let us generalize the above algorithm by taking q as a parameter. Say we
choose q uniform (distinct) inputs x1, . . . , xq, compute yi := H(xi) for all i,
and check whether any of the {yi} are equal. As noted, if q > 2` then there
is certainly a collision. When q ≤ 2` we can no longer guarantee a collision,
but there is clearly some nonzero probability that a collision occurs. It is
somewhat difficult to analyze this probability when H is arbitrary, and so we
instead consider the idealized case where H is treated as a random function.
(It can be shown that this is the worst case, and collisions occur with higher
probability if H deviates from random.) That is, for each i we assume that the
value yi = H(xi) is uniformly distributed in {0, 1}` and independent of all the
other values {yj}j 6=i (recall all the {xi} are distinct). We have thus reduced
our problem to the following: if we generate uniform y1, . . . , yq ∈ {0, 1}`, what
is the probability that there exist distinct i, j with yi = yj?

This question has been extensively studied, and is related to the so-called
birthday problem discussed in detail in Appendix A.4; for this reason the
collision-finding algorithm described above is one of a class of algorithms called
birthday attacks. The birthday problem is this: if q people are in a room, what
is the probability that some two of them share a birthday? (Assume birthdays
are uniformly and independently distributed among the 365 days of a non-leap
year.) This is analogous to our problem: if yi is the birthday of person i, then
we have uniform and independent y1, . . . , yq ∈ {1, . . . , 365}, and matching
birthdays correspond to distinct i, j with yi = yj (i.e., matching birthdays
correspond to collisions).

In Appendix A.4 we show that when y1, . . . , yq are uniform in {1, . . . , N},
then if q = Θ(N1/2) the probability of a collision is roughly 1/2. (In the

Hash Functions and Applications 179

case of birthdays, once there are only 23 people the probability that some
two of them have the same birthday is roughly 51%!) In our setting, this
means that when the hash function H has output length ` (and so has range
of size N = 2`), evaluating H on q = Θ(2`/2) inputs yields a collision with
probability roughly 1/2. From a concrete-security perspective, this implies
that for a hash function H to be collision resistant against attackers running in
time 2n it is required that H have output at least 2n bits long. Taking specific
parameters: if we want finding collisions to be as difficult as an exhaustive
search over 128-bit keys, then we need the output length of the hash function
to be at least 256 bits. (We stress that having output this long is only a
necessary condition, not a sufficient one.)

Finding meaningful collisions. The birthday attack just described gives a
collision that is not necessarily very useful, since the colliding inputs are ran-
dom. But the same idea can be used to find “meaningful” collisions as well.
Assume Alice wishes to find two messages x and x′ such that H(x) = H(x′),
and furthermore x should be a letter from her employer explaining why she
was fired from work, while x′ should be a flattering letter of recommenda-
tion. (This might allow Alice to forge a tag on a letter of recommendation
if the hash-and-MAC approach is being used by her employer to authenti-
cate messages.) Note that the birthday attack only requires the hash inputs
x1, . . . , xq to be distinct; they do not need to be random. Alice can carry out
a birthday attack by generating q = Θ(2`/2) messages of the first type and q
messages of the second type, and then looking for collisions between messages
of the two types. A small change to the analysis from Appendix A.4 shows
that this gives a collision between messages of different types with probability
roughly 1/2. A little thought shows that it is easy to write the same message
in many different ways. For example, consider the following:

It is hard/difficult/challenging/impossible to imagine/believe that
we will find/locate/hire another employee/person having similar
abilities/skills/character as Alice. She has done a great/super job.

Any combination of the italicized words is possible, and expresses the same
idea. Thus, the sentence can be written in 4 ·2 ·3 ·2 ·3 ·2 = 288 different ways.
This is just one sentence and so it is actually easy to generate a message that
can be rewritten in 264 different ways—all that is needed are 64 words with
one synonym each. Alice can prepare 2`/2 letters explaining why she was fired
and another 2`/2 letters of recommendation; with good probability, a collision
between the two types of letters will be found.

6.4.2 Small-Space Birthday Attacks

The birthday attacks described above require a large amount of memory;
specifically, they require the attacker to store all Θ(q) = Θ(2`/2) values {yi},
because the attacker does not know in advance which pair of values will yield

180 Introduction to Modern Cryptography

a collision. This is a significant drawback because memory is, in general, a
scarcer resource than time: one can always let a computation run as long as
needed, whereas if a program requires more memory than is available then
that program will simply halt. Furthermore, memory accesses are typically
orders of magnitude slower than executing arithmetic instructions.

We show here a better birthday attack with drastically reduced memory
requirements. In fact, it has similar time complexity and success probability
as before, but uses only a constant amount of memory. The attack begins by
choosing a uniform value x0 and then computing xi := H(xi−1) and x2i :=
H(H(x2(i−1))) for i = 1, 2, (Note that xi = H(i)(x0) for all i, where

H(i) refers to i-fold iteration of H.) In each step the values xi and x2i are
compared; if they are equal then there is a collision somewhere in the sequence
x0, x1, . . . , x2i−1. (The values xi−1 and x2i−1 might not be a collision because
they may themselves be equal.) The algorithm then finds the least value of
j for which xj = xj+i, and outputs xj−1, xj+i−1 as a collision. This attack,
described formally as Algorithm 6.9 and analyzed below, only requires storage
of two hash values in each iteration.

ALGORITHM 6.9
A small-space birthday attack

Output: Distinct x, x′ with H(x) = H(x′)

x0 ← {0, 1}`+1

x′ := x := x0
for i = 1, 2, . . . do:
x := H(x)
x′ := H(H(x′)) // now x = H(i)(x0) and x′ = H(2i)(x0)
if x = x′ break

x′ := x, x := x0
for j = 1 to i:

if H(x) = H(x′) return x, x′ and halt
else x := H(x), x′ := H(x′)
// now x = H(j)(x0) and x′ = H(j+i)(x0)

How many iterations of the first loop do we expect before x = x′? Consider
the sequence of values x1, x2, . . ., where xi = H(i)(x0) as before. If we modelH
as a random function, then each xi is uniform and independent of x1, . . . , xi−1

as long as no repeat has yet occurred in this sequence. Thus, we expect a
repeat to occur with probability 1/2 in the first q = Θ(2`/2) elements of the
sequence. When there is a repeat in the first q elements, the algorithm finds
a repeat in at most q iterations of the first loop:

CLAIM 6.10 Let x1, . . . , xq be a sequence of values with xm = H(xm−1).
If xI = xJ with 1 ≤ I < J ≤ q, then there is an i < J such that xi = x2i.

Hash Functions and Applications 181

PROOF The sequence xI , xI+1, . . . repeats with period ∆
def
= J − I. That

is, for all i ≥ I and k ≥ 0 it holds that xi = xi+k·∆. Let i be the smallest
multiple of ∆ that is also greater than or equal to I. We have i < J since the
sequence of ∆ values I, I + 1, . . . I + (∆− 1) = J − 1 contains a multiple of ∆.
Since i ≥ I and 2i− i = i is a multiple of ∆, it follows that xi = x2i.

Thus, if there is a repeated value in the sequence x1, . . . , xq, there is some
i < q for which xi = x2i. But then in iteration i of Algorithm 6.9, we have
x = x′ and the algorithm breaks out of the first loop. At that point in the
algorithm, we know that xi = xi+i. The algorithm then sets x′ := x = xi and
x := x0, and proceeds to find the smallest j > 0 for which xj = xj+i. (Note
x0 6= xi because |x0| = `+ 1.) It outputs xj−1, xj+i−1 as a collision.

Finding meaningful collisions. The algorithm just described may not seem
amenable to finding meaningful collisions since it has no control over the {xi}
values used. Nevertheless, we show that finding meaningful collisions is still
possible. The trick is to find a collision in the right function!

Assume, as before, that Alice wants to find a collision between messages
of two different “types,” e.g., a letter explaining why she was fired and a
flattering letter of recommendation. Alice writes each message so there are
`−1 interchangeable words in each; i.e., there are 2`−1 messages of each type.
Define the function g : {0, 1}` → {0, 1}∗ such that the first bit of the input
selects between messages of type 0 or type 1, and the remaining bits select
between options for the interchangeable words in messages of the appropriate
type. For example, if ` = 4 we could consider the sentences:

type 0: Alice is a good/great and honest/trustworthy worker/employee.

type 1: Alice is a bad/lousy and annoying/irritating worker/employee.

The function g is then defined on 4-bit inputs, where the first bit determines
the sentence type and the final three bits determine the words in the sentence.
That is:

g(0000) = Alice is a good and honest worker.

g(1101) = Alice is a lousy and annoying employee.

Finally, define f : {0, 1}` → {0, 1}` by f(x)
def
= H(g(x)). Alice can find a

collision in f using a variant of the small-space birthday attack shown earlier.
Note that any collision x, x′ in f yields two messages g(x), g(x′) that collide
underH. If x, x′ is a random collision then we expect that with probability 1/2
the colliding messages g(x), g(x′) will be of different types (since x and x′ will
differ in their first bit with probability 1/2). If the colliding messages are not
of different types, the process can be repeated.

182 Introduction to Modern Cryptography

6.4.3 *Time/Space Tradeoffs for Inverting Hash Functions

In this section we consider the question of preimage resistance, i.e., we are
interested in algorithms for the problem of function inversion. Here, we have
a hash function H : {0, 1}∗ → {0, 1}`; an adversary is given y = H(x) and its
goal is to find any x′ such that H(x′) = y. (We call such an x′ a preimage
of y.) We begin by assuming that x ∈ {0, 1}` for simplicity (and so view the
domain of H as {0, 1}`), and consider the more general case at the end.

Finding a preimage of y = H(x) can be done in time Θ(2`) via exhaustive
search over the domain of H, and this is optimal when H is modeled as a
random function. However, it ignores the possibility of preprocessing. That
is, it may be possible for an algorithm to perform a significant amount of
work in an “off-line” preprocessing phase before y is known, and then to find
a preimage x′ in an “on-line” phase after being given y, using significantly
less than Θ(2`) computation. This can be a worthwhile tradeoff if work can
be invested in advance, or if the algorithm will be used to find preimages of
multiple values (since the same preprocessing can be used for all of them).

In fact, it is trivial to use preprocessing to improve the on-line time of
function inversion. All we need to do is evaluate H on every point in {0, 1}`
during the preprocessing phase, and store all the pairs {(x,H(x))} in a table,
sorted by their second entry. Upon receiving a point y, a preimage of y can
be found easily by using binary search to find a pair in the table with second
entry y. The drawback here is that we need to allocate memory for storing 2`

pairs, which can be prohibitive—if not impossible—for large `.

Exhaustive search uses constant memory and Θ(2`) on-line time, while the
attack just described stores Θ(2`) points in memory but enables inversion in
essentially constant on-line time. We now show an approach that allows an at-
tacker to trade off time and memory and interpolate between these extremes.
Specifically, we show how to store O(22`/3) values and find preimages in time
O(22`/3); other trade-offs are also possible.

A warmup. We begin by considering the simple case where the function H
defines a cycle, meaning that x,H(x), H(H(x)), . . . covers all of {0, 1}` for
any starting point x. (Note that most functions do not define a cycle, but
we assume this in order to demonstrate the idea in a very simple case.) For
clarity, let N = 2` denote the size of the domain and range.

In the preprocessing phase, the attacker simply exhausts the entire cycle,
beginning at an arbitrary starting point x0 and computing x1 := H(x0), x2 :=
H(H(x0)), up to xN = H(N)(x0), where H(i) refers to i-fold evaluation of H.

Let xi
def
= H(i)(x0). We imagine partitioning the cycle into

√
N segments of

length
√
N each, and having the attacker store the points at the beginning

and end of each such segment. That is, the attacker stores in a table pairs
of the form (xi·

√
N , x(i+1)·

√
N), for i = 0 to

√
N − 1, sorted by the second

component of each pair. The resulting table contains O(
√
N) points.

When the attacker is given a point y to invert in the on-line phase, it

Hash Functions and Applications 183

checks which of y, H(y), H(2)(y), . . . corresponds to the endpoint of a seg-
ment. (Each check just involves a table lookup on the second component of
the stored pairs.) Since y lies in some segment, this is guaranteed to find an
endpoint within

√
N steps. Once an endpoint x = x(i+1)·

√
N is identified, the

attacker takes the starting point x′ = xi·
√
N of the corresponding segment

and computes H(x′), H(2)(x′), . . . until y is reached; this immediately gives
the desired preimage. This takes at most

√
N additional evaluations of H.

In summary, this attack stores O(
√
N) = O(2`/2) points and finds preim-

ages with probability 1 using O(
√
N) = O(2`/2) on-line hash computations.

Hellman’s time/space tradeoff. Martin Hellman introduced a more gen-
eral time/space tradeoff applicable to an arbitrary function H (though the
analysis treats H as a random function). Hellman’s attack still stores the
starting point and endpoint of several segments, but in this case the segments
are “independent” rather than being part of one large cycle. In more detail:
let s, t be parameters we will set later. The attacker first chooses s uniform
starting points SP1, . . . , SPs ∈ {0, 1}`. For each such point SPi, it computes a
corresponding endpoint EPi := H(t)(SPi) using t-fold application of H. (See
Figure 6.3.) The attacker then stores the values {(SPi, EPi)}si=1 in a table,
sorted by the second entry (i.e., the endpoint) of each pair.

H H H

H H H

H H H

SP
1

SP
2

SPs

EP
1

EP
2

EPs

FIGURE 6.3: Table generation. Only the (SPi, EPi) pairs are stored.

Upon receiving a value y to invert, the attack proceeds as in the simple
case discussed earlier. Specifically, it checks if any of y, H(y), . . . , H(t−1)(y)
is equal to the endpoint of some segment (stopping as soon as the first such
match is found). It is possible that none of these values is equal to an endpoint

184 Introduction to Modern Cryptography

(as we discuss below). However, if H(j)(y) = EPi = H(t)(SPi) for some
i, j, then the attacker computes H(t−j−1)(SPi) and checks whether this is a
preimage of y. The entire process requires at most t evaluations of H.

This seems to work, but there are several subtleties we have ignored. First,
it may happen that none of y, H(y), . . . , H(t−1)(y) is the endpoint of a seg-
ment. This can happen if y is not in the collection of at most s · t values
(not counting the starting points) obtained during the initial process of gen-
erating the table. We can set s · t ≥ N in an attempt to include every `-bit
string in the table, but this does not solve the problem since there can be
collisions in the table itself—in fact, for s · t ≥ N1/2 our previous analysis of
the birthday problem tells us that collisions are likely—which will reduce the
number of distinct points in the collection of values. A second problem, which
arises even if y is in the table, is that even if we find a matching endpoint,
and so H(j)(y) = EPi = H(t)(SPi) for some i, j, this does not guarantee
that H(t−j−1)(SPi) is a preimage of y. The issue here is that the segment
y, H(y), . . . , H(t−1)(y) might collide with the ith segment even though y it-
self is not in that segment; see Figure 6.4. (Even if y lies in some segment,
the first matching endpoint may not be in that segment.) We call this a false
positive. One might think this is unlikely to occur if H is collision resistant;
again, however, we are dealing with a situation where more than

√
N points

are involved and so collisions actually become likely.

H H H

H H

SPi

y

EPi

H

FIGURE 6.4: Colliding in the on-line phase.

The problem of false positives can be addressed by modifying the algorithm
so that it always computes the entire sequence y, H(y), . . . , H(t−1)(y), and
checks whether H(t−j−1)(SPi) is a preimage of y for every i, j such that
H(j)(y) = EPi. This is guaranteed to find a preimage as long as y is in
the collection of values (not including the starting points) generated during
preprocessing. A concern now is that the running time of the algorithm might
increase, since each false positive incurs an additional O(t) hash evaluations.
One can show that the expected number of false positives is O(st2/N). (There
are at most t values in the sequence y, H(y), . . . , H(t−1)(y) and at most st
distinct points in the table. Treating H as a random function, the probability
that a given point in the sequence equals some point in the table is 1/N .

Hash Functions and Applications 185

The expected number of false positives is thus at most t · st · 1/N = st2/N .)
So, as long as st2 ≈ N , which we will ensure for other reasons below, the
expected number of false positives is constant and dealing with false positives
is expected to require only O(t) additional hash computations in total.

Given the above modification, the probability of inverting y = H(x) is
at least the probability that x is in the collection of points (not including
the endpoints) generated during preprocessing. We now lower bound this
probability, taken over the randomness of the preprocessing stage as well as
uniform choice of x, treating H as a random function in the analysis. We
first compute the expected number of distinct points in the table. Consider
what happens when the ith row of the table is generated. The starting point
SPi is uniform and there are at most (i− 1) · t distinct points (not including
the endpoints) in the table already, so the probability that SPi is “new”
(i.e., not equal to any previous value) is at least 1 − (i − 1) · t/N . What is
the probability that H(SPi) is new? If SPi is not new, then almost surely
neither is H(SPi). On the other hand, if SPi is new then H(SPi) is uniform
(because we treat H as a random function) and so is new with probability at
least 1− ((i− 1) · t+ 1)/N . (We now have the additional point SPi.) Thus,
the probability that H(SPi) is new is at least

Pr [SPi is new] · Pr [H(SPi) is new | SPi is new]

≥
(

1− (i− 1) · t
N

)
·
(

1− (i− 1) · t+ 1

N

)
>

(
1− (i− 1) · t+ 1

N

)2

.

Continuing in this way, the probability that H(t−1)(SPi) is new is at least

(
1− i · t

N

)t
=

[(
1− i · t

N

) N
i·t
] i·t2

N

≈ e−it
2/N .

The thing to notice here is that when it2 ≤ N/2, this probability is at least 1/2;
on the other hand, once it2 > N the probability is relatively small. Consider-
ing the last row, when i = s, this means that we will not gain much additional
coverage if st2 > N . A good setting of the parameters is thus st2 = N/2.
Assuming this, the expected number of distinct points in the table is

s∑
i=1

t−1∑
j=0

Pr
[
H(j)(SPi) is new

]
≥

s∑
i=1

t−1∑
j=0

1

2
=
st

2
.

The probability that x is “covered” is then at least st
2N = 1

4t .
This gives a weak time/space tradeoff, in which we can use more space s

(and consequently less time t) while increasing the probability of inverting y.
But we can do even better by generating T = 4t “independent” tables. (This

186 Introduction to Modern Cryptography

increases both the space and time by at most a factor of T .) As long as we
can treat the probabilities of x being in each of these tables as independent,
the probability that at least one of these tables contains x is

1− Pr[no table contains x] = 1−
(

1− 1

4t

)4t

≈ 1− e−1 = 0.63.

The only remaining question is how to generate an independent table. (Note
that generating a table exactly as before is the same as adding s additional
rows to our original table, which we have already seen does not help.) We
can do this for the ith such table by applying some function fi after every
evaluation of H, where f1, . . . , fT are all distinct. (A good choice might be
to set fi(x) = x ⊕ ci for some fixed constant ci that is different for each

table.) Let Hi
def
= fi ◦ H, i.e., Hi(x) = fi(H(x)). Then for the ith table

we again choose s random starting points, but for each such point we now

compute Hi(SP), H
(2)
i (SP), and so on. Upon receiving a value y = H(x)

to invert, the attacker first computes y′ = fi(y) and then checks which of

y′, Hi(y
′), . . . , H

(t−1)
i (y′) corresponds to an endpoint in the ith table; this is

repeated for i = 1, . . . , T . (We omit further details.) While it is difficult to
argue independence formally, this approach leads to good results in practice.

Choosing parameters. Summarizing the above, we see that as long as
st2 = N/2 we have an algorithm that storesO(s·T) = O(s·t) = O(N/t) points
during a preprocessing phase, and can then invert y with constant probability
in time O(t ·T) = O(t2). One setting of the parameters is t = N1/3 = 2`/3, in
which case we have an algorithm storing O(22`/3) points that finds a preimage
with constant probability using O(22`/3) hash computations. If ` = 80, this
is feasible in practice.

Handling different domain and range. Consider the more general case
where the original preimage x is chosen from a domain D that is different
from the range {0, 1}`. This situation is quite common. One example is
in the context of password cracking (see Section 6.6.3), where an attacker is
given H(pw) for a password pw composed of ASCII characters. (Not every bit-
string corresponds to ASCII.) While it may be possible to artificially expand
the domain, this will not be useful in general: In typical applications we would
like to recover a preimage in D, but if the domain is artificially expanded then
the algorithm above is likely to find a preimage that lies outside of D.

We can address this by applying a function fi, as before, between each
evaluation of H, though now we choose fi mapping {0, 1}` to D. This ensures
that, when constructing the table, the values fi(H(SP)), (fi ◦H)(2)(SP), . . .
all lie in the desired domain D.

Application to key-recovery attacks. Time/space tradeoffs can lead to
attacks on cryptographic primitives other than hash functions. A canonical

Hash Functions and Applications 187

example—in fact, the application originally considered by Hellman—is a key-

recovery attack on an arbitrary block cipher F . Define H(k)
def
= Fk(m) where

m is some arbitrary input that is used for building the table. If an attacker
can subsequently obtain Fk(m) for an unknown key k—either via a chosen-
plaintext attack or by choosing m such that Fk(m) is likely to be obtained in a
known-plaintext attack—then by inverting H the attacker learns (a candidate
value for) k. Note that it is possible for the key length of F to differ from
its block length, but in this case we can use the technique just described for
handling H with different domain and range.

6.5 The Random-Oracle Model

There are several examples of constructions based on cryptographic hash
functions that cannot be proven secure based only on the assumption that
the hash function is collision or preimage resistant. (We will see some in the
following section.) In many cases, there appears to be no simple and reason-
able assumption regarding the hash function that is sufficient for proving the
construction secure.

Faced with this situation, there are several options. One is to look for
schemes that can be proven secure based on some reasonable assumption
about the underlying hash function. This is a good approach, but it leaves
open the question of what to do until such schemes are found. Also, provably
secure constructions may be significantly less efficient than other existing ap-
proaches that have not been proven secure. (This is a major issue we will
encounter in the setting of public-key cryptography.)

Another possibility, of course, is to use an existing cryptosystem even if
it has no justification for its security other than, perhaps, the fact that the
designers tried to attack it and were unsuccessful. This flies in the face of ev-
erything we have said about the importance of the rigorous, modern approach
to cryptography, and it should be clear that this is unacceptable.

An approach that has been hugely successful in practice, and which offers a
“middle ground” between a fully rigorous proof of security on the one hand and
no proof whatsoever on the other, is to introduce an idealized model in which
to prove the security of cryptographic schemes. Although the idealization
may not be an entirely accurate reflection of reality, we can at least derive
some measure of confidence in the soundness of a scheme’s design from a proof
within the idealized model. As long as the model is reasonable, such proofs
are certainly better than no proofs at all.

A popular example of this approach is the random-oracle model, which
treats a cryptographic hash function H as a truly random function. (We
have already seen an example of this in our discussion of birthday attacks,
although there we were analyzing an attack rather than a construction.) More

188 Introduction to Modern Cryptography

specifically, the random-oracle model posits the existence of a public, random
function H that can be evaluated only by “querying” an oracle—which can be
thought of as a “black box”—that returns H(x) when given input x. (We will
discuss how this is to be interpreted in the following section.) To differentiate
things, the model we have been using until now (where no random oracle is
present) is sometimes called the “standard model,” although at this point the
random-oracle model itself is considered quite standard in the literature.

No one claims that a random oracle exists, although there have been sugges-
tions that a random oracle could be implemented in practice using a trusted
party (i.e., some server on the Internet). Rather, the random-oracle model
provides a formal methodology that can be used to design and validate cryp-
tographic schemes using the following two-step approach:

1. First, a scheme is designed and proven secure in the random-oracle
model. That is, we assume the world contains a random oracle, and
construct and analyze a cryptographic scheme within this model. Stan-
dard cryptographic assumptions of the type we have seen until now may
be utilized in the proof of security as well.

2. When we want to implement the scheme in the real world, a random
oracle is not available. Instead, the random oracle is instantiated with
an appropriately designed cryptographic hash function Ĥ. (We return
to this point at the end of this section.) That is, at each point where
the scheme dictates that a party should query the oracle for the value
H(x), the party instead computes Ĥ(x) on its own.

The hope is that the cryptographic hash function used in the second step is
“sufficiently good” at emulating a random oracle, so that the security proof
given in the first step will carry over to the real-world instantiation of the
scheme. The difficulty here is that there is no theoretical justification for this
hope, and in fact there are (contrived) schemes that can be proven secure in
the random-oracle model but are insecure no matter how the random oracle is
instantiated in the second step. Furthermore, it is not clear (mathematically
or heuristically) what it means for a hash function to be “sufficiently good”
at emulating a random oracle, nor is it clear that this is an achievable goal.
In particular, no concrete instantiation Ĥ can ever behave like a random
function, since Ĥ is fixed and its code is known. For these reasons, a proof of
security in the random-oracle model should be viewed as providing evidence
that a scheme has no “inherent design flaws,” but is not a rigorous proof that
any real-world instantiation of the scheme is secure. Further discussion on
how to interpret proofs in the random-oracle model is given in Section 6.5.2.

6.5.1 The Random-Oracle Model in Detail

Before continuing, let us pin down exactly what the random-oracle model
entails. A good way to think about the random-oracle model is as follows:
The oracle is simply a “black box” that takes a bit-string as input and returns

Hash Functions and Applications 189

a bit-string as output. The internal workings of the box are unknown and
inscrutable. Everyone—honest parties as well as the adversary—can interact
with the box, where such interaction consists of feeding in a binary string x
as input and receiving a binary string y as output; we refer to this as querying
the oracle on x, and call x a query made to the oracle. Queries to the oracle
are assumed to be private so that if some party queries the oracle on input x
then no one else learns x, or even learns that this party queried the oracle at
all. This makes sense, because calls to the oracle correspond (in the real-world
instantiation) to local evaluations of a cryptographic hash function.

An important property of this “box” is that it is consistent. That is, if the
box ever outputs y for a particular input x, then it always outputs the same
answer y when given the same input x again. This means that we can view the
box as implementing a well-defined function H; i.e., we define the function H
in terms of the input/output characteristics of the box. For convenience, we
thus speak of “querying H” rather than querying the box. No one “knows”
the entire function H (except the box itself); at best, all that is known are
the values of H on the strings that have been explicitly queried thus far.

We have already discussed in Chapter 3 what it means to choose a random
function H. We only reiterate here that there are two equivalent ways to think
about the uniform selection of H: either view H as being chosen “in one shot”
uniformly from the set of all functions on some specified domain and range, or
imagine generating outputs for H “on-the-fly,” as needed. Specifically, in the
second case we can view the function as being defined by a table that is initially
empty. When the oracle receives a query x it first checks whether x = xi for
some pair (xi, yi) in the table; if so, the corresponding value yi is returned.
Otherwise, a uniform string y ∈ {0, 1}` is chosen (for some specified `), the
answer y is returned, and the oracle stores (x, y) in its table. This second
viewpoint is often conceptually easier to reason about, and is also technically
easier to deal with if H is defined over an infinite domain (e.g., {0, 1}∗).

When we defined pseudorandom functions in Section 3.5.1, we also consid-
ered algorithms having oracle access to a random function. Lest there be any
confusion, we note that the usage of a random function there is very different
from the usage of a random function here. There, a random function was
used as a way of defining what it means for a (concrete) keyed function to be
pseudorandom. In the random-oracle model, in contrast, the random function
is used as part of a construction itself and must somehow be instantiated in
the real world if we want a concrete realization of the construction. A pseu-
dorandom function is not a random oracle because it is only pseudorandom if
the key is secret. However, in the random-oracle model all parties need to be
able to compute the function; thus there can be no secret key.

Definitions and Proofs in the Random-Oracle Model

Definitions in the random-oracle model are slightly different from their
counterparts in the standard model because the probability spaces consid-

190 Introduction to Modern Cryptography

ered in each case are not the same. In the standard model a scheme Π is
secure if for all ppt adversaries A the probability of some event is below some
threshold, where this probability is taken over the random choices of the par-
ties running Π and those of the adversary A. Assuming the honest parties
who use Π in the real world make random choices as directed by the scheme,
satisfying a definition of this sort guarantees security for real-world usage of Π.

In the random-oracle model, in contrast, a scheme Π may rely on an or-
acle H. As before, Π is secure if for all ppt adversaries A the probability
of some event is below some threshold, but now this probability is taken over
random choice of H as well as the random choices of the parties running Π and
those of the adversary A. When using Π in the real world, some (instantiation
of) H must be fixed. Unfortunately, security of Π is not guaranteed for any
particular choice of H. This indicates one reason why it is difficult to argue
that any concrete instantiation of the oracle H by some fixed function yields
a secure scheme. (An additional, technical, difficulty is that once a concrete
function H is fixed, the adversary A is no longer restricted to querying H as
an oracle but can instead look at and use the code of H in its attack.)

Proofs in the random-oracle model can exploit the fact that H is chosen
at random, and that the only way to evaluate H(x) is to explicitly query x
to H. Three properties of the random-oracle model are especially useful; we
sketch them informally here, and show some simple applications of them in
what follows, but caution that a full understanding will likely have to wait
until we present formal proofs in the random-oracle model in later chapters.

A first useful property of the random-oracle model is:

If x has not been queried to H, then the value of H(x) is uniform.

This may seem superficially similar to the guarantee provided by a pseudo-
random generator, but is actually much stronger. If G is a pseudorandom
generator then G(x) is pseudorandom to an observer assuming x is chosen
uniformly at random and is completely unknown to the observer. If H is a
random oracle, however, then H(x) is truly uniform to an observer as long as
the observer has not queried x. This is true even if x is known, or if x is not
uniform but is hard to guess. (For example, if x is an n-bit string where the
first half of x is known and the last half is random then G(x) might be easy
to distinguish from random but H(x) will not be.)

The remaining two properties relate explicitly to proofs by reduction in the
random-oracle model. (It may be helpful here to review Section 3.3.2.) As
part of the reduction, the random oracle that the adversary A interacts with
must be simulated. That is: A will submit queries to, and receive answers
from, what it believes to be the oracle, but the reduction itself must now
answer these queries. This turns out to give a lot of power. For starters:

If A queries x to H, the reduction can see this query and learn x.

This is sometimes called “extractability.” (This does not contradict the fact,
mentioned earlier, that queries to the random oracle are “private.” While that

Hash Functions and Applications 191

is true in the random-oracle model itself, here we are using A as a subroutine
within a reduction that is simulating the random oracle for A.) Finally:

The reduction can set the value of H(x) (i.e., the response to
query x) to a value of its choice, as long as this value is correctly
distributed, i.e., uniform.

This is called “programmability.” There is no counterpart to extractability
or programmability once H is instantiated with any concrete function.

Simple Illustrations of the Random-Oracle Model

At this point some examples may be helpful. The examples given here are
relatively simple, and do not use the full power of the random-oracle model;
they are intended merely to provide a gentle introduction. In what follows,
we assume a random oracle mapping `in-bit inputs to `out-bit outputs, where
`in, `out > n, the security parameter (so `in, `out are functions of n).

A random oracle as a pseudorandom generator. We first show that,
for `out > `in, a random oracle can be used as a pseudorandom generator.
(We do not say that a random oracle is a pseudorandom generator, since a
random oracle is not a fixed function.) Formally, we claim that for any ppt
adversary A, there is a negligible function negl such that∣∣∣Pr[AH(·)(y) = 1]− Pr[AH(·)(H(x)) = 1]

∣∣∣ ≤ negl(n),

where in the first case the probability is taken over uniform choice of H,
uniform choice of y ∈ {0, 1}`out(n), and the randomness of A, and in the
second case the probability is taken over uniform choice of H, uniform choice
of x ∈ {0, 1}`in(n), and the randomness of A. We have explicitly indicated
that A has oracle access to H in each case; once H has been chosen then A
can freely make queries to it.

As a proof sketch, let S denote the set of points on which A queries H; of
course, |S| is polynomial in n. Observe that in the second case, the proba-
bility that x ∈ S is negligible—this is because A starts with no information
about x (note that H(x) by itself reveals nothing about x because H is a
random function), and S is exponentially smaller than {0, 1}`in . Moreover,
conditioned on x 6∈ S in the second case, A’s input in each case is a uniform
string that is independent of the answers to A’s queries.

A random oracle as a collision-resistant hash function. If `out < `in,
a random oracle is collision resistant. That is, the success probability of any
ppt adversary A in the following experiment is negligible:

1. A random function H is chosen.

2. A succeeds if it outputs distinct x, x′ with H(x) = H(x′).

192 Introduction to Modern Cryptography

To see this, assume without loss of generality that A only outputs values x, x′

that it had previously queried to the oracle, and that A never makes the
same query to the oracle twice. Letting the oracle queries of A be x1, . . . , xq,
with q = poly(n), it is clear that the probability that A succeeds is upper-
bounded by the probability that H(xi) = H(xj) for some i 6= j. But this is
exactly equal to the probability that if we pick q strings y1, . . . , yq ∈ {0, 1}`out

independently and uniformly at random, we have yi = yj for some i 6= j. This
is precisely the birthday problem, and so using the results of Appendix A.4
we see that A succeeds with negligible probability O(q2/2`out).

Constructing a pseudorandom function from a random oracle. It is
also rather easy to construct a pseudorandom function in the random-oracle
model. Suppose `in(n) = 2n and `out(n) = n, and define

Fk(x)
def
= H(k‖x),

where |k| = |x| = n. In Exercise 6.15 you are asked to show that this is
a pseudorandom function, namely, for any polynomial-time A the success
probability of A in the following experiment is 1/2 + negl(n):

1. A function H and values k ∈ {0, 1}n and b ∈ {0, 1} are chosen uniformly.

2. If b = 0, the adversary A is given access to an oracle for Fk(·) = H(k‖·).
If b = 1, then A is given access to a random function mapping n-bit
inputs to n-bit outputs. (This random function is independent of H.)

3. A outputs a bit b′, and succeeds if b′ = b.

In step 2, A can access H in addition to the function oracle provided to it by
the experiment. (A pseudorandom function in the random-oracle model must
be indistinguishable from a random function that is independent of H.)

An interesting aspect of the above results is that they require no assump-
tions; they hold even for computationally unbounded adversaries as long as
those adversaries are limited to making polynomially many queries to the ora-
cle. This has no real-world counterpart, where computational assumptions are
(currently) necessary to prove, e.g., the existence of pseudorandom generators.

6.5.2 Is the Random-Oracle Methodology Sound?

Schemes designed in the random-oracle model are implemented in the real
world by instantiating H with some concrete function. With the mechanics of
the random-oracle model behind us, we turn to a more fundamental question:

What do proofs of security in the random-oracle model guarantee
as far as security of any real-world instantiation?

This question does not have a definitive answer: there is currently debate
within the cryptographic community about how to interpret proofs in the

Hash Functions and Applications 193

random-oracle model, and active research seeking to determine what, pre-
cisely, a proof of security in the random-oracle model implies vis-a-vis the
real world. We can only hope to give a flavor of both sides of the debate.

Objections to the random-oracle model. The starting point for argu-
ments against using random oracles is simple: as we have already noted, there
is no formal justification for believing that a proof of security for some scheme
Π in the random-oracle model says anything about the security of Π in the
real world, once the random oracle H has been instantiated with any par-
ticular hash function Ĥ. This is more than just theoretical uneasiness. A
little thought shows that no hash function can ever act as a “true” random
oracle. For example, in the random-oracle model the value H(x) is “com-
pletely random” if x was not explicitly queried. The counterpart would be
to require that Ĥ(x) is random (or pseudorandom) if Ĥ was not explicitly
evaluated on x. How are we to interpret this in the real world? It is not even
clear what it means to “explicitly evaluate” Ĥ: what if an adversary knows
a shortcut for computing Ĥ that does not involve running the actual code
of Ĥ? Moreover, Ĥ(x) cannot possibly be random (or even pseudorandom)
since once the adversary learns the description of Ĥ, the value of Ĥ on all
inputs is immediately determined.

Limitations of the random-oracle model become clearer once we examine
the proof techniques introduced earlier. Recall that one proof technique is to
use the fact that a reduction can “see” the queries that an adversary A makes
to the random oracle. If we replace the random oracle by a particular hash
function Ĥ, this means we must provide a description of Ĥ to the adversary
at the beginning of the experiment. But then A can evaluate Ĥ on its own,
without making any explicit queries, and so a reduction will no longer have
the ability to “see” any queries made by A. (In fact, as noted previously, the
notion of A performing explicit evaluations of Ĥ may not be true and certainly
cannot be formally defined.) Likewise, proofs of security in the random-oracle
model allow the reduction to choose the outputs of H as it wishes, something
that is clearly not possible when a concrete function is used.

Even if we are willing to overlook the above theoretical concerns, a practical
problem is that we do not currently have a very good understanding of what it
means for a concrete hash function to be “sufficiently good” at instantiating a
random oracle. For concreteness, say we want to instantiate the random oracle
using some appropriate modification of SHA-2. (SHA-2 is a cryptographic
hash function discussed in Section 7.3.2.) While for some particular scheme
Π it might be reasonable to assume that Π is secure when instantiated using
SHA-2, it is much less reasonable to assume that SHA-2 can take the place
of a random oracle in every scheme designed in the random-oracle model.
Indeed, as we have said earlier, we know that SHA-2 is not a random oracle.
And it is not hard to design a scheme that is secure in the random-oracle
model, but is insecure when the random oracle is replaced by SHA-2.

We emphasize that an assumption of the form “SHA-2 acts like a random

194 Introduction to Modern Cryptography

oracle” is qualitatively different from assumptions such as “SHA-2 is collision
resistant” or “AES is a pseudorandom function.” The problem lies partly with
the fact that there is no satisfactory definition of what the first statement
means, while we do have such definitions for the latter two statements.

Because of this, using the random-oracle model to prove security of a scheme
is qualitatively different from, e.g., introducing a new cryptographic assump-
tion in order to prove a scheme secure in the standard model. Therefore,
proofs of security in the random-oracle model are less satisfying than proofs
of security in the standard model.

Support for the random-oracle model. Given all the problems with
the random-oracle model, why use it at all? More to the point: why has
the random-oracle model been so influential in the development of modern
cryptography (especially current practical usage of cryptography), and why
does it continue to be so widely used? As we will see, the random-oracle
model enables the design of substantially more-efficient schemes than those
we know how to construct in the standard model. As such, there are few
(if any) public-key cryptosystems used today having proofs of security in the
standard model, while there are numerous deployed schemes having proofs of
security in the random-oracle model. In addition, proofs in the random-oracle
model are almost universally recognized as lending confidence to the security
of schemes being considered for standardization.

The fundamental reason for this is the belief that:

A proof of security in the random-oracle model is significantly bet-
ter than no proof at all.

Although some disagree, we offer the following in support of this assertion:

� A proof of security for a scheme in the random-oracle model indicates
that the scheme’s design is “sound,” in the sense that the only possible
attacks on a real-world instantiation of the scheme are those that arise
due to a weakness in the hash function used to instantiate the random
oracle. Thus, if a “good enough” hash function is used to instantiate the
random oracle, we should have confidence in the security of the scheme.
Moreover, if a given instantiation of the scheme is successfully attacked,
we can simply replace the hash function being used with a “better” one.

� Importantly, there have been no successful real-world attacks on schemes
proven secure in the random-oracle model, when the random oracle was
instantiated properly. (We remark that great care must be taken in in-
stantiating the random oracle, as discussed next; see also Exercise 6.11.)
This gives evidence of the usefulness of the random-oracle model in de-
signing practical schemes.

Nevertheless, the above ultimately represent only intuitive speculation as
to the usefulness of proofs in the random-oracle model and—all else being
equal—proofs without random oracles are preferable.

Hash Functions and Applications 195

Instantiating a Random Oracle

Properly instantiating a random oracle is subtle, and a full discussion is
beyond the scope of this book. Here we only alert the reader that using
an “off-the-shelf” cryptographic hash function without modification is, gen-
erally speaking, not a sound approach. For one thing, many cryptographic
hash functions are constructed using the Merkle–Damg̊ard transform (cf. Sec-
tion 6.2), and can be distinguished easily from a random oracle when variable-
length inputs are allowed. (See Exercise 6.11.) Also, in some constructions
it is necessary for the output of the random oracle to lie in a certain range,
which results in additional complications.

6.6 Additional Applications of Hash Functions

We conclude this chapter with a brief discussion of some additional applica-
tions of cryptographic hash functions in cryptography and computer security.

6.6.1 Fingerprinting and Deduplication

If H is a collision-resistant hash function, the hash (or digest) of a file serves
as a unique identifier for that file. (If any other file is found to have the same
digest, this implies a collision in H.) The hash H(x) of a file x can thus serve
as a “fingerprint” for x, and one can check whether two files are equal by
comparing their digests. This simple idea has many applications.

� Virus fingerprinting: Virus scanners identify whether incoming files are
potential viruses. Often, this is done not by analyzing the incoming file
to determine whether it is malicious, but instead simply by checking
whether the file is in a database of previously identified viruses. The
observation here is that rather than comparing the file to each virus in
the database, it suffices to compare the hash of the file to the hashes (i.e.,
fingerprints) of known viruses. This can lead to improved efficiency, as
well as reduced communication if the database is stored remotely.

� Deduplication: Data deduplication is used to eliminate duplicate copies
of data, especially in the context of cloud storage where multiple users
rely on a single cloud service to store their data. The key insight is
that if multiple users wish to store the same file (e.g., a popular video),
then the file only needs to be uploaded and stored once and need not
be uploaded and stored separately for each user. Deduplication can be
achieved by first having a user upload a hash of the new file they want
to store; if a file with this hash is already stored on the server, then the
cloud-storage provider can simply add a pointer to the existing file to

196 Introduction to Modern Cryptography

indicate that this specific user has also stored this file, thus saving both
communication and storage. The soundness of this approach follows
from collision resistance of the hash function.

� Peer-to-peer (P2P) file sharing: In P2P file-sharing systems, servers
store different files and can advertise the files they hold by broadcasting
the hashes of those files. Those hashes serves as unique identifiers for the
files, and allow clients to easily find out which servers host a particular
file (identified by its hash).

It may be surprising that a small digest can uniquely identify every file
in the world. But this is the guarantee provided by collision-resistant hash
functions, which makes them useful in the above settings.

6.6.2 Merkle Trees

Consider a client who uploads a file x to a server. When the client later
retrieves x, it wants to make sure the server returns the original, unmodified
file. The client could simply store x and check that the retrieved file is equal
to x, but that defeats the purpose of using the server in the first place. We
are looking for a solution in which the storage of the client is small.

A natural solution is to use the “fingerprinting” idea from the previous
section. The client locally stores the short digest h := H(x); when the server

returns a candidate file x′ the client need only check that H(x′)
?
= h.

What happens if we want to extend this solution to multiple files x1, . . . , xt?
There are two obvious ways of doing this. One is to simply hash each file indi-
vidually; the client locally stores the digests h1, . . . , ht, and verifies retrieved
files as before. This has the disadvantage that the client’s storage grows lin-
early in t. Another possibility is to hash all the files together. That is, the
client computes h := H(x1, . . . , xt) and stores only a single digest h. (We
assume the client concatenates the files in an unambiguous manner before
hashing, so that from the input to h it is possible to determine the original
files. This can be done using standard techniques.) The drawback now is that
when the client wants to retrieve and verify the ith file xi, it needs to retrieve
all the files in order to recompute the digest and check the result.

Merkle trees, introduced by Ralph Merkle, give a tradeoff between these
extremes. Assume t is a power of two for simplicity. (The idea can be easily
extended when this is not the case.) A Merkle tree computed over input
values x1, . . . , xt is simply a binary tree of depth log t in which hashes of the
input values are placed at the leaves, and the value at each internal node is
the hash of the values of its two children.

Referring to Figure 6.5 where t = 8, for example, each leaf i holds the value
hi = H(xi); the parent of leaves 3 and 4 holds the value h3...4 = H(h3, h4);
and the parent of the right subtree holds the value

h5...8 = H(h5...6, h7...8) = H(H(h5, h6), H(h7, h8)).

Hash Functions and Applications 197

FIGURE 6.5: A Merkle tree.

Fixing some hash function H, we denote by MT t the function that takes t
input values x1, . . . , xt, computes the resulting Merkle tree, and outputs the
value of the root of the tree. (A keyed hash function yields a keyed function
MT t in the obvious way.) We have:

THEOREM 6.11 If (GenH , H) is collision resistant, then (GenH ,MT t)
is collision resistant for any fixed t.

Merkle trees thus provide an alternative to the Merkle–Damg̊ard transform
for domain extension of collision-resistant hash functions. (As described, how-
ever, Merkle trees are not collision resistant if the number of inputs t is allowed
to vary. But they can be generalized fairly easily to handle that case.)

Merkle trees yield an efficient solution to our original problem. Specifically,
the client will compute h :=MT t(x1, . . . , xt), upload x1, . . . , xt to the server,
and store h (along with the number of files t) locally. When the client wants
to retrieve the ith file, the server sends xi along with a “proof” πi that this
is the correct value. This proof consists of the values of the nodes in the
Merkle tree adjacent to the path from the ith leaf to the root. From these
values the client can recompute the value of the root and verify that it is
equal to the stored value h. As an example, consider the Merkle tree in
Figure 6.5. The client computes h1...8 :=MT 8(x1, . . . , x8), uploads x1, . . . , x8

to the server, and stores h1...8 locally. When the client retrieves x3, the server
sends x3 along with h4, h1...2, and h5...8. The client computes h′3 := H(x3),
h′3...4 := H(h′3, h4), h′1...4 := H(h1...2, h

′
3...4), and h′1...8 := H(h′1...4, h5...8), and

then verifies that h′1...8
?
= h1...8. If H is collision resistant and the server tries

to send an incorrect file x′3 6= x3, it will be infeasible for the server to send
any proof that will cause verification to succeed. Using this approach, the
client’s local storage is constant (independent of t), and the communication
overhead is logarithmic in t.

198 Introduction to Modern Cryptography

6.6.3 Password Hashing

One of the most common and important uses of hash functions in computer
security is for password protection. Consider a user typing in a password
before using their laptop. To authenticate the user, some form of the user’s
password must be stored somewhere on their laptop. If the user’s password
is stored in the clear, then an adversary who steals the laptop can read the
user’s password off the hard drive and then impersonate that user. (It may
seem pointless to try to hide one’s password from an attacker who can already
read the contents of the hard drive. However, files on the hard drive may be
encrypted with a key derived from the user’s password, and would thus only
be accessible after the password is entered. In addition, the user is likely to
use the same password for other purposes.)

This risk can be mitigated by storing a hash of the password instead of the
password itself. That is, the value hpw = H(pw) is stored on the laptop in
a password file; later, when the user enters its password pw, the operating

system checks whether H(pw)
?
= hpw before granting access. The same basic

approach is also used for password-based authentication over the web, with
a login server holding the password file. Now, if an attacker steals the hard
drive (or breaks into the login server), all it obtains is the hash of the password
and not the password itself.

If the password is chosen from some relatively small space D of possibilities
(e.g., D might be a dictionary of English words, in which case |D| ≈ 80, 000),
an attacker can enumerate all possible passwords pw1, pw2, . . . ∈ D and, for
each candidate pwi, check whether H(pwi) = hpw. We would like to claim
that an attacker can do no better than this. (This would also ensure that
the adversary could not learn the password of any user who chose a strong
password from a large domain.) Unfortunately, preimage resistance (i.e., one-
wayness) of H is not sufficient to imply what we want. For one thing, preimage
resistance only says that H(x) is hard to invert when x is chosen uniformly
from a large domain. It says nothing about the hardness of inverting H when
x is chosen from a small domain, or when x is chosen according to some other
distribution. Moreover, preimage resistance says nothing about the concrete
amount of time needed to find a preimage. For example, a hash function H for
which recovering x ∈ {0, 1}n from H(x) requires time 2n/2 could still qualify
as preimage resistant, yet this would mean that a 32-bit uniform password
could be recovered in only 216 time.

If we model H as a random oracle, though, we can formally prove the
security we want: namely, recovering pw from hpw (assuming pw is chosen
uniformly from D) requires O(|D|) evaluations of H, on average.

The above discussion assumes no preprocessing is done by the attacker. As
we have seen in Section 6.4.3, though, preprocessing can be used to generate
large tables that enable inversion (even of a random function!) faster than ex-
haustive search. The tables—called rainbow tables—only need to be generated
once, and can be used to recover thousands of passwords in case of a server

Hash Functions and Applications 199

breach. This is a significant concern in practice: even if a user chooses their
password as a random combination of 8 alphanumeric English characters—
giving a password space of size N = 628 ≈ 247.6—there is an attack using time
and space N2/3 ≈ 232 that will be highly effective at recovering the password.
Such attacks are routinely carried out in practice.

Mitigation. We briefly describe two mechanisms used to mitigate the threat
of password cracking. One technique is to use hash functions that are “moder-
ately hard to compute,” in the sense that they do not add significant overhead
when evaluated once (as done by the server when authenticating a user) but
are prohibitively expensive to evaluate tens of thousands of times (as would
be done by a user in a brute-force attack).

A second mechanism is to introduce a salt. When a user registers their pass-
word, the laptop/server will generate a long random value s (a “salt”) unique
to that user, and store (s, hpw = H(s, pw)) instead of merely storing H(pw)
as before. Since s is unknown to the attacker in advance, preprocessing is inef-
fective and the best an attacker can do is to wait until it obtains the password
file and then do a linear-time exhaustive search over the domain D. Note also
that since a different salt is used for each user, a separate brute-force search
is needed to recover each user’s password.

6.6.4 Key Derivation

Symmetric-key cryptosystems require the secret key to be a uniformly dis-
tributed bit-string. Often, however, it is more convenient for two parties to
rely on shared information such as a password or biometric data that is not
uniformly distributed. (Jumping ahead, in Chapter 11 we will see how parties
can interact over a public channel to generate a high-entropy shared secret
that is also not necessarily uniformly distributed.) The parties could try to
use their nonuniform shared information directly as a secret key, but in gen-
eral this will not be secure. Moreover, the shared data may not even have the
correct format to be used as a secret key (it may be too long, for example).

Truncating the shared secret, or mapping it in some other heuristic way
to a string of the correct length, may lose a significant amount of entropy.
(We define one notion of entropy more formally below, but for now one can
think of entropy as the logarithm of the number of possible shared secrets.)
For example, imagine two parties share a password composed of 28 random
upper-case English letters, and want to use a cryptosystem with a 128-bit
key. Since there are 26 possibilities for each character, there are 2628 > 2130

possible passwords. If the password is shared in ASCII format, each character
is stored using 8 bits, and so the total length of the password is 224 bits. If
the parties truncate their password to the first 128 bits, they will be using
only the first 16 characters of their password. Even worse, this will not be a
uniformly distributed 128-bit string! The ASCII representations of the letters
A–Z lie between 0 x 41 and 0 x 5A; in particular, the first 3 bits of every byte

200 Introduction to Modern Cryptography

are always 010. This means that 37.5% of the bits of the resulting key will be
fixed, and the 128-bit key the parties derive will have only about 75 bits of
entropy (i.e., there are only 275 or so possibilities for the key).

What we need is a generic solution for deriving a key of some desired length
from a high-entropy (but not necessarily uniform) shared secret. Before con-
tinuing, we define the notion of entropy we consider here.

DEFINITION 6.12 A probability distribution X has m bits of min-entropy
if for every fixed value x it holds that PrX←X [X = x] ≤ 2−m. In other words,
even the most likely outcome occurs with probability at most 2−m.

The uniform distribution over a set of size S has min-entropy logS. A dis-
tribution in which one element occurs with probability 1/10 and 90 elements
each occur with probability 1/100 has min-entropy log 10 ≈ 3.3. The min-
entropy of a distribution measures the probability with which an attacker can
guess a value sampled from that distribution; the attacker’s best strategy is to
guess the most likely value, and so if the distribution has min-entropy m the
attacker’s guess is correct with probability at most 2−m. This explains why
min-entropy (rather than other notions of entropy) is useful in our context.

A key-derivation function provides a way to obtain a (close to) uniformly
distributed string from any distribution with high min-entropy. It is not
hard to see that if we model a hash function H as a random oracle, then H
serves as a good key-derivation function. (As a technical point, we require
the original distribution to be independent of H. This will normally be the
case in practice.) Consider an attacker’s uncertainty about H(X), where X
is sampled from a distribution with min-entropy m. Each of the attacker’s
queries to H can be viewed as a “guess” for the value of X; by assumption on
the min-entropy of the distribution, an attacker making q queries to H will
query H(X) with probability at most q · 2−m. As long as the attacker does
not query H(X), the value H(X) is uniform from the attacker’s point of view.

It is also possible to design key-derivation functions without relying on the
random-oracle model, by using keyed hash functions called (strong) extractors.
The key for the extractor must be uniform, but need not be kept secret.

6.6.5 Commitment Schemes

A commitment scheme allows one party to “commit” to a value m by send-
ing a commitment com, and then to reveal m (by “opening” the commitment)
at a later point in time. We require the following properties to hold:

� Hiding: the commitment com reveals nothing about m.

� Binding: it is infeasible for the committer to output a commitment com
that it can later “open” as two different messages m,m′. (In this sense,
com truly “commits” the committer to at most one value.)

Hash Functions and Applications 201

A commitment scheme can be viewed as a digital envelope: sealing a message
m in an envelope and giving the envelope to another party hides m (until the
envelope is opened) even though the value of m is fixed (since the contents of
the envelope cannot be changed).

Formally, a (non-interactive) commitment scheme is defined by an algo-
rithm Gen that outputs public parameters params, and a randomized algo-
rithm Com that takes params and a message m ∈ {0, 1}n and outputs a
commitment com; when we make the randomness used by Com explicit, we
denote it by r. A sender commits to m by choosing uniform r, computing
com := Com(params,m; r), and sending it to a receiver. The sender can later
open com and reveal m by sending m, r to the receiver; the receiver verifies

that m is the committed value by checking that Com(params,m; r)
?
= com.

Hiding means that com reveals nothing about m. This is defined via the
following experiment.

The commitment hiding experiment HidingA,Com(n):

1. Parameters params← Gen(1n) are generated.

2. The adversary A is given input params, and outputs a pair of
messages m0,m1 ∈ {0, 1}n.

3. A uniform b ∈ {0, 1} is chosen and com← Com(params,mb)
is computed.

4. The adversary A is given com and outputs a bit b′.

5. The output of the experiment is 1 if and only if b′ = b.

Binding means that it is impossible to output a commitment com that can
be opened in two different ways.

The commitment binding experiment BindingA,Com(n):

1. Parameters params← Gen(1n) are generated.

2. A is given input params and outputs (com,m, r,m′, r′).

3. The output of the experiment is defined to be 1 if and only if
m 6= m′ and Com(params,m; r) = com = Com(params,m′; r′).

DEFINITION 6.13 A commitment scheme Com is secure if for all ppt
adversaries A there is a negligible function negl such that

Pr
[
HidingA,Com(n) = 1

]
≤ 1

2
+ negl(n)

and

Pr
[
BindingA,Com(n) = 1

]
≤ negl(n).

202 Introduction to Modern Cryptography

It is easy to construct a secure commitment scheme from a random oracleH.
To commit to a message m, the sender chooses uniform r ∈ {0, 1}n and out-
puts com := H(m‖r). (In the random-oracle model, Gen and params are not
needed since H, in effect, serves as the public parameters of the scheme.)
Binding follows immediately from the fact that H is collision resistant. In-
tuitively, hiding follows from the fact that an adversary queries H(?‖r) with
only negligible probability (since r is a uniform n-bit string); if it never makes
a query of this form then com = H(m‖r) reveals nothing about m.

Commitment schemes can be constructed without random oracles (in fact,
from one-way functions), but the details are beyond the scope of this book.

References and Additional Reading

Collision-resistant hash functions were formally defined by Damg̊ard [60].
As we have noted, other notions of security for hash functions can also be
considered [137, 173]. The Merkle–Damg̊ard transform was introduced inde-
pendently by Merkle [140] and Damg̊ard [61]

The hash-and-MAC paradigm is folklore. HMAC was introduced and ana-
lyzed by Bellare et al. [16], and subsequently standardized [149].

The small-space birthday attack described in Section 6.4.2 relies on a cycle-
finding algorithm of Floyd. Related algorithms and results are described at
http://en.wikipedia.org/wiki/Cycle_detection. The idea for finding
meaningful collisions using the small-space attack is by Yuval [206]. The
possibility of parallelizing collision-finding attacks, which can offer significant
speedups in practice, is discussed in detail by van Oorschot and Wiener [198].
Time/space tradeoffs for function inversion were introduced by Hellman [95],
with practical improvements—not discussed here—given by Rivest (unpub-
lished) and Oechslin [155] (who coined the term “rainbow tables”).

The first formal treatment of the random-oracle model was given by Bellare
and Rogaway [24], although the idea of using a “random-looking” function in
cryptographic applications had been suggested previously, most notably by
Fiat and Shamir [72]. Proper instantiation of a random oracle from crypto-
graphic hash functions is considered in several papers [24, 25, 26, 56]. The
seminal negative result concerning the random-oracle model is that of Canetti
et al. [47], who show (contrived) schemes that are secure in the random-oracle
model but are insecure for any concrete instantiation of the random oracle.

Merkle trees go back at least to the 1980s [138]. Designing hash functions
to make password cracking difficult is an active area of research; some pop-
ular examples of such hash functions include bcrypt and scrypt. A formal
treatment of key derivation is given by Krawczyk [123]. Standardized key-
derivation functions include HKDF and PBKDF2.

http://en.wikipedia.org

Hash Functions and Applications 203

Exercises

6.1 Provide formal definitions for second-preimage resistance and preimage
resistance. Then:

(a) Prove that any hash function that is collision resistant is second-
preimage resistant.

(b) Prove that if a compression function mapping 2n-bit inputs to n-bit
outputs is second-preimage resistant then it is preimage resistant.

6.2 Let (Gen1, H1) and (Gen2, H2) be two hash functions. Define (Gen, H)
so that Gen runs Gen1 and Gen2 to obtain keys s1 and s2, respectively.
Then define Hs1,s2(x) = Hs1

1 (x)‖Hs2
2 (x).

(a) Prove that if at least one of (Gen1, H1) and (Gen2, H2) is collision
resistant, then (Gen, H) is collision resistant.

(b) Determine whether an analogous claim holds for second-preimage
resistance and preimage resistance, respectively. Prove your answer
in each case.

6.3 Let (Gen, H) be a collision-resistant hash function. Is (Gen, Ĥ) defined

by Ĥs(x)
def
= Hs(Hs(x)) necessarily collision resistant?

6.4 Provide a formal proof of Theorem 6.4 (i.e., describe the reduction).

6.5 Generalize the Merkle–Damg̊ard transform to the case where (Gen, h)
takes inputs of length n + 1 and generates outputs of length n. (The
hash function you construct should accept inputs of any length L < 2n.)
Prove that your transform yields a collision-resistant hash function for
arbitrary-length inputs if (Gen, h) is collision resistant.

6.6 Consider the following modification of the Merkle–Damg̊ard transform:
append a 1 to the input x, followed by enough zeros so that the length of
the resulting string is n more than a multiple of n′. Parse the resulting
string as z0, x1, . . . , xB , where |z0| = n and |xi| = n′. Then for i =
1, . . . , B, compute zi := hs(zi−1‖xi); output zB .

Show how to find a collision in the resulting hash function when this
transform is applied to any compression function (Gen, h).

6.7 Consider the following modification of the Merkle–Damg̊ard transform:
append a 1 to the input x, followed by enough zeros so that the length
of the resulting string is a multiple of n′. Parse the resulting string
as the sequence of n′-bit blocks x1, . . . , xB . Set z0 := 0n. Then for

204 Introduction to Modern Cryptography

i = 1, . . . , B, compute zi := hs(zi−1‖xi); output zB . Assuming collision-
resistant compression functions exist, show that there exists a collision-
resistant compression function (Gen, h) such that this modified trans-
form applied to (Gen, h) is not collision resistant.

Hint: Let h be such that hs(0n, 0n
′
) = 0n for all s.

6.8 Assume collision-resistant hash functions exist. Show a construction
of a fixed-length hash function (Gen, h) that is not collision resistant,
but such that the hash function (Gen, H) obtained from applying the
Merkle–Damg̊ard transform to (Gen, h) is collision resistant.

6.9 Prove or disprove: if (Gen, h) is preimage resistant, then so is the hash
function (Gen, H) obtained by applying the Merkle–Damg̊ard transform
to (Gen, h).

6.10 Prove or disprove: if (Gen, h) is second-preimage resistant, then so is
the hash function (Gen, H) obtained by applying the Merkle–Damg̊ard
transform to (Gen, h).

6.11 Before HMAC, it was common to define a MAC for arbitrary-length
messages by Mack(m) = H(k‖m) where H is a collision-resistant hash
function.

(a) Prove that this is a secure MAC if H is modeled as a random oracle.

(b) Show that this is not a secure MAC when H is constructed via the
Merkle–Damg̊ard transform. (Assume k ∈ {0, 1}n.)

6.12 A student has 3,500 songs on her phone, and chooses songs to play at
random. How many songs should the student expect to play before
hearing some song twice (with probability at least 50%)?

6.13 Sample uniform y1, . . . , yq ∈ {0, 1}` and y′1, . . . , y
′
q ∈ {0, 1}`. What is

the probability that there exist i, j such that yi = y′j?

6.14 Fix H : {0, 1}n → {0, 1}2n, and define the keyed function F : {0, 1}n ×
{0, 1}n → {0, 1}2n by Fk(x) = H(k ⊕ x). Show that an attacker given
oracle access to Fk(·) can recover the n-bit key k with constant proba-
bility in time ≈ 2n/2 (which is better than a brute-force attack).

Hint: Use the previous exercise.

6.15 Prove that the keyed function F given in Section 6.5.1 is a pseudorandom
function if H is modeled as a random oracle.

6.16 Prove Theorem 6.11.

6.17 Show how to find a collision in the Merkle tree construction if t is not
fixed. Specifically, show how to find two sets of inputs x1, . . . , xt and
x′1, . . . , x

′
2t such that MT t(x1, . . . , xt) =MT 2t(x

′
1, . . . , x

′
2t).

Hash Functions and Applications 205

6.18 Modify the construction of a Merkle tree so that it is collision resistant
even when the number of inputs t may vary.

6.19 Consider the scenario introduced in Section 6.6.2 in which a client stores
files on a server and wants to verify that files are returned unmodified.

(a) Provide a formal definition of security for this setting.

(b) Formalize the protocol based on Merkle trees as discussed in Sec-
tion 6.6.2.

(c) Prove that your construction is secure relative to your definition
under the assumption that (GenH , H) is collision resistant.

6.20 Prove that the commitment scheme discussed in Section 6.6.5 is secure
if H is modeled as a random oracle.

http://taylorandfrancis.com

Chapter 7

Practical Constructions of
Symmetric-Key Primitives

In previous chapters we have demonstrated how secure encryption schemes
and message authentication codes can be constructed from cryptographic
primitives such as pseudorandom generators (aka stream ciphers), pseudo-
random permutations (aka block ciphers), and hash functions. One question
we have not yet addressed, though, is how these cryptographic primitives
are constructed in the first place, or even whether they exist at all! In the
next chapter we will study this question from a theoretical point of view, and
show constructions of pseudorandom generators and pseudorandom permuta-
tions based on quite weak assumptions. (It turns out that collision-resistant
hash functions are more difficult to construct, and appear to require stronger
assumptions. We will see a provably secure construction in Section 9.4.2.)
In this chapter, our focus will be on comparatively heuristic—but far more
efficient—constructions of these primitives that are widely used in practice.

The constructions we will explore in this chapter are heuristic in the sense
that they cannot be proven secure based on any weaker assumption. Never-
theless, they are based on a number of sound design principles that can be
justified by theoretical analysis. Perhaps more importantly, many of these
constructions have withstood years of public scrutiny and attempted crypt-
analysis; given this, it is quite reasonable to assume they are secure.

In some sense there is no fundamental difference between assuming, say,
that factoring is hard and assuming that AES (a block cipher we will study
later in this chapter) is a pseudorandom permutation. There is, however, a
significant qualitative difference between these assumptions.1 The primary
difference is that the former assumption relates to a weaker requirement: the
assumption that large integers are hard to factor is arguably simpler and more
natural than the assumption that AES with a uniform key is indistinguishable
from a random permutation. Other relevant differences are that factoring has
been studied much longer than the problem of distinguishing AES from a
random permutation, and that factoring was recognized as a hard problem by
mathematicians independent of any cryptographic applications. The factoring
problem has also been studied for a longer period of time.

1It should be clear that the discussion in this paragraph is informal, as we cannot formalize
much given that we cannot prove factoring hard in the first place!

207

208 Introduction to Modern Cryptography

Aims of This Chapter

The main aims of this chapter are (1) to present some design principles used
in the construction of modern cryptographic primitives, and (2) to introduce
the reader to some popular schemes used in the real world. We caution that:

� It is not the aim of this chapter to teach readers how to design new
cryptographic primitives. On the contrary, we believe that the design of
new primitives requires significant expertise and effort, and is not some-
thing to be attempted lightly. Those who are interested in developing
additional expertise in this area are advised to read the more advanced
references included at the end of the chapter.

� It is not our intent to present all the low-level details of the various
primitives we discuss here, and our descriptions should not be relied
upon for implementation. In fact, our descriptions are sometimes pur-
posefully inaccurate, as we omit certain details that are not relevant to
the broader conceptual point we are trying to emphasize.

7.1 Stream Ciphers

Recall from Section 3.6.1 that a stream cipher is defined by two deter-
ministic algorithms (Init,Next). The Init algorithm takes as input a key k
(sometimes also called a seed) and optionally an initialization vector IV , and
returns an initial state st. The Next algorithm can then be called repeatedly
(updating the state after each invocation) to generate an unbounded stream
of random-looking bits. A stream cipher that does not take an IV should be-
have like a pseudorandom generator: namely, when the key k is uniform then
the sequence of generated bits should be indistinguishable from a sequence
of uniform and independent bits. When a stream cipher takes an IV then it
should act like a pseudorandom function; that is, for a uniform key k and dis-
tinct (known) initialization vectors IV1, IV2, . . . , IV`, the ` sequences of bits
generated using k and each IV should be indistinguishable from ` sequences
of independent, uniform bits. We refer to Section 3.6.1 for formal definitions.

In this section we consider three stream ciphers constructed in very differ-
ent ways. Trivium is a standardized stream cipher that is very efficient in
hardware. It is based on feedback shift registers, a topic of independent inter-
est that we discuss in Sections 7.1.1 and 7.1.2. RC4 is a software-optimized
stream cipher developed in 1987 that was widely used for over twenty years.
Although several weaknesses in RC4 have been discovered (and it should no
longer be used), it is still interesting to study. We end with a discussion of
ChaCha20, a modern stream cipher with good performance in software that
has been adopted as a replacement for RC4 in several internet standards.

Practical Constructions of Symmetric-Key Primitives 209

7.1.1 Linear-Feedback Shift Registers

We begin by discussing linear-feedback shift registers (LFSRs). These have
been used historically for pseudorandom-number generation, as they are ex-
tremely efficient to implement in hardware, and generate output with good
statistical properties. By themselves, however, they do not give cryptograph-
ically strong pseudorandom generators. Nevertheless, LFSRs (and their non-
linear generalizations that we discuss in the next section) can be used as a
component of secure stream-cipher designs.

FIGURE 7.1: A linear-feedback shift register.

An LFSR consists of an array of n registers sn−1, . . . , s0 along with a feed-
back loop specified by a set of n boolean feedback coefficients cn−1, . . . , c0.
(See Figure 7.1.) The size of the array is called the degree of the LFSR. Each
register stores a single bit, and the state st of an LFSR at any point in time
consists of the bits contained in its registers. The state of an LFSR is updated
in each of a series of “clock ticks” by shifting the values in all the registers to
the right, and setting the new value of the left-most register equal to the XOR
of some subset of the current registers determined by the feedback coefficients.

That is, if the state at some time t is s
(t)
n−1, . . . , s

(t)
0 , then the state after the

next clock tick is s
(t+1)
n−1 , . . . , s

(t+1)
0 with

s
(t+1)
i := s

(t)
i+1, i = 0, . . . , n− 2

s
(t+1)
n−1 :=

n−1⊕
i=0

ci s
(t)
i .

Figure 7.1 shows a degree-4 LFSR with c0 = c2 = 1 and c1 = c3 = 0.

At each clock tick, the LFSR outputs the value of the right-most register s0.

If the initial state of the LFSR is s
(0)
n−1, . . . , s

(0)
0 , the first n bits of the output

stream are exactly s
(0)
0 , . . . , s

(0)
n−1. The next output bit is s

(1)
n−1 =

⊕n−1
i=0 ci s

(0)
i .

In general, if we denote the output bits by y0, y1, . . ., where yi = s
(i)
0 , then

yi = s
(0)
i i = 0, . . . , n− 1

yi =
n−1⊕
j=0

cj yi−n+j i > n− 1.

210 Introduction to Modern Cryptography

As an example using the LFSR from Figure 7.1, if the initial state is (s3, s2, s1, s0) =
(0, 0, 1, 1) then the states for the first five time periods are

(0, 0, 1, 1)

(1, 0, 0, 1)

(1, 1, 0, 0)

(1, 1, 1, 0)

(1, 1, 1, 1)

and the output (which can be read off the right-most column of the above) is
the stream of bits 1, 1, 0, 0, 1,

A degree-n LFSR can be used to define a stream cipher (Init,Next) in the
natural way. Init takes as input an n-bit key k and sets the initial state of the
LFSR to k. Next corresponds to one clock tick, outputting a single bit and
updating the state of the LFSR accordingly.

A degree-n LFSR has 2n possible states corresponding to the possible values
of the bits in its registers. Define the transition graph of an LFSR to be a
directed graph with a vertex corresponding to each state, and an edge from
one vertex v to another vertex v′ if updating the state corresponding to v
in one clock tick results in the state corresponding to v′. (Thus, each vertex
has a single outgoing edge.) We further label the edges of the graph with
the bit that would be output by the LFSR when making the corresponding
transition. For example, in the transition graph for the LFSR from Figure 7.1
the vertex (1, 0, 0, 1) has an edge to the vertex (1, 1, 0, 0) labeled with the
bit ‘1.’ Choosing a random initial state for the LFSR and then updating the
LFSR in a series of clock ticks is thus equivalent to choosing a random initial
vertex v and then following the path of directed edges (and outputting the
corresponding bits on those edges) beginning at v.

A degree-n LFSR will eventually repeat some previous state; once it does, it
will then repeatedly cycle among some set of states, and the bits it outputs will
begin repeating as well. This corresponds to being in a cycle of the transition
graph. The LFSR is maximum length if it cycles through all 2n − 1 nonzero
states before repeating; i.e., its transition graph contains a cycle through all
2n − 1 nonzero states. (In the transition graph for any LFSR, the all-0 state
has a self-loop. If the all-0 state is ever reached the LFSR remains in that
state forever.) If an LFSR is maximum length then, when initialized in any
nonzero state, it will cycle through all 2n − 1 nonzero states. Whether an
LFSR is maximum length depends only on its feedback coefficients. It is well
understood how to set the feedback coefficients so as to obtain a maximum-
length LFSR, although the details are beyond the scope of this book.

Key-recovery attacks on LFSRs. The output of a maximum-length LFSR
has good statistical properties; as just one example, the output stream con-
tains roughly an equal number of 0s and 1s. Nevertheless, LFSRs are not
secure stream ciphers. If we assume the feedback coefficients of the LFSR are

Practical Constructions of Symmetric-Key Primitives 211

known (as we should, following Kerckhoffs’ principle), then the first n bits
of output from a degree-n LFSR reveal the initial state (i.e., the key); once
that is known, all future output bits can be computed. One might try to
prevent this by using the key to also set the feedback coefficients; even in this
case, however, the attacker can learn the entire key after observing at most
2n output bits. The first n output bits y0, . . . , yn−1 of the LFSR reveal the
entire initial state, as before. Given the next n output bits yn, . . . , y2n−1, the
attacker can set up a system of n linear equations in the n unknown feedback
coefficients cn−1, . . . , c0:

yn = cn−1 yn−1 ⊕ · · · ⊕ c0 y0

...

y2n−1 = cn−1 y2n−2 ⊕ · · · ⊕ c0 yn−1.

One can show that for a maximum-length LFSR the above equations are
linearly independent (modulo 2), and so uniquely determine the feedback
coefficients. The coefficients can thus be found efficiently using linear algebra.
(If the LFSR is not maximum length, then variants of this attack still apply.)
With the feedback coefficients and the initial state known, all subsequent
output bits of the LFSR can again be easily determined.

7.1.2 Adding Nonlinearity

The linear relationships between the output bits of an LFSR enable an easy
attack. To thwart such attacks, we must introduce some nonlinearity, i.e.,
using ANDs/ORs of secret values and not just their XOR. There are several
different approaches to doing so, and we only explore some of them here. All
the ideas we discuss can also be combined with each other in different ways.

Nonlinear feedback. One obvious way to introduce nonlinearity is to make
the feedback loop nonlinear; we refer to the result simply as a feedback shift
register (FSR). An FSR will again consist of an array of registers, each con-
taining a single bit. As before, the state of the FSR is updated in each of
a series of clock ticks by shifting the values in all the registers to the right;
now, however, the new value of the left-most register will be a nonlinear func-
tion of the current registers. In other words, if the state at some time t is

s
(t)
n−1, . . . , s

(t)
0 , then the state after the next clock tick is s

(t+1)
n−1 , . . . , s

(t+1)
0 with

s
(t+1)
i := s

(t)
i+1, i = 0, . . . , n− 2

s
(t+1)
n−1 := g(s

(t)
n−1, . . . , s

(t)
0)

for some arbitrary (nonlinear) function g. As before, the FSR outputs the
value of the right-most register s0 at each clock tick. For security, g should be
balanced in the sense that Pr[g(sn−1, . . . , s0) = 1] ≈ 1/2, where the probability
is over uniform choice of sn−1, . . . , s0.

212 Introduction to Modern Cryptography

Nonlinear output. Another approach is to introduce nonlinearity in the
output sequence. In the most basic case, we could have an LFSR as before
(where the new value of the left-most register is again computed as a linear
function of the current registers), but where the output at each clock tick is
a nonlinear function g (called the filter) of the current registers, rather than
just the right-most register. This construction is sometimes called a filter
generator. As before, g should be balanced so that the output stream will not
have any obvious bias.

Combination generators. Yet another possibility is to use more than one
LFSR, and to generate the final output stream by combining the outputs of
the individual LFSRs in some nonlinear way. This gives what is known as a
(nonlinear) combination generator. The individual LFSRs need not have the
same degree, and in fact the cycle length of the combination generator will be
maximized if they do not have the same degree.

The way in which the output streams of the underlying LFSRs are combined
must be done so as to ensure the final output is unbiased; simply computing
the AND of the underlying output streams, for example, would result in out-
put bits that are biased toward 0. Care must also be taken to ensure that the
final output of the combination generator is not too highly correlated with any
of the output streams of the underlying LFSRs, as high correlation can lead to
attacks. For example, consider combining three LFSRs A,B, and C generat-
ing output streams a0, a1, . . ., b0, b1, . . ., and c0, c1, . . ., respectively, by setting
the ith output bit of the combination generator equal to yi := (ai ∧ bi) ⊕ ci
(where ∧ denotes binary AND). If the degrees of the individual LFSRs are
na, nb, and nc, then the overall state has length na + nb + nc and we might
hope that the best attack distinguishing the output of the combination gen-
erator from uniform requires time 2na+nb+nc . But observe that if we treat
each bit of each of the underlying output streams as uniform, then ai ∧ bi
is equal to 0 with probability 3/4, and so Pr[ci = yi] = 3/4. Thus, given a
long output stream y0, y1, . . . of the combination generator, an attacker can
enumerate all 2nc possible values of the initial state for LFSR C and compute
the output sequence c0, c1, . . . for each one. The correct initial state for C will
result in a sequence that agrees with the observed output stream roughly 3/4
of the time; moreover, with high probability, no other candidate state will.
The allows the attacker to obtain the initial state of C in time 2nc . Having
done so, it can then recover the initial states of LFSRs A and B in time at
most 2na+nb . (See Exercise 7.4 for a better attack.)

7.1.3 Trivium

To illustrate the ideas from the previous section, we briefly describe the
stream cipher Trivium. This stream cipher was selected as part of the portfolio
of the eSTREAM project, a European effort completed in 2008 whose goal
was to develop new stream ciphers. Trivium was designed to have a simple

Practical Constructions of Symmetric-Key Primitives 213

description and a compact hardware implementation.

and

and

and

FIGURE 7.2: A schematic illustration of Trivium with (from top to
bottom) three coupled, nonlinear FSRs A, B, and C.

Trivium uses three coupled, nonlinear FSRs denoted by A, B, and C and
having degrees 93, 84, and 111, respectively. (See Figure 7.2.) The state st
of Trivium is simply the 288 bits comprising the values in all the registers of
these FSRs. At each clock tick, the output of each FSR is the XOR of its
right-most register and one additional register; the output of Trivium is the
XOR of the output bits of the three FSRs. The FSRs are coupled : at each
clock tick, the new value of the left-most register of each FSR is computed as
a function of one of the registers in the same FSR and a subset of the registers
from a second FSR. The feedback function in each case is nonlinear.

The Init algorithm of Trivium accepts an 80-bit key and an 80-bit IV . The
key is loaded into the 80 left-most registers of A, and the IV is loaded into
the 80 left-most registers of B. The remaining registers are set to 0, except
for the three right-most registers of C, which are set to 1. The FSRs are then
run for 4 · 288 clock ticks (with the output discarded), and the resulting state
is taken as the initial state.

To date, no cryptanalytic attacks better than exhaustive search are known
against Trivium.

7.1.4 RC4

LFSRs are efficient when implemented in hardware, but have poor perfor-
mance in software. For this reason, alternate designs of stream ciphers have
been explored. A prominent example is RC4, which was designed by Ron

214 Introduction to Modern Cryptography

Rivest in 1987. RC4 is remarkable for its speed and simplicity, and resisted
serious attack for several years. While RC4 is still occasionally used, recent
attacks have shown serious cryptographic weaknesses in RC4 and it is no
longer recommended for cryptographic applications.

ALGORITHM 7.1
Init algorithm for RC4

Input: 16-byte key k
Output: Initial state (S, i, j)
(Note: All addition is modulo 256)

for i = 0 to 255:
S[i] := i
k[i] := k[i mod 16]

j := 0
for i = 0 to 255:
j := j + S[i] + k[i]
Swap S[i] and S[j]

i := 0, j := 0
return initial state (S, i, j)

ALGORITHM 7.2
Next algorithm for RC4

Input: Current state (S, i, j)
Output: Output byte y; updated
state (S, i, j)
(Note: All addition is modulo 256)

i := i+ 1
j := j + S[i]
Swap S[i] and S[j]
t := S[i] + S[j]
y := S[t]
return y and (S, i, j)

The state of RC4 consists of a 256-byte array S, which always contains a per-
mutation of the elements 0, . . . , 255, along with two values i, j ∈ {0, . . . , 255}.
For simplicity we assume a 16-byte (128-bit) key k, although the algorithm
can handle keys 1–256 bytes long. We index the bytes of S as S[0], . . . , S[255],
and the bytes of the key as k[0], . . . , k[15].

The Init algorithm for RC4 is presented as Algorithm 7.1. During initializa-
tion, S is first set to the identity permutation (i.e., with S[i] = i for all i) and
k is expanded to 256 bytes by repeating it as many times as needed. Then
each entry of S is swapped at least once with another entry of S at some
“pseudorandom” location. The indices i, j are set to 0, and (S, i, j) is output
as the initial state.

The initial state is used to generate a sequence of output bytes using the
Next algorithm in Algorithm 7.2. Each time Next is called, the index i is simply
incremented (modulo 256), and j is changed in some “pseudorandom” way.
Entries S[i] and S[j] are swapped, and the value of S at position S[i] + S[j]
(again computed modulo 256) is output. Note that each entry of S is swapped
with an entry of S (possibly itself) at least once every 256 iterations, ensuring
good “mixing” of the permutation S.

RC4 was not designed to take an IV as input; however, in practice an IV
is often incorporated by simply concatenating it with the actual key k′ before
initialization. That is, a random IV of the desired length is chosen, k is set
equal to the concatenation of IV and k′ (this can be done by either prepending
or appending IV), and then Init is run as in Algorithm 7.1 to generate an initial

Practical Constructions of Symmetric-Key Primitives 215

state. Output bits are then produced using Algorithm 7.2 exactly as before.
Assuming RC4 is being used in unsynchronized mode (see Section 3.6.2), the
IV would then be sent in the clear to the receiver—who knows the actual
key k′—thus enabling the sender and receiver to generate the same initial
state and hence the same output stream. This method of incorporating an
IV was used in the Wired Equivalent Privacy (WEP) encryption standard for
protecting communications in 802.11 wireless networks.

One should be concerned by this unprincipled way of modifying RC4 to ac-
cept an IV . Even if RC4 were secure when used without an IV as originally
intended, there is no reason to believe that it should be secure when modified
to use an IV as just described. Indeed, contrary to the key, the IV is revealed
to an attacker (since it is sent in the clear); furthermore, using different IV s
with the same fixed key k′—as would be done when using RC4 in unsynchro-
nized mode—means that related values k are being used to initialize the state
of RC4. As we will see below, both of these issues lead to attacks when RC4
is used in this fashion.

Attacks on RC4. Various attacks on RC4 have been known for several
years. Due to this, RC4 should no longer be used; instead, a more modern
stream cipher or block cipher should be used in its place. We describe some
basic attacks here to give a flavor for the techniques involved.

We begin by demonstrating a simple statistical attack on RC4 that does
not rely on the honest parties’ using an IV . Specifically, we show that the
second output byte of RC4 is (slightly) biased toward 0. Let St denote the
array S of the RC4 state after t iterations of Next, with S0 denoting the initial
array. Treating S0 (heuristically) as a uniform permutation of {0, . . . , 255},
with probability 1/256 · (1 − 1/255) ≈ 1/256 it holds that S0[2] = 0 and

X
def
= S0[1] 6= 2. Assume for a moment that this is the case. Then in the

first iteration of Next, the value of i is incremented to 1, and j is set equal to
S0[i] = S0[1] = X. Then entries S0[1] and S0[X] are swapped, so that at the
end of the iteration we have S1[X] = S0[1] = X. In the second iteration, i is
incremented to 2 and j is assigned the value

j + S1[i] = X + S1[2] = X + S0[2] = X,

since S0[2] = 0. Then entries S1[2] and S1[X] are swapped, so that S2[X] =
S1[2] = S0[2] = 0 and S2[2] = S1[X] = X. Finally, the value of S2 at position
S2[i]+S2[j] = S2[2]+S2[X] = X is output; this is exactly the value S2[X] = 0.

When S0[2] 6= 0 the second output byte is uniformly distributed. Overall,
then, the probability that the second output byte is 0 is roughly

Pr[S0[2] = 0 and S0[1] 6= 2] +
1

256
· Pr[S0[2] 6= 0] =

1

256
+

1

256
·
(

1− 1

256

)
≈ 2

256
,

or roughly twice what would be expected for a uniform value.

216 Introduction to Modern Cryptography

By itself the above might not be viewed as a particularly serious attack,
although it does indicate underlying structural problems with RC4. Moreover,
statistical biases like the above have been found in other output bytes of RC4,
and it has been shown that these biases are sufficiently large to allow for the
recovery of plaintext when RC4 is used for encryption.

A more devastating attack against RC4 is possible when an IV is incor-
porated by prepending it to the key. This attack can be used to recover the
key, regardless of its length, and is thus more serious than a distinguishing
attack such as the one described above. Importantly, this attack can be used
to completely break the WEP encryption standard mentioned earlier, and was
influential in getting the standard replaced.

The core of the attack is a way to extend knowledge of the first n bytes of k
to knowledge of the first n+1 bytes of k. Note that when an IV is prepended
to the actual key k′ (so k = IV ‖k′), the first few bytes of k are given to the
attacker for free! If the IV is n bytes long, then an adversary can use this
attack to first recover the (n + 1)st byte of k (which is the first byte of the
real key k′), then the next byte of k, and so on, until it learns the entire key.

Assume the IV is 3 bytes long, as is the case for WEP. The attacker waits
until the first two bytes of the IV have a specific form. The attack can be
carried out with several possibilities for the first two bytes of the IV , but
we look at the case where the IV takes the form IV = (3, 255, X) for X an
arbitrary byte. This means, of course, that k[0] = 3, k[1] = 255, and k[2] = X
in Algorithm 7.1. One can check that after the first four iterations of the
second loop of Init, we have

S[0] = 3, S[1] = 0, S[3] = X + 6 + k[3].

In the next 252 iterations of the Init algorithm, i is always greater than 3. So
the values of S[0], S[1], and S[3] are not subsequently modified as long as j
never takes on the values 0, 1, or 3. If we (heuristically) treat j as taking
on a uniform value in each iteration, this means that S[0], S[1], and S[3] are
not subsequently modified with probability (253/256)252 ≈ 0.05, or 5% of
the time. Assuming this is the case, the first byte output by Next will be
S[3] = X + 6 + k[3]; since X is known, this reveals k[3].

So, the attacker knows that 5% of the time the first byte of the output is
related to k[3] as described above. (This is much better than random guessing,
which is correct 1/256 = 0.4% of the time.) By collecting sufficiently many
samples of the first byte of the output—for several IV s of the correct form—
the attacker obtains a high-confidence estimate for k[3].

7.1.5 ChaCha20

ChaCha20, introduced in 2008, is a stream cipher intended to be extremely
efficient in software. It is available as a replacement for RC4 in many systems
and—as described in Section 5.3.2—is combined with the Poly1305 message

Practical Constructions of Symmetric-Key Primitives 217

authentication code to construct an authenticated encryption scheme widely
used in the TLS protocol. We give a high-level description of ChaCha20 that
gives the main ideas of the scheme, but refer elsewhere for the low-level details.

The core of ChaCha20 is a fixed permutation P that operates on 512-bit
strings. This permutation is carefully constructed to be both highly efficient
and “cryptographically strong.” To improve efficiency, it was designed to
rely primarily on only three assembly-level instructions operating on 32-bit
words: Addition (modulo 232), bitwise (cyclic) Rotation, and XOR; P is thus
an example of what is called an ARX-based design. From a cryptographic
point of view, P is intended to be a suitable instantiation of a “random per-
mutation,” and constructions based on P can be analyzed in the so-called
random-permutation model. By analogy with the random-oracle model (see
Section 6.5), the random-permutation model assumes that all parties are given
access to oracles for a uniform permutation P as well as its inverse P−1. In this
model, as in the random-oracle model, the only way to compute P (or P−1)
is to explicitly query those oracles. (We refer to Section 7.3.3 for an example
of a proof of security in the random-permutation model.)

In ChaCha20, the permutation P is used to construct a pseudorandom
function F taking a 256-bit key and mapping 128-bit inputs to 512-bit outputs.
This keyed function F is defined as

Fk(x)
def
= P (const‖k‖x) � const‖k‖x,

where const is a 128-bit constant. (Above, ‘�’ denotes word-wise modular
addition.) F can be shown to be a pseudorandom function if P is modeled as
a random permutation.

The ChaCha20 stream cipher itself is then constructed from F as in Con-
struction 3.30. Specifically, given a 256-bit seed s and an initialization vector
IV ∈ {0, 1}64, the output of the stream cipher is Fs(IV ‖〈0〉), Fs(IV ‖〈1〉), . . .,
where the counter values 〈0〉, 〈1〉, etc., are encoded as 64-bit integers.

7.2 Block Ciphers

Recall from Section 3.5.1 that a block cipher is an efficient, keyed permu-
tation F : {0, 1}n × {0, 1}` → {0, 1}`. This means the function Fk defined by

Fk(x)
def
= F (k, x) is a bijection (i.e., a permutation), and moreover Fk and its

inverse F−1
k are efficiently computable given k. We refer to n as the key length

and ` as the block length of F , and here we explicitly allow them to differ. The
key length and block length are now fixed constants, whereas in Chapter 3
they were viewed as functions of a security parameter. This puts us in the

218 Introduction to Modern Cryptography

setting of concrete security rather than asymptotic security.2 The concrete-
security requirements for block ciphers are quite stringent, and a block cipher
is generally only considered “secure” if the best known attack (without pre-
processing) has time complexity roughly equivalent to a brute-force search for
the key. Thus, if a cipher with key length n = 256 can be broken in time 2128,
the cipher is (generally) considered insecure even though a 2128-time attack
is infeasible. (In contrast, in an asymptotic setting an attack of complexity
2n/2 is not considered efficient since it requires exponential time, and thus
a cipher where such an attack is possible might still qualify as a pseudoran-
dom permutation.) This is because in the concrete setting we care about the
actual complexity of attacks, and not just their asymptotic behavior. Fur-
thermore, there is a concern that existence of a better-than-brute-force attack
may indicate some more fundamental weakness in the design of the cipher.

Block ciphers are designed to behave, at a minimum, as (strong) pseudo-
random permutations; see Definition 3.27. (Often, block ciphers are designed
and assumed to satisfy even stronger security properties, as we discuss in
Section 7.3.1.) Modeling block ciphers as pseudorandom permutations allows
proofs of security for constructions based on block ciphers, and also makes
explicit the necessary requirements of a block cipher. A solid understanding
of what block ciphers are supposed to achieve is instrumental in their design.
The view that block ciphers should be modeled as pseudorandom permuta-
tions has, at least recently, served as a major influence in their design. As an
example, the call for proposals for the Advanced Encryption Standard (AES)
that we will encounter later in this chapter stated the following evaluation
criterion:

The security provided by an algorithm is the most important fac-
tor. . . . Algorithms will be judged on the following factors: . . .

� The extent to which the algorithm output is indistinguishable
from a random permutation . . .

Modern block ciphers are suitable for all the constructions using pseudoran-
dom permutations (or pseudorandom functions) we have seen in this book.

Notwithstanding the fact that block ciphers are not, on their own, encryp-
tion schemes, the standard terminology for attacks on a block cipher F is:

� In a known-plaintext attack, the attacker is given pairs of inputs/outputs
{(xi, Fk(xi))} (for an unknown key k), with the {xi} outside the at-
tacker’s control.

� In a chosen-plaintext attack, the attacker is given {Fk(xi)} (again, for
an unknown key k) for a series of inputs {xi} chosen by the attacker.

2Although a block cipher with fixed key length has no “security parameter” to speak of, we
still view security as depending on the key length and thus denote that value by n. Viewing
the key length as a parameter makes sense when comparing block ciphers with different key
lengths, or when using a block cipher that supports keys of different lengths.

Practical Constructions of Symmetric-Key Primitives 219

� In a chosen-ciphertext attack, the attacker is given {Fk(xi)} for {xi}
chosen by the attacker, as well as {F−1

k (yi)} for chosen {yi}.

A cipher secure against chosen-plaintext attacks corresponds to a pseudoran-
dom permutation, while one secure against chosen-ciphertext attacks corre-
sponds to a strong pseudorandom permutation. In addition to attacks dis-
tinguishing Fk from a uniform permutation, we will also be interested in key-
recovery attacks in which the attacker can recover the key k after interacting
with Fk. (This is stronger than being able to distinguish Fk from uniform.)

7.2.1 Substitution-Permutation Networks

A secure block cipher (using a random key) must behave like a random
permutation. There are 2`! permutations on `-bit strings, so representing
an arbitrary permutation in this case requires log(2`!) ≈ ` · 2` bits. This is
impractical for ` > 20 and infeasible for ` > 60. (Looking ahead, modern block
ciphers have block lengths ` ≥ 128.) The challenge when designing a block
cipher is to construct permutations having a concise description (namely,
a short key) that behave like random permutations. In particular, just as
evaluating a random permutation at two inputs that differ in only a single
bit should yield two (almost) independent outputs (they are not completely
independent since they cannot be equal), so too changing one bit of the input
to Fk(·), where k is uniform and unknown to an attacker, should yield an
(almost) independent result. This implies that a one-bit change in the input
should “affect” every bit of the output. (Note that this does not mean that all
the output bits will be changed—that would be different behavior than one
would expect for a random permutation. Rather, we just mean informally
that each bit of the output is changed with probability roughly half.) This
takes some work to achieve.

The confusion-diffusion paradigm. In addition to his work on perfect se-
crecy, Shannon also introduced a basic paradigm for constructing concise,
random-looking permutations. The basic idea is to construct a random-
looking permutation F with a large block length from many smaller random
(or random-looking) permutations {fi} with small block length. Let us see
how this works on the most basic level. Say we want F to have a block length
of 128 bits. We can define F as follows: the key k for F will specify 16 per-
mutations f1, . . . , f16 that each have an 8-bit (1-byte) block length.3 Given
an input x ∈ {0, 1}128, we parse it as 16 bytes x1 · · ·x16 and then set

Fk(x) = f1(x1)‖ · · · ‖f16(x16). (7.1)

These round functions {fi} are said to introduce confusion into F .

3An arbitrary permutation on 8 bits can be represented using log(28!) bits, so the length of
the key for F is about 16 · log(28!) bits, or about 3 kbytes. This is much smaller than the
≈ 128 · 2128 bits that would be required to specify an arbitrary permutation on 128 bits.

220 Introduction to Modern Cryptography

It should be immediately clear, however, that F as defined above will not
be pseudorandom. Specifically, if x and x′ differ only in their first bit then
Fk(x) and Fk(x′) will differ only in their first byte (regardless of the key k).
In contrast, for a truly random permutation changing the first bit of the input
would be expected to affect all bytes of the output.

For this reason, a diffusion step is introduced whereby the bits of the output
are permuted, or “mixed,” using a mixing permutation. This has the effect
of spreading a local change (e.g., a change in the first byte) throughout the
entire block. In principle the mixing permutation could depend on the key,
but in practice it is carefully designed and fixed.

The confusion/diffusion steps—together called a round—are repeated mul-
tiple times. This helps ensure that changing a single bit of the input will affect
all the bits of the output. As an example, a two-round block cipher following
this approach would operate as follows. First, confusion is introduced by com-
puting the intermediate result f1(x1)‖ · · · ‖f16(x16) as in Equation (7.1), where
we stress again that the {fi} depend on the key. The bits of the result are then
“shuffled,” or re-ordered, using a mixing permutation to give x′ = x′1 · · ·x′16.
Then f ′1(x′1)‖ · · · ‖f ′16(x′16) is computed, using possibly different functions {f ′i}
that again depend on the key, and the bits of the result are again permuted
using a mixing permutation to give output x′′.

Substitution-permutation networks. A substitution-permutation net-
work (SPN) can be viewed as a direct implementation of the confusion-
diffusion paradigm. The difference is that now the permutations (i.e., the
{fi}, {f ′i}) have a particular form rather than being chosen from the set of
all possible permutations. Specifically, rather than having (a portion of) the
key k specify an arbitrary permutation f , we instead fix a public “substitu-
tion function” (i.e., permutation) S called an S-box, and then let k define the
function f given by f(x) = S(k ⊕ x). (If f takes 8-bit inputs as before, we
have thus reduced the number of possibilities for f from 28! to 28.)

To see how this works concretely, consider an SPN with a 64-bit block length
based on a collection of 8-bit (1-byte) S-boxes S1, . . . , S8. (See Figure 7.3.)
Evaluating the cipher proceeds in a series of rounds, where in each round we
apply the following sequence of operations to the 64-bit input x of that round
(the input to the first round is just the input to the cipher):

1. Key mixing: Set x := x⊕ k, where k is the current-round sub-key ;

2. Substitution: Set x := S1(x1)‖ · · · ‖S8(x8), where xi is the ith byte of x;

3. Permutation: Permute the bits of x to obtain the output of the round.

The output of each round is used as input to the next round. After the last
round there is a final key-mixing step, and the result is the output of the
cipher. (By Kerckhoffs’ principle, we assume the S-boxes and the mixing
permutation(s) are public and known to any attacker. Without the final key-
mixing step, the substitution and permutation steps of the last round would

Practical Constructions of Symmetric-Key Primitives 221

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

S1 S2 S3 S4 S5 S6 S7 S8

64-bit intermediate

64-bit intermediate

64-bit output

64-bit input

64-bit sub-key

FIGURE 7.3: A single round of a substitution-permutation network.

offer no additional security since they do not depend on the key and can be
inverted by an attacker.) Figure 7.4 shows three rounds of an SPN with a
16-bit block length and a different set of 4-bit S-boxes used in each round.

Different sub-keys (or round keys) are used in each round. The actual key
of the block cipher is sometimes called the master key. The round keys are
derived from the master key according to a key schedule. The key schedule
is often simple and may just use different subsets of the bits of the master
key as the various sub-keys, though more complex key schedules can also be
defined. An r-round SPN has r rounds of key mixing, S-box substitution,
and application of a mixing permutation, followed by a final key-mixing step.
(This means that an r-round SPN uses r + 1 sub-keys.)

Any SPN is invertible (given the key). To see this, it suffices to show that
a single round can be inverted; this implies the entire SPN can be inverted
by working from the final round back to the beginning. But inverting a single
round is easy: the mixing permutation can easily be inverted since it is just
a re-ordering of bits. Since the S-boxes are permutations (i.e., one-to-one),
these too can be inverted. The result can then be XORed with the appropriate
sub-key to obtain the original input. Summarizing:

PROPOSITION 7.3 Let F be a keyed function defined by an SPN in
which the S-boxes are all permutations. Then regardless of the key schedule
and the number of rounds, Fk is a permutation for any k.

222 Introduction to Modern Cryptography

x1

round 1

x16

round 2

round 3

S1 S2 S3 S4

S5 S6 S7 S8

S9 S10 S11 S12

input

sub-key k1 mixing

sub-key k2 mixing

sub-key k3 mixing

FIGURE 7.4: Three rounds of a substitution-permutation network.

The number of rounds, along with the exact choices of the S-boxes, mixing
permutations, and key schedule, are what ultimately determine whether a
given block cipher is trivially breakable or highly secure. We now discuss a
basic principle behind the design of the S-boxes and mixing permutations.

The avalanche effect. As noted repeatedly, an important property in any
block cipher is that a small change in the input must “affect” every bit of
the output. We refer to this as the avalanche effect. One way to induce the
avalanche effect in a substitution-permutation network is to ensure that the
following two properties hold (and sufficiently many rounds are used):

1. The S-boxes are designed so that changing a single bit of the input to
an S-box changes at least two bits in the output of the S-box.

2. The mixing permutations are designed so that the bits output by any
given S-box affect the input to multiple S-boxes in the next round. For

Practical Constructions of Symmetric-Key Primitives 223

example, in Figure 7.4 the output from S1 affects the input to S5, S6, S7,
and S8.

To see how this yields the avalanche effect, at least heuristically, assume the
S-boxes are all such that changing a single bit of the input to the S-box results
in a change in exactly two bits in the output of the S-box, and that the mixing
permutations are chosen as required above. For concreteness, assume the S-
boxes have 8-bit input/output length, and that the block length of the cipher
is 128 bits. Consider now what happens when the block cipher is applied to
two inputs that differ in a single bit:

1. After the first round, the intermediate values differ in exactly two bits.
This is because XORing the first-round sub-key maintains the 1-bit dif-
ference in the intermediate values, and so the inputs to all the S-boxes
except one are identical. In the one S-box where the inputs differ, the
output of the S-box causes a 2-bit difference. The mixing permuta-
tion applied to the results changes the positions of these differences, but
maintains a 2-bit difference.

2. The mixing permutation applied at the end of the first round spreads the
two bit-positions where the intermediate results differ into two different
S-boxes in the second round. This remains true even after the second-
round key mixing is done. So, in the second round there are now two
S-boxes that receive inputs differing in a single bit. Thus, at the end of
the second round the intermediate values differ in 4 bits.

3. Continuing the same argument, we expect 8 bits of the intermediate
value to be affected after the 3rd round, 16 bits to be affected after the
4th round, and all 128 bits to be affected at the end of the 7th round.

The last point is not quite precise and it is certainly possible that there will
be fewer differences than expected at the end of some round. (In fact, we
want this to be the case because uncorrelated values should not differ in all
their bits, either.) This can occur when the mixing permutation maps two
bit-positions that differ in some intermediate result to the same S-box in the
following round. For this reason, it is customary to use many more than the
minimum number of rounds needed. But the above analysis gives a lower
bound : if fewer than 7 rounds are used then there must be some set of output
bits that are not affected by a single-bit change in the input, implying that it
will be possible to distinguish the cipher from a random permutation.

One might expect that the “best” way to design S-boxes would be to choose
them at random (subject to the restriction that they are permutations). In-
terestingly, this turns out not to be the case, at least if we want to satisfy the
design criteria mentioned earlier. Consider the case of an S-box operating on
4-bit inputs and let x and x′ be two distinct values. Let y = S(x), and now
consider choosing uniform y′ 6= y as the value of S(x′). There are 4 strings
that differ from y in only 1 bit, and so with probability 4/15 we will choose y′

224 Introduction to Modern Cryptography

that does not differ from y in two or more bits. The problem is compounded
when we consider all pairs of inputs that differ in a single bit. We conclude
based on this example that, as a general rule, the S-boxes must be designed
carefully rather than being chosen at random. Random S-boxes are also not
good for defending against attacks like the ones we will show in Section 7.2.6.

If a block cipher should also be strongly pseudorandom, then the avalanche
effect must also apply to its inverse. That is, changing a single bit of the
output should affect every bit of the input. For this it is useful if the S-boxes
are designed so that changing a single bit of the output of an S-box changes
at least two bits of the input to the S-box. Achieving the avalanche effect in
both directions is another reason for further increasing the number of rounds.

Attacking Reduced-Round SPNs

Experience, along with many years of cryptanalytic effort, indicate that
substitution-permutation networks are a good choice for constructing pseu-
dorandom permutations as long as care is taken in the choice of the S-boxes,
the mixing permutations, and the key schedule. The Advanced Encryption
Standard, described in Section 7.2.5, is similar in structure to a substitution-
permutation network as described above, and is widely believed to be a strong
pseudorandom permutation.

The strength of a cipher F constructed as an SPN depends heavily on
the number of rounds. In order to obtain more insight into substitution-
permutation networks, we will demonstrate attacks on SPNs having very few
rounds. These attacks are fairly simple, but are worth seeing as they demon-
strate conclusively why a large number of rounds is needed.

A trivial case. We first consider a trivial case where F consists of one round
and no final key-mixing step. We show that an adversary given only a single
input/output pair (x, y) can easily learn the secret key k for which y = Fk(x).
The adversary begins with the output value y and then inverts the mixing
permutation and the S-boxes. It can do this, as noted before, because the
full specification of the mixing permutation and the S-boxes is public. The
intermediate value that the adversary computes is exactly x ⊕ k (assuming,
without loss of generality, that the master key is used as the sub-key in the
only round of the network). Since the adversary also knows the input x, it
can immediately derive the secret key k. This is therefore a complete break.

Although this is a trivial attack, it demonstrates that in any substitution-
permutation network there is no security gained by performing S-box substi-
tution or applying a mixing permutation after the last key-mixing step.

Attacking a one-round SPN. Now we have one round followed by a key-
mixing step. For concreteness, we assume a 64-bit block length and S-boxes
with 8-bit (1-byte) input/output length. We assume independent 64-bit sub-
keys k1, k2 are used for the two key-mixing steps, and so the master key k1‖k2

of the SPN is 128 bits long.

Practical Constructions of Symmetric-Key Primitives 225

A first observation is that we can extend the attack from the trivial case
above to give a key-recovery attack here using much less than 2128 work.
The idea is as follows: Given a single input/output pair (x, y) as before, the
attacker enumerates over all possible values for the first-round sub-key k1. For
each such value, the attacker can compute the first round of the SPN using k1

to get a candidate intermediate value x′. The only second-round sub-key that
is consistent with k1 and output y is k2 = x′ ⊕ y. Thus, for each possible
choice of k1 the attacker derives a unique corresponding k2 for which k1‖k2

might be the master key. In this way, the attacker obtains (in 264 time) a
list of 264 possibilities for the master key. These can be narrowed down using
additional input/output pairs in roughly 264 additional time.

A better attack is possible by noting that individual bits of the output
depend on only part of the sub-keys. Fix some given input/output pair (x, y)
as before. Now, the adversary will enumerate over all possible values for the
first byte of k1. It can XOR each such value with the first byte of x to obtain a
candidate value for the 1-byte input to the first S-box. Evaluating this S-box,
the attacker learns a candidate value for the output of that S-box. Since the
output of that S-box is XORed with 8 bits of k2 to yield 8 bits of y (where
the positions of those bits depend on the mixing permutation but are known
to the attacker), this yields a candidate value for 8 bits of k2.

To summarize: for each candidate value for the first byte of k1, there is
a unique possible corresponding value for some 8 bits of k2. Put differently,
this means that for some 16 bits of the master key, the attacker has reduced
the number of possible values for those bits from 216 to 28. The attacker can
tabulate all those feasible values in 28 time. This can be repeated for each
byte of k1, giving 8 lists—each containing 28 16-bit values—that together
characterize the possible values of the entire master key. In this way, the
attacker has reduced the number of possible master keys to (28)8 = 264, as in
the earlier attack; the total time to do this, however, is now 8 · 28 = 211, a
dramatic improvement.

The attacker can use additional input/output pairs to further reduce the
space of possible keys. Importantly, this can be done for each list individually.
Consider the list of 28 feasible values for some set of 16 bits of the master key.
The attacker knows that the correct value from that list must be consistent
with any additional input/output pairs the attacker learns, whereas any in-
correct value in the list is expected to be consistent with another input/output
pair (x′, y′) with probability no better than random. Since a 16-bit value from
the list can be used to compute eight bits of the output given the input x′, an
incorrect value will be consistent with the actual output y′ with probability
roughly 2−8. A small number of additional input/output pairs thus suffices
to narrow down all the lists to just a single value each, at which point the
entire master key is known.

This attack exploits the fact that the effects of different parts of the key can
be isolated. Additional rounds are needed to ensure further diffusion, and to
make sure that each bit of the key affects all of the bits of the output.

226 Introduction to Modern Cryptography

Attacking a two-round SPN. It is possible to extend the above ideas to
give a better-than-brute-force attack on a two-round SPN using independent
sub-keys in each round; we leave this as an exercise. Here we simply note
that a two-round SPN will not be a good pseudorandom permutation, since
the avalanche effect does not occur after only two rounds. (Of course, this
depends on the block length of the cipher and the input/output length of the
S-boxes, but with reasonable parameters this will be the case.) An attacker
can distinguish a two-round SPN from a uniform permutation if it learns the
result of evaluating the SPN on two inputs that differ in a single bit, since
some predictable subset of the output bits will not change.

7.2.2 Feistel Networks

Feistel networks offer another approach for constructing block ciphers. An
advantage of Feistel networks over substitution-permutation networks is that
the underlying functions used in a Feistel network—in contrast to the S-boxes
used in SPNs—need not be invertible. A Feistel network thus provides a way
to construct an invertible function from non-invertible components. This is
important because a good block cipher should have “unstructured” behavior
(so it looks random), yet requiring all the components of a construction to be
invertible inherently introduces structure. Requiring invertibility also intro-
duces an additional constraint on S-boxes, making them harder to design.

A Feistel network operates in a series of rounds. In each round, a keyed
round function is applied in the manner described below. Round functions
need not be invertible. They will typically be constructed from components
like S-boxes and mixing permutations, but a Feistel network can deal with
any round functions irrespective of their design.

In a (balanced) Feistel network with `-bit block length, the ith round func-

tion f̂i takes as input a sub-key ki and an `/2-bit string and generates an
`/2-bit output. As in the case of SPNs, a master key k is used to derive sub-
keys for each round. When some master key is chosen, thereby determining

each sub-key ki, we define fi : {0, 1}`/2 → {0, 1}`/2 via fi(R)
def
= f̂i(ki, R).

Note that the round functions f̂i are fixed and publicly known, but the fi
depend on the master key and so are not known to the attacker.

The ith round of a Feistel network operates as follows. The `-bit input to
the round is divided into two halves denoted Li−1 and Ri−1 (the “left” and
“right” halves, respectively). The output (Li, Ri) of the round is

Li := Ri−1 and Ri := Li−1 ⊕ fi(Ri−1). (7.2)

In an r-round Feistel network, the `-bit input to the network is parsed as
(L0, R0), and the output is the `-bit value (Lr, Rr) obtained after applying
all r rounds. A three-round Feistel network is shown in Figure 7.5.

Inverting a Feistel network. A Feistel network is invertible regardless of
the {fi} (and thus regardless of the round functions {f̂i}). To show this we

Practical Constructions of Symmetric-Key Primitives 227

FIGURE 7.5: A three-round Feistel network.

need only show that each round of the network can be inverted if the {fi}
are known. Given the output (Li, Ri) of the ith round, we can compute
(Li−1, Ri−1) as follows: first set Ri−1 := Li. Then compute

Li−1 := Ri ⊕ fi(Ri−1).

This gives the value (Li−1, Ri−1) that was the input of this round (i.e., it
computes the inverse of Equation (7.2)). Note that fi is evaluated only in the
forward direction, so it need not be invertible. We thus have:

PROPOSITION 7.4 Let F be a keyed function defined by a Feistel net-
work. Then regardless of the key schedule, the round functions {f̂i}, and the
number of rounds, Fk is a permutation for any k.

Attacking Reduced-Round Feistel Networks

As in the case of SPNs, attacks on Feistel networks are possible when the
number of rounds is too low. Although it is not possible to show key-recovery
attacks without knowing something about the round functions, we show here
that one- and two-round Feistel networks can easily be distinguished from
random functions. (In Section 8.6 we show that three- and four-round Feistel
networks can be proven secure under certain conditions.)

Attacking a one-round Feistel network. If F is a one-round Feistel
network then Fk(L0, R0) = (R0, f1(R0)⊕L0), where f1 depends in some way
on k. Although the attacker does not know f1 (because it does not know k),

228 Introduction to Modern Cryptography

it is clear that Fk (for a uniform key k) is easy to distinguish from a random
function since the left half of the output of Fk is always equal to the right
half of its input. Formally, consider a distinguisher given access to an oracle
g that is either equal to Fk (for uniform k) or a random permutation. The
distinguisher simply queries g(0`) to obtain an output y, and then outputs 1
iff the first half of y is equal to 0`/2. When g is Fk, the distinguisher outputs 1
with probability 1; when g is a random permutation, however, the value y is
uniform and so the distinguisher outputs 1 only with probability 2−`/2.

Attacking a two-round Feistel network. If F is a two-round Feistel
network then

Fk(L0, R0) =
(
f1(R0)⊕ L0, R0 ⊕ f2(f1(R0)⊕ L0)

)
,

where f1, f2 depend in some way on k. If the round functions f̂1, f̂2 are de-
signed properly, then f1, f2 may indeed look random when k is unknown, in
which case the output Fk(L0, R0) for a single input may look random. Nev-
ertheless, there are correlations between the outputs of Fk on related inputs
that can be used to distinguish Fk from a random permutation. Specifically,
consider evaluating Fk on the inputs (0`/2, 0`/2) and (1`/2, 0`/2). If we let

(L2, R2)
def
= Fk(0`/2, 0`/2) and (L′2, R

′
2)

def
= Fk(1`/2, 0`/2),

then a little algebra gives

L2 ⊕ L′2 = f1(0`/2)⊕ 0`/2 ⊕ f1(0`/2)⊕ 1`/2 = 1`/2 .

This holds regardless of the key. On the other hand, for a random permu-
tation f the probability that the XOR of the left halves of f(0`/2, 0`/2) and
f(1`/2, 0`/2) is equal 1`/2 is roughly 2−`/2.

7.2.3 DES – The Data Encryption Standard

The Data Encryption Standard, or DES, was developed in the 1970s by
IBM (with help from the National Security Agency) and adopted by the US in
1977 as a Federal Information Processing Standard. DES is of great historical
significance. It has undergone intensive scrutiny within the cryptographic
community, arguably more than any other cryptographic algorithm in history,
and the consensus is that DES is an extremely well-designed cipher. Indeed,
even after many years, the best attack on DES in practice is an exhaustive
search over all 256 possible keys. (There are important theoretical attacks
on DES requiring less computation; however, those attacks assume certain
conditions that seem difficult to realize in practice.) In its basic form, though,
DES is no longer considered suitable since a 56-bit key is too short, i.e., brute-
force attacks running in time 256 are feasible today. The 64-bit block length of
DES is also too small for modern applications. Nevertheless, DES remains in
limited use in the strengthened form of triple-DES, described in Section 7.2.4.

Practical Constructions of Symmetric-Key Primitives 229

In this section, we provide a high-level overview of the main components
of DES. We do not provide a full specification, and we have simplified some
parts of the design. The reader interested in the low-level details of DES can
consult the references at the end of this chapter.

The Design of DES

The DES block cipher is a 16-round Feistel network with a block length of
64 bits and a key length of 56 bits. The same round function f̂ is used in each
of the 16 rounds. The round function takes a 48-bit sub-key and, as expected
for a (balanced) Feistel network, a 32-bit input (namely, half a block). The
key schedule of DES is used to derive a sequence of 48-bit sub-keys k1, . . . , k16

from the 56-bit master key. The key schedule of DES is relatively simple, with
each sub-key ki being a permuted subset of 48 bits of the master key. For
our purposes, it suffices to note that the 56 bits of the master key are divided
into two halves—a “left half” and a “right half”—containing 28 bits each.
(This division occurs after an initial permutation is applied to the key, but we
ignore this in our description.) The left-most 24 bits of each round sub-key
are taken as some subset of the 28 bits in the left half of the master key, and
the right-most 24 bits of each round sub-key are taken as some subset of the
28 bits in the right half of the master key. The entire key schedule (including
the manner in which the master key is divided into left and right halves, and
which bits are used in forming each sub-key ki) is fixed and public, and the
only secret is the master key itself.

The DES round function. The DES round function f̂—sometimes called
the DES mangler function—is constructed using a paradigm we have previ-
ously analyzed: it is (basically) a substitution-permutation network! In more

detail, computation of f̂(ki, R) with ki ∈ {0, 1}48 and R ∈ {0, 1}32 proceeds
as follows: first, R is expanded to a 48-bit value R′. This is carried out by
simply duplicating half the bits of R; we denote this by R′ := E(R) where
E is called the expansion function. Following this, computation proceeds ex-
actly as in our earlier discussion of SPNs: The expanded value R′ is XORed
with ki, which is also 48 bits long, and the resulting value is divided into 8
blocks, each of which is 6 bits long. Each block is passed through a (different)
S-box that takes a 6-bit input and yields a 4-bit output; concatenating the
output from the 8 S-boxes gives a 32-bit result. A mixing permutation is then
applied to the bits of this result to obtain the final output. See Figure 7.6.

One difference as compared to our original discussion of SPNs is that the
S-boxes here are not invertible; indeed, they cannot be invertible since their
inputs are longer than their outputs. Further discussion regarding the struc-
tural details of the S-boxes is given below.

We stress once again that everything in the above description (including
the S-boxes themselves as well as the mixing permutation) is publicly known.
The only secret is the master key which is used to derive all the sub-keys.

230 Introduction to Modern Cryptography

32-bit input 48-bit sub-key

48-bit intermediate

E

48-bit intermediate

32-bit intermediate

s1 s2 s3 s4 s5 s7 s8s6

32-bit output

FIGURE 7.6: The DES mangler function.

The S-boxes and the mixing permutation. The eight S-boxes that
form the “core” of f̂ are a crucial element of the DES construction and were
very carefully designed. Studies of DES have shown that if the S-boxes were
slightly modified, DES would have been much more vulnerable to attack.
This should serve as a warning to anyone wishing to design a block cipher:
seemingly arbitrary choices are not arbitrary at all, and if not made correctly
may render the entire construction insecure.

Recall that each S-box maps a 6-bit input to a 4-bit output. Each S-box
can be viewed as a table with 4 rows and 16 columns, where each cell of the
table contains a 4-bit entry. A 6-bit input can be viewed as indexing one of
the 26 = 64 = 4× 16 cells of the table in the following way: The first and last
input bits are used to choose the table row, and bits 2–5 are used to choose
the table column. The 4-bit entry at some position of the table represents the
output value for the input associated with that position.

The DES S-boxes have the following properties (among others):

1. Each S-box is a 4-to-1 function. (That is, exactly 4 inputs are mapped
to each possible output.) This follows from the properties below.

2. Each row in the table contains each of the 16 possible 4-bit strings
exactly once.

Practical Constructions of Symmetric-Key Primitives 231

3. Changing one bit of any input to an S-box always changes at least two
bits of the output.

The DES mixing permutation was also designed carefully. In particular it
has the property that the four output bits from any S-box affect the input
to six S-boxes in the next round. (This is possible because of the expansion
function that is applied in the next round before the S-boxes are computed.)

The DES avalanche effect. The design of the mangler function ensures
that DES exhibits a strong avalanche effect. In order to see this, we will trace
the difference between the intermediate values in the DES computations of
two inputs that differ by just a single bit. Let us denote the two inputs to
the cipher by (L0, R0) and (L′0, R

′
0), where we assume that R0 = R′0 and so

the single-bit difference occurs in the left half of the inputs (it may help to
refer to Equation (7.2) and Figure 7.6 in what follows). After the first round,
the intermediate values (L1, R1) and (L′1, R

′
1) still differ by only a single bit,

although now this difference is in the right half. In the second round of DES,
the right half of each intermediate value is run through f̂ . Assuming that
the bit where R1 and R′1 differ is not duplicated in the expansion step, the
intermediate values before applying the S-boxes still differ by only a single
bit. By property 3 of the S-boxes, the intermediate values after the S-box
computation differ in at least two bits. The result is that the intermediate
values (L2, R2) and (L′2, R

′
2) differ in three bits: there is a 1-bit difference

between L2 and L′2 (carried over from the difference between R1 and R′1) and
a 2-bit difference between R2 and R′2.

The mixing permutation spreads the two-bit difference between R2 and R′2
such that, in the following round, each of the two differing bits is used as
input to a different S-box, resulting in a difference of at least 4 bits in the
outputs from the S-boxes. (If either or both of the two bits in which R2 and
R′2 differ are duplicated by E, the difference may be even greater.) There is
also now a 2-bit difference in the left halves.

As with a substitution-permutation network, the number of “affected” bits
grows exponentially and so after 7 rounds we expect all 32 bits in the right
half to be affected, and after 8 rounds we expect all 32 bits in the left half will
be affected as well. DES has 16 rounds, and so the avalanche effect occurs
very early in the computation. This ensures that the computation of DES on
similar inputs yields independent-looking outputs.

Attacks on Reduced-Round DES

A useful exercise for understanding more about the DES construction and
its security is to look at the behavior of DES with only a few rounds. We
show attacks on one-, two-, and three-round variants of DES (recall that DES
has 16 rounds). DES variants with three rounds or fewer cannot be pseu-
dorandom functions because three rounds are not enough for the avalanche
effect to occur. Thus, we will be interested in demonstrating more difficult

232 Introduction to Modern Cryptography

(and more damaging) key-recovery attacks which compute the key k using
only a relatively small number of input/output pairs computed using that
key. Some of the attacks are similar to those we have seen in the context of
substitution-permutation networks; here, however, we will see how they are
applied to a concrete block cipher rather than to an abstract design.

The attacks below will be known-plaintext attacks in which the adversary
knows some plaintext/ciphertext pairs {(xi, yi)} computed using some secret
key k. When we describe the attacks, we will focus on a particular plain-
text/ciphertext pair (x, y) and describe the information about the key that
the adversary can derive from this pair. Continuing to use the notation devel-
oped earlier, we denote the left and right halves of the input x as L0 and R0,
respectively, and let Li, Ri denote the left and right halves of the intermediate
result after the ith round. Recall that E denotes the DES expansion func-
tion, ki denotes the sub-key used in round i, and fi(R) = f̂(ki, R) denotes
the actual function being applied in the Feistel network in the ith round.

One-round DES. Say we are given an input/output pair (x, y). In one-
round DES, we have y = (L1, R1), where L1 = R0 and R1 = L0 ⊕ f1(R0).
We therefore know an input/output pair for f1: specifically, we know that
f1(R0) = R1 ⊕L0. By applying the inverse of the mixing permutation to the
output R1 ⊕ L0, we obtain the intermediate value consisting of the outputs
from all the S-boxes, where the first 4 bits are the output from the first S-box,
the next 4 bits are the output from the second S-box, and so on.

Consider the (known) 4-bit output of the first S-box. Since each S-box is a
4-to-1 function, this means there are exactly four possible inputs to this S-box
that would result in the given output, and similarly for all the other S-boxes;
each such input is 6 bits long. The input to the S-boxes is simply the XOR
of E(R0) with the sub-key k1. Since R0, and hence E(R0), is known, we can
compute a set of four possible values for each 6-bit portion of k1. This means
we have reduced the number of possible keys k1 from 248 to 448/6 = 48 = 216

(since there are four possibilities for each of the eight 6-bit portions of k1).
This is already a small number and so we can just try all the possibilities on
a different input/output pair (x′, y′) to find the right key. We thus obtain the
key using only two known plaintexts in time roughly 216.

Two-round DES. In two-round DES, the output y is equal to (L2, R2) where

L1 = R0

R1 = L0 ⊕ f1(R0)

L2 = R1 = L0 ⊕ f1(R0)

R2 = L1 ⊕ f2(R1).

L0, R0, L2, and R2 are known from the given input/output pair (x, y), and
thus we also know L1 = R0 and R1 = L2. This means that we know the
input/output of both f1 and f2, and so the same method used in the attack
on one-round DES can be used here to determine both k1 and k2 in time

Practical Constructions of Symmetric-Key Primitives 233

roughly 2·216. This attack works even if k1 and k2 are completely independent
keys, although in fact the key schedule of DES ensures that many of the bits
of k1 and k2 are equal (which can be used to further speed up the attack).

Three-round DES. Referring to Figure 7.5, the output value y is now equal
to (L3, R3). Since L1 = R0 and R2 = L3, the only unknown values in the
figure are R1 and L2 (which are equal).

Now we no longer have the input/output to any round function fi. For
example, the output value of f2 is equal to L1 ⊕ R2, where both of these
values are known. However, we do not know the value R1 that is input to f2.
Similarly, we can determine the inputs to f1 and f3 but not the outputs of
those functions. Thus, the attack we used to break one-round and two-round
DES will not work here.

Instead of relying on full knowledge of the input and output of one of
the round functions, we will use knowledge of a certain relation between the
inputs and outputs of f1 and f3. Observe that the output of f1 is equal to
L0 ⊕R1 = L0 ⊕ L2, and the output of f3 is equal to L2 ⊕R3. Therefore,

f1(R0)⊕ f3(R2) = (L0 ⊕ L2)⊕ (L2 ⊕R3) = L0 ⊕R3,

where both L0 and R3 are known. That is, the XOR of the outputs of f1 and
f3 is known. Furthermore, the input to f1 is R0 and the input to f3 is L3,
both of which are known. Summarizing: we can determine the inputs to f1

and f3, and the XOR of their outputs. We now describe an attack that finds
the secret key based on this information.

Recall that the key schedule of DES has the property that the master key is
divided into a “left half,” which we denote by kL, and a “right half” kR, each
containing 28 bits. Furthermore, the 24 left-most bits of the sub-key used in
each round are taken only from kL, and the 24 right-most bits of each sub-key
are taken only from kR. This means that kL affects only the inputs to the
first four S-boxes in any round, while kR affects only the inputs to the last
four S-boxes. Since the mixing permutation is known, we also know which
bits of the output of each round function come from each S-box.

The idea behind the attack is to separately traverse the key space for each
half of the master key, giving an attack with complexity roughly 2 · 228 rather
than complexity 256. Such an attack will be possible if we can verify a guess
of half the master key, and we now show how this can be done. Say we guess
some value for kL, the left half of the master key. We know the input R0 of
f1, and so using our guess of kL we can compute the input to the first four S-
boxes. This means that we can compute half the output bits of f1 (the mixing
permutation spreads out the bits we know, but since the mixing permutation
is known we know exactly which bits those are). Likewise, we can compute
the same locations in the output of f3 by using the known input L3 to f3

and the same guess for kL. Finally, we can compute the XOR of these output
values and check whether they match the appropriate bits in the known value
of the XOR of the outputs of f1 and f3. If they are not equal, then our guess

234 Introduction to Modern Cryptography

for kL is incorrect. A correct guess for kL will always pass this test, and so
will not be eliminated, but an incorrect guess is expected to pass this test
only with probability roughly 2−16 (since we check equality of 16 bits in two
computed values). There are 228 possible values for kL, so if each incorrect
value remains a viable candidate with probability 2−16 then we expect to be
left with only 228 · 2−16 = 212 possibilities for kL after the above.

By performing the above for each half of the master key, we obtain in
time 2 · 228 approximately 212 candidates for the left half and 212 candidates
for the right half. Since each combination of the left and right halves is
possible, we have 224 candidate keys overall and can run a brute-force search
over this set using an additional input/output pair (x′, y′). (An alternative
that is more efficient is to simply repeat the previous attack using the 212

remaining candidates for each half of the key.) The time for the attack is
roughly 2 · 228 + 224 < 230, much less than a 256-time brute-force attack.

Security of DES

After almost 30 years of intensive study, the best known practical attack
on DES is still an exhaustive search through its key space. (We discuss some
important theoretical attacks in Section 7.2.6. Those attacks require a large
number of input/output pairs, which can be difficult to obtain in an attack
on any real-world system using DES.) Unfortunately, the 56-bit key length
of DES is short enough that an exhaustive search through all 256 possible
keys is now feasible. Already in the late 1970s there were strong objections
to using such a short key for DES. Back then the objection was academic,
as the computational power needed to search through 256 keys was gener-
ally unavailable. (It has been estimated that in 1977 a computer that could
crack DES in one day would cost $20 million to build.) The practicality of a
brute-force attack on DES, however, was demonstrated in 1997 when a DES
challenge set up by RSA Security was solved by the DESCHALL project us-
ing thousands of computers coordinated across the Internet; the computation
took 96 days. A second challenge was broken the following year in just 41
days by the distributed.net project. A significant breakthrough came in
1998 when a third challenge was solved in just 56 hours. This impressive feat
was achieved via a special-purpose DES-breaking machine called Deep Crack
that was built by the Electronic Frontier Foundation at a cost of $250,000. In
1999, a DES challenge was solved in just over 22 hours by a combined effort of
Deep Crack and distributed.net. The current state-of-the-art is the DES
cracking box by PICO Computing, which uses 48 FPGAs and can find a DES
key in approximately 26 hours; see https://crack.sh for further details.

The time/space tradeoffs discussed in Section 6.4.3 show that exhaustive
key-search attacks can be accelerated using pre-computation and additional
memory. Due to the short key length of DES, time/space tradeoffs can be
especially effective. Specifically, using pre-processing it is possible to generate
a table a few terabytes large that enables recovery of a DES key with high

http://distributed.net
http://distributed.net
https://crack.sh

Practical Constructions of Symmetric-Key Primitives 235

probability from a single input/output pair using approximately 238 DES
evaluations (which can be computed in under a minute). The bottom line is
that the key length of DES is far too short by modern standards, and DES
cannot be considered secure for any serious application today.

A second cause for concern is the relatively short block length of DES. A
short block length is problematic because the concrete security of many con-
structions based on block ciphers depends on the block length of the cipher—
even if the cipher is otherwise “perfect.” For example, the proof of CTR mode
(cf. Theorem 3.33) shows that plaintext information can be leaked to an at-
tacker if an IV repeats. If CTR mode is instantiated using DES, with a block
length of only 64 bits, then security is compromised with high probability
after encrypting only ≈ 224 messages.

The insecurity of DES has nothing to do with its design per se, but rather
is due to its short key length (and, to a lesser extent, its short block length).
This is a great tribute to the designers of DES, who seem to have succeeded
in constructing an almost “perfect” block cipher otherwise. Since DES itself
seems not to have significant structural weaknesses, it makes sense to use DES
as a building block for constructing block ciphers with longer keys. We discuss
this further in Section 7.2.4.

The replacement for DES—the Advanced Encryption Standard (AES), cov-
ered later in this chapter—was explicitly designed to address concerns regard-
ing the short key length and block length of DES. AES supports 128-, 192-,
and 256-bit keys, and has a 128-bit block length.

7.2.4 3DES: Increasing the Key Length of a Block Cipher

The main weakness of DES is its short key. It thus makes sense to try to
design a block cipher with a larger key length using DES as a building block.
Some approaches to doing so are discussed in this section. Although we refer
to DES frequently throughout the discussion, and DES is the most prominent
block cipher to which these techniques have been applied, everything we say
here applies generically to any block cipher.

Internal modifications vs. “black-box” constructions. There are two
general approaches one could take to constructing another cipher based on
DES. The first approach would be to somehow modify the internal structure
of DES, while increasing the key length. For example, one could leave the
round function untouched and simply use a 128-bit master key with a differ-
ent key schedule (still choosing a 48-bit sub-key in each round). Or, one could
change the S-boxes themselves and use a larger sub-key in each round. The
disadvantage of such approaches is that by modifying DES—in even the small-
est way—we lose the confidence we have gained in DES by virtue of the fact
that it has remained resistant to attack for so many years. Cryptographic
constructions are very sensitive; even mild, seemingly insignificant changes
can render a construction completely insecure. (In fact, various results to this

236 Introduction to Modern Cryptography

effect have been shown for DES; e.g., changing the S-boxes or the mixing
permutation can make DES much more vulnerable to attack.) Tweaking the
internal components of a block cipher is therefore not recommended.

An alternative approach that does not suffer from the above problem is
to use DES as a “black box” and not touch its internal structure at all.
In following this approach we treat DES as a “perfect” block cipher with a
56-bit key, and construct a new block cipher that only invokes the original,
unmodified DES. Since DES itself is not tampered with, this is a much more
prudent approach and is the one we will pursue here.

Double Encryption

Let F be a block cipher with an n-bit key length and `-bit block length.
Then a new block cipher F ′ with a key of length 2n can be defined by

F ′k1,k2(x)
def
= Fk2(Fk1(x)),

where k1 and k2 are independent keys. If exhaustive key search were the best
available attack, this would mean that the best attack would require time 22n.
Unfortunately, we show an attack on F ′ that runs in time roughly 2n. This
means that F ′ is not any more secure against brute-force attacks than F , even
though F ′ has a key that is twice as long.4

The attack is called a “meet-in-the-middle attack,” for reasons that will
soon become clear. Say the adversary is given a single input/output pair
(x, y), where y = F ′k∗1 ,k∗2

(x) = Fk∗2 (Fk∗1 (x)) for unknown k∗1 , k
∗
2 . The adversary

can narrow down the set of possible keys in the following way:

1. For each k1 ∈ {0, 1}n, compute z := Fk1(x) and store (z, k1) in a list L.

2. For each k2 ∈ {0, 1}n, compute z := F−1
k2

(y) and store (z, k2) in a list L′.

3. Call entries (z1, k1) ∈ L and (z2, k2) ∈ L′ a match if z1 = z2. For each
such match, add (k1, k2) to a set S. (Matches can be found easily by
first sorting the elements in L and L′ by their first entry.)

See Figure 7.7 for a graphical depiction of the attack. The attack requires
2 · 2n evaluations of F , and uses 2 · (n+ `) · 2n bits of memory.

The set S output by this algorithm contains exactly those values (k1, k2)
for which

Fk1(x) = F−1
k2

(y) (7.3)

or, equivalently, for which y = F ′k1,k2(x). In particular, (k∗1 , k
∗
2) ∈ S. On

the other hand, a pair (k1, k2) 6= (k∗1 , k
∗
2) is (heuristically) expected to satisfy

4This is not quite true since a brute-force attack on F can be carried out in time 2n and
constant memory, whereas the attack we show on F ′ requires 2n time and 2n memory.
Nevertheless, the attack illustrates that F ′ does not achieve the desired level of security.

Practical Constructions of Symmetric-Key Primitives 237

x z* y
Fk*1

(x)

z

Fk1
(x)

z�

-1
Fk*2

(y)

-1
Fk�2

(y)

-1
Fk 2

(y)

FIGURE 7.7: A meet-in-the-middle attack.

Equation (7.3) with probability 2−` if we treat Fk1(x) and F−1
k2

(y) as uniform

`-bit strings, and so the expected size of S is 22n · 2−` = 22n−`. Using an-
other few input/output pairs, and taking the intersection of the sets that are
obtained, the correct (k∗1 , k

∗
2) can be identified with very high probability.

Triple Encryption

The obvious generalization of the preceding approach is to apply the block
cipher three times in succession. Two variants of this approach are common:

Variant 1: three keys. The most natural thing to do is to choose three

independent keys, i.e., to define F ′′k1,k2,k3(x)
def
= Fk3(F−1

k2
(Fk1(x))).

Variant 2: two keys. As we explain below, another option is to choose two

independent keys and define F ′′k1,k2(x)
def
= Fk1(F−1

k2
(Fk1(x))).

Note that the middle invocation of F is traditionally reversed. If F is a
secure cipher this makes no difference as far as security is concerned (since
if F is a strong pseudorandom permutation then F−1 is too). This is done
for backward compatibility: by setting k3 = k2 = k1, the resulting cipher is
equivalent to a single invocation of F using the key k1.

Security of the first variant. The key length of the first variant is 3n, and
so we might hope that the best attack requires time 23n. However, the cipher
is susceptible to a meet-in-the-middle attack (just as in the case of double
encryption) that here requires 22n time.

Security of the second variant. The key length of this variant is 2n, and
a meet-in-the-middle attack requires time 22n. Assuming ` ≥ n, this is the

238 Introduction to Modern Cryptography

best known attack when the adversary is given only a few input/output pairs.
(There is a known-plaintext attack using 2t input/output pairs that runs in
time ≈ 2n+`−t. See Exercise 7.16.)

Triple-DES (3DES). Triple-DES (or 3DES), standardized in 1999, is based
on three invocations of DES using two or three keys, as described above.
Two-key 3DES (which corresponds to the second variant) is no longer recom-
mended, in part due to the known-plaintext attack mentioned above. Three-
key 3DES is still used, though the current recommendation is to phase it out
due to its small block length and the fact that it is relatively slow. These
drawbacks have led 3DES to be supplanted in practice by the Advanced En-
cryption Standard, described in the next section.

7.2.5 AES – The Advanced Encryption Standard

In January 1997, the United States National Institute of Standards and
Technology (NIST) announced that it would hold a competition to select a
new block cipher—to be called the Advanced Encryption Standard, or AES—
to replace DES. The competition began with an open call for teams to submit
candidate block ciphers for evaluation. A total of 15 different algorithms
were submitted from all over the world, including contributions from many
of the best cryptographers and cryptanalysts. Each team’s candidate cipher
was intensively analyzed by members of NIST, the public, and (especially)
the other teams. Two workshops were held, one in 1998 and one in 1999, to
discuss and analyze the various submissions. Following the second workshop,
NIST narrowed the field down to 5 “finalists” and the second round of the
competition began. A third AES workshop was held in April 2000, inviting
additional scrutiny on the five finalists. In October 2000, NIST announced
that the winning algorithm was Rijndael (a block cipher designed by the
Belgian cryptographers Vincent Rijmen and Joan Daemen), although NIST
conceded that any of the 5 finalists would have made an excellent choice.
In particular, no serious security vulnerabilities were found in any of the 5
finalists, and the selection of a “winner” was based in part on properties such
as efficiency, performance in hardware, flexibility, etc.

The process of selecting AES was ingenious because any group that sub-
mitted an algorithm (and was therefore interested in having its algorithm
adopted) had strong motivation to find attacks on the other submissions.
This incentivized the world’s best cryptanalysts to focus their attention on
finding even the slightest weaknesses in the candidate ciphers submitted to
the competition. After only a few years each candidate algorithm was already
subjected to intensive study, thus increasing confidence in the security of the
winner. Of course, the longer AES is used and studied without being broken,
the more our confidence in it continues to grow. Today, AES is widely used
and no significant security weaknesses have been discovered.

The AES construction. We present the high-level structure of AES. As

Practical Constructions of Symmetric-Key Primitives 239

with DES, we will not present a full specification and our description should
not be used as a basis for implementation. Our aim is only to provide a
general idea of how the algorithm works.

The AES block cipher has three variants called AES-128, AES-192, and
AES-256 that use 128-, 192-, or 256-bit keys, respectively; they all have a
128-bit block length. The length of the key affects the key schedule (i.e.,
the way sub-keys are derived from the master key) as well as the number of
rounds, but does not affect the high-level structure of each round.

In contrast to DES, which uses a Feistel structure, AES is essentially a
substitution-permutation network. During computation of the AES algo-
rithm, a 4-by-4 array of bytes called the state is modified in a series of rounds.
The state is initially set equal to the input to the cipher (note that the input
is 128 bits, which is exactly 16 bytes). In each round, the following operations
are then applied to the state:

Stage 1 – AddRoundKey: A 128-bit sub-key is derived from the master key,
and viewed as a 4-by-4 array of bytes. The state array is updated by
XORing it with this sub-key.

Stage 2 – SubBytes: In this step, each byte of the state array is replaced by
another byte according to a single, fixed lookup table S. This substitu-
tion table (or S-box) is a permutation on {0, 1}8.

Stage 3 – ShiftRows: Next, the bytes in each row of the state array are shuf-
fled as follows: the first row of the array is untouched, each byte the
second row is shifted one place to the left, the third row is shifted two
places to the left, and the fourth row is shifted three places to the left.
(All shifts are cyclic so that, e.g., in the second row the first byte be-
comes the fourth byte.)

Stage 4 – MixColumns: Finally, an invertible linear transformation is applied
to the four bytes in each column. This transformation has the property
that if two inputs differ in b > 0 bytes, then the resulting outputs differ
in at least 5− b bytes.

In the final round, MixColumns is replaced with AddRoundKey. This prevents
an adversary from simply inverting the last three stages, which do not depend
on the key.

By treating stages 3 and 4 as one step, we see that each round of AES
has the structure of a substitution-permutation network: the round sub-key
is first XORed with the input to the current round in a key-mixing step; next,
an invertible S-box is applied to each byte of the resulting value; finally, the
bits of the result are “permuted.” The only difference is that, unlike our
previous description of substitution-permutation networks, here the final step
does not consist of simply shuffling the bits using a mixing permutation, but
is instead carried out using a permutation plus an invertible linear transfor-
mation. Nevertheless, the net effect—namely, diffusion—is the same. Note

240 Introduction to Modern Cryptography

that, as we have pointed out previously in our discussion of SPNs, a final
key-mixing step is done after the last round.

The number of rounds depends on the key length. Ten rounds are used for
a AES-128, 12 rounds for AES-192, and 14 rounds for a AES-256.

Security of AES. As we have mentioned, the AES cipher was subject to
intense scrutiny during the selection process and has continued to be studied
ever since. To date, there are no practical cryptanalytic attacks that are
significantly better than an exhaustive search for the key.

We conclude that, as of today, AES constitutes an excellent choice for any
cryptographic scheme that requires a (strong) pseudorandom permutation. It
is free, standardized, efficient, and highly secure.

7.2.6 *Differential and Linear Cryptanalysis

Block ciphers are relatively complicated, and as such are difficult to ana-
lyze. Nevertheless, one should not be fooled into thinking that a complicated
cipher is necessarily difficult to break. On the contrary, it is very hard to
construct a secure block cipher, and surprisingly easy to find attacks on most
constructions (no matter how complicated they appear). This should serve as
a warning that non-experts should not try to construct new ciphers. Given
the availability of AES, it is hard to justify using anything else.

In this section we describe two tools that are now a standard part of the
cryptanalyst’s toolbox. Our goal here is give a taste of some advanced crypt-
analysis, as well as to reinforce the idea that designing a secure block cipher
involves careful choice of its components.

Differential cryptanalysis. This technique, which can lead to a chosen-
plaintext attack on a block cipher, was first presented in the late 1980s by
Biham and Shamir, who used it to attack DES in 1993. The basic idea behind
the attack is to tabulate specific differences in the input that lead to specific
differences in the output with probability greater than would be expected for
a random permutation. Specifically, say the differential (∆x,∆y) occurs in
some keyed permutation G with probability p if for uniform inputs x1 and x2

satisfying x1 ⊕ x2 = ∆x, and uniform choice of key k, the probability that
Gk(x1) ⊕ Gk(x2) = ∆y is p. For any fixed (∆x,∆y) and x1, x2 satisfying
x1 ⊕ x2 = ∆x, if we choose a uniform function f : {0, 1}` → {0, 1}`, we have
Pr[f(x1) ⊕ f(x2) = ∆y] = 2−`. In a weak block cipher, however, there may
be differentials that occur with significantly higher probability. This can be
leveraged to give a full key-recovery attack, as we now show for SPNs.

We describe the basic idea, and then work through a concrete example. Let
F be an r-round SPN with an `-bit block length, and let Gk(x) denote the
intermediate result in the computation of Fk(x) after applying the key-mixing
step of the last round. (That is, G excludes the S-box substitution and mixing
permutation of the last round, as well as the final key-mixing step.) Assume
there is a differential (∆x,∆y) in G that occurs with probability p� 2−`. It

Practical Constructions of Symmetric-Key Primitives 241

is possible to exploit this high-probability differential to learn bits of the final
sub-key kr+1. The high-level idea is as follows: let {(xi1, xi2)}Li=1 be a collection
of L pairs of random inputs with differential ∆x, i.e., with xi1 ⊕ xi2 = ∆x for
all i. Using a chosen-plaintext attack, obtain yi1 = Fk(xi1) and yi2 = Fk(xi2) for
all i. Now, for each possible k∗r+1 ∈ {0, 1}` do: for each pair yi1, y

i
2, invert the

final key-mixing step using k∗r+1, and also invert the mixing permutation and
S-boxes of round r (which do not depend on the master key) to obtain ỹi1, ỹ

i
2.

Note that when k∗r+1 = kr+1, we have ỹi1 = Gk(xi1) and ỹi2 = Gk(xi2), and in
that case we expect that a p-fraction of the pairs will satisfy ỹi1⊕ ỹi2 = ∆y. On
the other hand, when k∗ 6= kr+1 we heuristically expect only a 2−`-fraction
of the pairs to yield this differential. By setting L large enough, the correct
value of the final sub-key kr+1 can be determined.

This works, but requires enumerating over 2` possible values for the final
sub-key. We can do better by guessing portions of kr+1 at a time. More
concretely, assume the S-boxes in F have 1-byte input/output length, and
focus on the first byte of ∆y. It is possible to verify if the differential holds in
that byte by guessing only 8 bits of kr+1, namely, the 8 bits that correspond
(after the round-r mixing permutation) to the output of the first S-box. Thus,
proceeding as above, we can learn these 8 bits by enumerating over all possible
values for those bits, and seeing which value yields the desired differential in
the first byte with the highest probability. Incorrect guesses for those 8 bits
yield the expected differential in that byte with (heuristic) probability 2−8, but
the correct guess will give the expected differential with probability roughly
p+ 2−8; this is because with probability p the differential holds on the entire
block (so in particular for the first byte), and when this is not the case then
we can treat the differential in the first byte as random. Note that different
differentials may be needed to learn different portions of kr+1.

In practice, various optimizations are performed to improve the effectiveness
of the above test or, more specifically, to increase the gap between the prob-
ability that an incorrect guess for (bits of) kr+1 yields the differential vs. the
probability that a correct guess does. One optimization is to use a low-weight
differential in which ∆y has many zero bytes. Any pairs ỹ1, ỹ2 satisfying such
a differential have equal values entering many of the S-boxes in round r, and
so will result in output values y1, y2 that are equal in the corresponding bit-
positions (depending on the final mixing permutation). This means that the
attacker can simply discard any pairs (yi1, y

i
2) that do not agree in those bit-

positions (since the corresponding intermediate values (ỹ1, ỹ2) cannot possibly
satisfy the differential, for any choice of the final sub-key). This significantly
improves the effectiveness of the attack.

Once kr+1 is known, the attacker can “peel off” the final key-mixing step,
as well as the mixing permutation and S-box substitution steps of round r
(since these do not depend on the master key), and then apply the same
attack—using a different differential—to find the rth-round sub-key kr, and
so on, until it learns all sub-keys (or, equivalently, the master key). Relations
between the sub-keys can be used to improve the efficiency of the attack.

242 Introduction to Modern Cryptography

A worked example. We work through a “toy” example, illustrating also
how a good differential can be found. We use a four-round SPN with a block
length of 16 bits, based on a single S-box with 4-bit input/output length. The
S-box is defined as follows:

Input: 0000 0001 0010 0011 0100 0101 0110 0111
Output: 0000 1011 0101 0001 0110 1000 1101 0100

Input: 1000 1001 1010 1011 1100 1101 1110 1111
Output: 1111 0111 0010 1100 1001 0011 1110 1010

The mixing permutation, showing where each of the 16 bits in a block is
moved, is:

In: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Out: 7 2 3 8 12 5 11 9 10 1 14 13 4 6 16 15

We first find a differential in the S-box. Let S(x) denote the output of the
S-box on input x. Consider the differential ∆x = 1111. Then, for example, we
have S(0000)⊕S(1111) = 0000⊕ 1010 = 1010 and so in this case a difference
of 1111 in the inputs leads to a difference of 1010 in the outputs. Let us see if
this relation holds frequently. We have S(0001) = 1011 and S(0001⊕1111) =
S(1110) = 1110, and so here a difference of 1111 in the inputs does not
lead to a difference of 1010 in the outputs. However, S(0100) = 0110 and
S(0100⊕ 1111) = S(1011) = 1100 and so in this case, a difference of 1111 in
the inputs yields a difference of 1010 in the outputs. In Figure 7.8 we tabulate
results for all possible inputs. We see that half the time a difference of 1111
in the inputs yields a difference of 1010 in the outputs. Thus, (1111, 1010) is
a differential in S that occurs with probability 1/2.

FIGURE 7.8: The effect of the input difference ∆x = 1111 in our S-box.

Practical Constructions of Symmetric-Key Primitives 243

FIGURE 7.9: Differentials in our S-box.

This same process can be carried out for all 24 input differences ∆x to
calculate the probability of every differential. Namely, for each pair (∆x,∆y)
we tabulate the number of inputs x for which S(x) ⊕ S(x ⊕∆x) = ∆y. We
have done this for our example S-box in Figure 7.9. (For conciseness we use
hexadecimal notation.) The table should be read as follows: entry (i, j) counts
how many inputs with difference i map to outputs with difference j. Observe,
for example, that there are 8 inputs with difference 0xF = 1111 that map to
output 0xA = 1010, as we have shown above. This is the highest-probability
differential (apart from the trivial differential (0x0, 0x0)). But there are also
other differentials of interest: an input difference of ∆x = 0x4 = 0100 maps
to an output difference of ∆y = 0x6 = 0110 with probability 6/16 = 3/8, and
there are several differentials with probability 4/16 = 1/4.

We now extend this to find a good differential for the first three rounds of
the SPN. Consider evaluating the SPN on two inputs that have a differential
of 0000 1100 0000 0000, and tracing the differential between the intermediate
values at each step of this evaluation. (Refer to Figure 7.10, which shows
the first three rounds of the SPN.) The key-mixing step in the first round
does not affect the differential, and so the inputs to the second S-box in the
first round have differential 1100. We see from Figure 7.9 that a difference of
0xC = 1100 in the inputs to the S-box yields a difference of 0x8 = 1000 in
the outputs of the S-box with probability 1/4. So with probability 1/4 the
differential in the output of the 2nd S-box after round 1 is a single bit which is
moved by the mixing permutation from the 5th position to the 12th position.
(The inputs to the other S-boxes are equal, so their outputs are equal and the
differential of the outputs is 0000.) Assuming this to be the case, the input

244 Introduction to Modern Cryptography

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

1 1 0 0

1 0 0 0

0 0 0 1

0 1 0 0

1 0 0 0

1 1 1 1

0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0

0xC=1100
maps to

0x8=1000
w.p. 1/4

0x1=0001
maps to

0x4=0100
w.p. 1/4

0x8=1000
maps to

0xF=1111
w.p. 1/4

FIGURE 7.10: Tracing differentials through the first three rounds of an
SPN that uses the S-box and mixing permutation given in the text.

difference to the third S-box in the second round is 0x1 = 0001 (once again,
the key-mixing step in the second round does not affect the differential); using
Figure 7.9 we have that with probability 1/4 the output difference from that
S-box is 0x4 = 0100. Thus, once again there is just a single output bit that
is different, and it is moved from the 10th position to the first position by the
mixing permutation. Finally, consulting Figure 7.9 yet again, we see that an
input difference of 0x8 = 1000 to the S-box results in an output difference of
0xF = 1111 with probability 1/4. The bits in positions 1, 2, 3, and 4 are then
moved by the mixing permutation to positions 7, 2, 3, and 8. Note that the
key-mixing step in the fourth round does not affect the output differential.

Overall, then, we see that an input difference of ∆x = 0000 1100 0000 0000
yields the output difference ∆y = 0110 0011 0000 0000 after three rounds with
probability at least 1

4 ·
1
4 ·

1
4 = 1

64 . (This is a lower bound on the probability of
the differential, since there may be other differences in the intermediate values
that result in the same difference in the outputs. We multiply the probabili-
ties since we assume independence of the sub-keys used in each round.) For
a random function, the probability that any given differential occurs is just
2−16 = 1/65536. Thus, the differential we have found occurs with probabil-

Practical Constructions of Symmetric-Key Primitives 245

ity significantly higher than what would be expected for a random function.
Observe also that we have found a low-weight differential.

We can use this differential to find 8 bits of the final sub-key k5—namely,
the bits at positions 2, 3, 5, 7, 8, 9, 11, and 12. (i.e., the positions that the
outputs of the first two S-boxes from the 3rd round get mapped to by the
mixing permutation.) As discussed earlier, we begin by letting {(xi1, xi2)}Li=1

be a set of L pairs of random inputs with differential ∆x. Using a chosen-
plaintext attack, we then obtain the values yi1 = Fk(xi1) and yi2 = Fk(xi2) for
all i. Now, for all possible values of the specified 8 bits of k5, we compute the
initial 8 bits of ỹi1, ỹ

i
2, the intermediate values after the key-mixing step of the

4th round. (We can do this because we only need to invert the two left-most
S-boxes of the 4th round in order to derive those 8 bits.) When we guess the
correct value for the specified 8 bits of k5, we expect the 8-bit differential 0110
0011 to occur with probability at least 1/64. Heuristically, an incorrect guess
yields the expected differential only with probability 2−8 = 1/256. By setting
L large enough, we can (with high probability) identify the correct value.

Differential attacks in practice. Differential cryptanalysis is very power-
ful, and has been used to attack real ciphers. A prominent example is FEAL-8,
which was proposed as an alternative to DES in 1987. A differential attack
on FEAL-8 was found that requires just 1,000 chosen plaintexts. In 1991, it
took less than 2 minutes using this attack to find the entire key. Today, any
proposed cipher is tested for resistance to differential cryptanalysis.

A differential attack was also the first attack on DES to require less time
than a simple brute-force search. While an interesting theoretical result, the
attack is not very effective in practice since it requires 247 chosen plaintexts,
and it would be difficult for an attacker to obtain this many chosen plain-
text/ciphertext pairs in most real-world applications. Interestingly, small
modifications to the S-boxes of DES make the cipher much more vulnera-
ble to differential attacks. Personal testimony of the DES designers (after
differential attacks were discovered in the outside world) confirmed that the
S-boxes of DES were designed specifically to thwart differential attacks.

Linear cryptanalysis. Linear cryptanalysis was developed by Matsui in the
early 1990s. We will only describe the idea underlying the technique. The
basic idea is to consider linear relationships between the input, output, and
key that hold with high probability. In more detail, assume an n-bit key
length and `-bit block length, and let I,O ⊆ {1, . . . , `} and K ⊆ {1, . . . , n}.
For an `-bit x, let xI denote the XOR of the bits at the positions indicated
by I; define kK similarly for k ∈ {0, 1}n. We say that I,O,K have linear

bias ε if, for uniform x and k, and y
def
= Fk(x), it holds that∣∣∣∣Pr[xI ⊕ yO ⊕ kK = 0]− 1

2

∣∣∣∣ = ε.

If such a bias can be identified, it will clearly be useful for determining bits of
the key given a number of plaintext/ciphertext pairs. Besides giving another

246 Introduction to Modern Cryptography

method for attacking ciphers, an important feature of this attack compared to
differential cryptanalysis is that it uses known plaintexts rather than chosen
plaintexts. This is very significant, since an encrypted file can provide a
huge amount of known plaintext, whereas obtaining encryptions of chosen
plaintexts is much more difficult. Matsui showed that DES can be broken
using linear cryptanalysis with just 243 plaintext/ciphertext pairs.

Impact on block-cipher design. Modern block ciphers are designed and
evaluated based, in part, on their resistance to differential and linear crypt-
analysis. When constructing a block cipher, designers choose S-boxes and
other components so as to minimize differential probabilities and linear bi-
ases. It is not possible to eliminate all high-probability differentials in an
S-box: any S-box will have some differential that occurs more frequently
than others. Still, these deviations can be minimized. Moreover, increasing
the number of rounds (and choosing the mixing permutation carefully) can
both reduce the differential probabilities as well as make it more difficult for
cryptanalysts to find any differentials to exploit.

7.3 Compression Functions and Hash Functions

Recall from Chapter 6 that the primary security requirement for a crypto-
graphic hash function H is collision resistance: that is, it should be difficult
to find a collision in H, i.e., distinct inputs x, x′ such that H(x) = H(x′). (We
drop mention of any key here, since real-world hash functions are generally
unkeyed.) If the hash function has `-bit output length, then the best we can
hope for is that it should be infeasible to find a collision using substantially
fewer than 2`/2 invocations of H. (See Section 6.4.1.)

We describe two approaches for constructing collision-resistant hash func-
tions. In Section 7.3.1, we show how to build a compression function (i.e., a
fixed-length hash function) from any block cipher. As we have seen in Sec-
tion 6.2, any such compression function can be extended to a full-fledged hash
function using the Merkle–Damg̊ard transform. This approach has been used
to design popular hash functions including MD5, SHA-1, and SHA-2.

In Section 7.3.3 we discuss a more recent approach for constructing hash
functions based on the so-called sponge construction. This technique is used
by the SHA-3 standard.

7.3.1 Compression Functions from Block Ciphers

Perhaps surprisingly, it is possible to build a collision-resistant compression
function from a block cipher satisfying strong security properties. There are
several ways to do this. One of the most common is via the Davies–Meyer

Practical Constructions of Symmetric-Key Primitives 247

construction. Let F be a block cipher with n-bit key length and `-bit block
length. The Davies–Meyer construction then defines the compression function

h : {0, 1}n+` → {0, 1}` by h(k, x)
def
= Fk(x)⊕ x. (See Figure 7.11.)

x

k F
h(k, x)

FIGURE 7.11: The Davies–Meyer construction.

We do not know how to prove collision resistance of h based only on the
assumption that F is a strong pseudorandom permutation, and in fact there
are reasons to believe such a proof is not possible. We can, however, prove
collision resistance if we are willing to model F as an ideal cipher. The ideal-
cipher model is a strengthening of the random-oracle model (see Section 6.5),
in which we posit that all parties have access to an oracle for a random
keyed permutation F : {0, 1}n × {0, 1}` → {0, 1}` as well as its inverse F−1

(i.e., F−1(k, F (k, x)) = x for all k, x). Another way to think of this is that
each key k ∈ {0, 1}n specifies an independent, uniform permutation F (k, ·)
on `-bit strings. As in the random-oracle model, the only way to compute
F (or F−1) is to explicitly query the oracle with (k, x) and receive back
F (k, x) (or F−1(k, x)). The ideal-cipher model is stronger than the random-
permutation model that we encountered briefly in Section 7.1.5.

Analyzing constructions in the ideal-cipher model comes with all the advan-
tages and disadvantages of working in the random-oracle model, as discussed
at length in Section 6.5. We only add here that the ideal-cipher model implies
the absence of related-key attacks on F , in the sense that the permutations
F (k, ·) and F (k′, ·) must behave independently even if, for example, k and k′

differ in only a single bit. In addition, there can be no “weak keys” k (say,
the all-0 key) for which F (k, ·) is easily distinguishable from random. It also
means that F (k, ·) should “behave randomly” even when k is known. These
requirements are not part of the definition of a (strong) pseudorandom per-
mutation. Moreover, these properties do not necessarily hold for real-world
block ciphers, and the reader may note that we have not discussed these prop-
erties in any of our analysis of block-cipher constructions. (In fact, DES and
triple-DES do not satisfy these properties.) Any block cipher being consid-
ered for instantiating an ideal cipher must be evaluated with respect to these
more stringent requirements.

The following shows that, when F is modeled as an ideal cipher, the Davies–

248 Introduction to Modern Cryptography

Meyer construction is collision resistant as long as ` is sufficiently large.

THEOREM 7.5 If F is modeled as an ideal cipher, then any attacker
making q queries to F or F−1 can find a collision in the Davies–Meyer con-
struction with probability at most q2/2`.

PROOF To be clear, we consider here the probabilistic experiment in
which a uniform F is sampled (more precisely, for each k ∈ {0, 1}n the func-
tion F (k, ·) : {0, 1}` → {0, 1}` is chosen uniformly from the set Perm` of
permutations on `-bit strings) and then the attacker is given oracle access to
F and F−1. The attacker then tries to find a colliding pair (k, x), (k′, x′), i.e.,
for which F (k, x)⊕x = F (k′, x′)⊕x′. No computational bounds are placed on
the attacker other than bounding the number of oracle queries it makes. We
assume the attacker never makes the same query more than once, and never
queries F−1(k, y) once it has learned that y = F (k, x) (or vice versa). We
assume that if the attacker outputs a candidate collision (k, x), (k′, x′) then it
has previously made the oracle queries necessary to compute the values h(k, x)
and h(k′, x′). All these assumptions are without much loss of generality.

Consider the ith query the attacker makes to one of its oracles. A query

(ki, xi) to F reveals only the hash value hi
def
= h(ki, xi) = F (ki, xi) ⊕ xi;

similarly, a query (ki, yi) to F−1 giving the result xi = F−1(ki, yi) yields only

the hash value hi
def
= h(ki, xi) = yi ⊕ F−1(ki, yi). The key observation is that

no matter which kind of query the attacker makes, the hash value hi it learns
is almost uniformly distributed (since the result of the oracle query to F or
F−1 is almost uniformly distributed—with the only deviation from uniform
being that F (k, x) cannot be equal to F (k, x′) for any x 6= x′). This makes
finding a collision hard since the attacker does not obtain a collision unless
hi = hj for some i 6= j.

In detail: Fix i, j with i > j and consider the probability that hi = hj . At
the time of the ith query, the value of hj is fixed. A collision between hi and
hj is obtained on the ith query only if the attacker queries (ki, xi) to F and
obtains the result F (ki, xi) = hj ⊕ xi, or queries (ki, yi) to F−1 and obtains
the result F−1(ki, yi) = hj ⊕ yi. Either event occurs with probability at most
1/(2`−(i−1)) since, for example, F (ki, xi) is uniform over {0, 1}` except that
it cannot be equal to any value F (ki, x) already defined by the attacker’s (at
most) i−1 previous oracle queries using key ki. Assuming i ≤ q < 2`/2 (if not,
the theorem is trivially true), the probability that hi = hj is at most 2/2`.

Taking a union bound over all
(
q
2

)
< q2/2 distinct pairs i, j gives the result

stated in the theorem.

Davies–Meyer and DES. As we have mentioned above, one must take care
when instantiating the Davies–Meyer construction with any concrete block
cipher, since the cipher must satisfy additional properties (beyond being a

Practical Constructions of Symmetric-Key Primitives 249

strong pseudorandom permutation) in order for the resulting construction to
be secure. In Exercise 7.24 we explore what goes wrong when DES is used in
the Davies–Meyer construction.

This should serve as a warning that the proof of security for the Davies–
Meyer construction in the ideal-cipher model does not necessarily translate
into real-world security when instantiated with a specific cipher. Nevertheless,
as we will describe below, this paradigm has been used to construct practical
hash functions that have resisted attack (although in those cases the block
cipher used was designed specifically for this purpose).

In conclusion, the Davies–Meyer construction is a useful paradigm for con-
structing collision-resistant compression functions. However, it should not be
applied to block ciphers not designed to behave like an ideal cipher.

7.3.2 MD5, SHA-1, and SHA-2

Several prominent and widely used hash functions have been constructed
by applying the Davies–Meyer construction to some underlying block cipher
to obtain a compression function, and then applying the Merkle–Damg̊ard
transform. Examples include the hash functions MD5, SHA-1, and SHA-2,
which we discuss next.

MD5. MD5 is a hash function with a 128-bit output length. It was designed
in 1991 and for some time was believed to be collision resistant. Over a period
of several years, various weaknesses began to be found in MD5 but these did
not appear to lead to any easy way to find collisions. Shockingly, in 2004 a
team of Chinese cryptanalysts presented a new method for finding collisions
in MD5 and demonstrated an explicit collision. Since then, the attack has
been improved and today collisions in MD5 can be found in under a minute
on a desktop PC. In addition, the attacks have been extended so that even
“controlled collisions” (e.g., two pdf files) can be found. Due to these attacks,
MD5 should not be used anywhere cryptographic security is needed. We
mention MD5 only because it is still found in legacy code.

SHA-1. The Secure Hash Algorithms (SHA) refer to a set of cryptographic
hash functions standardized by NIST. The hash function SHA-1, standard-
ized in 1995, has a 160-bit output length and was considered secure for many
years. Beginning in 2005, theoretical analysis indicated that collisions in
SHA-1 could be found using roughly 269 hash-function evaluations, which
is much lower than the 280 hash-function evaluations that would be needed
for a birthday attack. This prompted researchers to recommend migrating
away from SHA-1; nevertheless, since even 269 operations is still significant,
an explicit collision in SHA-1 remained out of reach. It was not until 2017 that
an improvement in the collision-finding attack, along with tremendous compu-
tational resources devoted by Google, enabled researchers to find an explicit
collision. The attack required the equivalent of 263 hash-function evaluations,
and took 6,500 CPU years (along with 100 GPU years) to execute on a dis-

250 Introduction to Modern Cryptography

tributed cluster of machines. As of the time of this writing, more-devastating
attacks have been found, and SHA-1 is no longer recommended for use.

SHA-2. The SHA-2 hash family, introduced in 2001, consists of the two
related hash functions SHA-256 and SHA-512 with 256- and 512-bit output
lengths, respectively. (The outputs can be truncated if smaller hash values
are desired.) These hash functions do not currently appear to have the same
weaknesses that led to attacks on SHA-1; moreover, because of their long out-
put lengths, it will remain difficult to find collisions even if small weaknesses
are discovered. SHA-2, or the more recent standard SHA-3 (see below), are
currently recommended when collision-resistant hashing is needed.

7.3.3 The Sponge Construction and SHA-3 (Keccak)

In the aftermath of the collision attack on MD5 and the theoretical weak-
nesses found in SHA-1, NIST announced in 2007 a public competition to
design a new cryptographic hash function. As in the case of the AES com-
petition from roughly a decade earlier, the competition was completely open
and transparent; anyone could submit an algorithm for consideration, and
the public was invited to give their opinions on any of the candidates. The
51 first-round candidates were narrowed down to 14 in December 2008, and
these were further reduced to five finalists in 2010. These remaining candi-
dates were subject to intense scrutiny by the cryptographic community over
the next two years. In October 2012, NIST announced the selection of Keccak
as the winner of the competition. The resulting standard SHA-3, released
in 2015, supports 224-, 256-, 384-, and 512-bit output lengths.

The structure of Keccak is very different from the structure of SHA-1 and
SHA-2, and in particular it does not use the Merkle–Damg̊ard transform. (In-
terestingly, this may have been one of the reasons it was chosen.) The core
primitive of Keccak is an unkeyed permutation P with a large block length
of 1600 bits. P is used to build a hash function directly (i.e., without first
building a compression function in an intermediate step) via what is known
as the sponge construction. The resulting hash function can be proven to be
collision resistant if P is modeled as a random permutation. (We have al-
ready seen the random-permutation model in Section 7.1.5.) By analogy with
the random-oracle and ideal-cipher models, the random-permutation model
assumes that all parties are given access to oracles for a uniform permutation
P as well as its inverse P−1; the only way to compute P or P−1 is to explicitly
query those oracles. Note that the random-permutation model is weaker than
the ideal-cipher model; indeed, we can easily obtain a random permutation

P from an ideal cipher F by defining P (x)
def
= F (0n, x), i.e., by simply fixing

the key for F to any constant value.

We now describe the construction. Fix a permutation P : {0, 1}` → {0, 1}`,
and let r, c, v ≥ 1 be such that r + c = ` and v ≤ `. The sponge construction
accepts as input a sequence of r-bit blocks m1, . . . ,mt. (See Figure 7.12.)

Practical Constructions of Symmetric-Key Primitives 251

{

{
r

c

m1 m2

...

... mt h1 h2
...

0

0

P P P P P

v

FIGURE 7.12: The sponge construction. The absorbing phase is to the
left of the dashed line, and the squeezing phase is to the right.

During its computation, the construction maintains an `-bit state, initialized
to zero. This state is modified in an input-dependent way during an “absorb-
ing phase,” and the final state is then used to generate output in a “squeezing
phase.” (Hence the name “sponge.”) When processing the ith block during
the absorbing phase, the state is updated from yi−1 to yi by XORing mi with
the first r bits of yi−1 to obtain an intermediate value xi, and then setting
yi := P (xi). The final state yt is then used to generate output in the squeez-
ing phase by repeatedly outputting the initial v bits of the state followed by
an application of P .

The sponge construction can be used for many purposes. In Construc-
tion 7.6 we provide a formal description of how to use it to build a hash
function. That construction includes a parameter λ ≥ 1 that affects how
many times the squeezing step is run, and thus determines the output length
of the hash. (Namely, the output is a string of length λ · v.) The construction
also incorporates an initial padding step so that the resulting hash function
can accept inputs of arbitrary length.

Hash functions following the sponge construction can be shown to satisfy
several security properties when P is modeled as a random permutation. Here
we prove collision resistance as long as r and c are sufficiently large, assuming
for simplicity that λ = 1 (which is the case for the SHA-3 standard).

THEOREM 7.7 Let H denote Construction 7.6 with λ = 1. If P is
modeled as a random permutation, then any attacker making q queries to P

or P−1 can find a collision in H with probability at most q2

2v + q·(q+1)
2c .

PROOF Consider an attacker that is given oracle access to a random per-
mutation P and its inverse P−1, and then outputs a pair of distinct messages;
let m1, . . . ,mt and m′1, . . . ,m

′
t′ denote the results after padding. (Note that,

because of the way padding is done, these padded messages are also distinct.)

252 Introduction to Modern Cryptography

CONSTRUCTION 7.6

Fix P : {0, 1}` → {0, 1}` and constants r, c, v as in the text and λ ≥ 1.
Hash function H, on input m̂ ∈ {0, 1}∗, does:

(Padding) Append a 1 to m̂, followed by enough zeros so that the
length of the resulting string is a multiple of r. Parse the resulting
string as the sequence of r-bit blocks m1, . . . ,mt.

(Absorbing phase) Set y0 := 0`. Then for i = 1, . . . , t do:

� xi := yi−1 ⊕ (mi‖0c).
� yi := P (xi).

(Squeezing phase) Set y∗1 := yt, and let h1 be the first v bits of y∗1 .
Then for i = 2, . . . , λ do

� y∗i := P (y∗i−1).

� Let hi be the first v bits of z∗i .

(Output) Output h1‖ · · · ‖hλ.

A hash function based on the sponge construction.

We assume the attacker never makes the same query to P or P−1 more than
once, and never queries P−1(y) once it has learned that y = P (x) (and vice
versa). We further assume that by the end of its execution the attacker has
made the oracle queries necessary to evaluate H on the messages it outputs.

Define the following three events:

E1: The attacker makes two distinct queries to P whose results agree on their
first v bits.

E2: The attacker makes a query to P or P−1 whose result has its last c bits
equal to 0c.

E3: The attacker makes two distinct queries (to either P or P−1) whose
results agree on their last c bits.

We show that if the attacker outputs a collision then one of the above events
occurs; we complete the proof by bounding the probabilities of these events.

CLAIM 7.8 If the attacker outputs a collision then E1,E2, or E3 occurs.

PROOF Consider the execution of Construction 7.6 on the padded message
m1, . . . ,mt. Let y0, x1, y1, . . . , xt, yt be the values of the variables during the
course of the execution, so that y0 = 0` and, for i ≥ 1, the last c bits of yi−1

and xi are equal and yi = P (xi). Define y′0, x
′
1, y
′
1, . . . , x

′
t′ , y
′
t′ analogously

with respect to the padded message m′1, . . . ,m
′
t′ . If, for some i, the attacker

queried P−1(yi) to obtain xi or queried P−1(y′i) to obtain x′i then we say an
inverse query occurred. We consider two cases:

Practical Constructions of Symmetric-Key Primitives 253

Case 1: An inverse query occurred. Assume without loss of generality
an inverse query occurred for the first padded message. Let i be minimal
such that the attacker queried P−1(yi) to obtain xi. If i = 1 then the
last c bits of x1 are 0c and E2 occurred. Otherwise, the last c bits of
yi−1 = P (xi−1) and xi = P−1(yi) are equal and so E3 occurred.

Case 2: No inverse query occurred. If yt 6= y′t′ , then the first v bits of
yt and y′t′ are equal (since the attacker output a collision) even though
xt 6= x′t′ . Since no inverse query occurred, the attacker must have
queried P (xt) and P (x′t′) and so E1 occurred.

If yt = y′t′ , assume without loss of generality that t′ ≥ t. Let C(z)
denote the last c bits of an `-bit string z. Take 0 ≤ i ≤ t maximal
such that (C(yt−i), . . . , C(yt)) = (C(y′t′−i), . . . , C(y′t′)). If i < t then
C(yt−i−1) 6= C(y′t′−i−1) and hence xt−i 6= x′t′−i, but

C(P (xt−i)) = C(yt−i) = C(y′t′−i) = C(P (x′t′−i))

and so E3 occurred. If i = t and t′ > t then C(P (x′t′−i)) = C(y′t′−i) =
C(y0) = 0c; thus, E2 occurred. If i = t and t′ = t then we have
(C(y0), . . . , C(yt)) = (C(y′0), . . . , C(y′t)). Let j be minimal such that
mj 6= m′j (such a j must exist since the padded messages are distinct).
Then yj−1 = y′j−1 but xj 6= x′j , and yet

C(P (xj)) = C(yj) = C(y′j) = C(P (x′j))

and so E3 occurred.

CLAIM 7.9 Pr[E1 ∨E2 ∨E3] ≤ q2

2v + q·(q+1)
2c .

PROOF We bound the probability of each event; a union bound yields the
claim. It is easy to see that Pr[E2] ≤ q/2c. To bound Pr[E1] we use an anal-
ysis similar to the one used to prove the birthday bound (cf. Appendix A.4).
Let Colli,j be the event that the results of the ith and jth queries of the at-
tacker agree on their first v bits. We have Pr[Colli,j] ≤ 2`−v/(2`−1) ≤ 2 ·2−v.
(Taking into account that P is a random permutation.) So

Pr[E1] = Pr

∨
i<j

Colli,j

 ≤∑
i<j

Pr[Colli,j] ≤
(
q

2

)
· 2 · 2−v ≤ q2/2v.

A similar argument gives Pr[E3] ≤ q2/2c.

This concludes the proof of the theorem.

254 Introduction to Modern Cryptography

References and Additional Reading

Lidl and Niederreiter [130] give the standard treatment of LFSRs. Addi-
tional information on LFSRs in the context of cryptography can be found
in the Handbook of Applied Cryptography [137] or the text by Paar and
Pelzl [156]. Further details about eSTREAM, as well as a document describing
the design of Trivium, can be found at https://www.ecrypt.eu.org/stream .

The work of AlFardan et al. [9] surveys recent attacks on RC4. ChaCha20 is
due to Bernstein [29], and is described in RFC 8439 [154]. It can be analyzed
(in the random-permutation model) as an Even-Mansour cipher [70].

The confusion-diffusion paradigm and substitution-permutation networks
were introduced by Shannon [177] and Feistel [71]. See the thesis of Heys [98]
for further information regarding SPN design. A theoretical analysis of block
ciphers based on SPNs has recently been given by Cogliati et al. [52]. We re-
mark that SPNs are useful not only for building ciphers, but also for increasing
the block length of an existing cipher.

Feistel networks were first described in 1973 [71]. A theoretical analysis of
Feistel networks was given by Luby and Rackoff [132]; see Chapter 8.

More details on DES, AES, and block-cipher constructions in general can
be found in the text by Knudsen and Robshaw [117]. The meet-in-the-middle
attack on double encryption is due to Diffie and Hellman [66]. The attack on
two-key triple encryption mentioned in the text (and explored in Exercise 7.16)
is by Merkle and Hellman [141] and has been developed further [197, 144].
Positive results about double/triple encryption are also known [6, 27].

Work of Bhargavan and Leurent [33] demonstrates real-world security im-
plications of using ciphers (like DES or 3DES) with small block length. See
https://sweet32.info for further information.

Differential cryptanalysis was introduced by Biham and Shamir [34], and
its application to DES is described in a book by those authors [35]. Cop-
persmith [53] describes design principles of the DES S-boxes in light of the
public discovery of differential cryptanalysis. Linear cryptanalysis was discov-
ered by Matsui [134]. For more information on these advanced cryptanalytic
techniques, we refer the reader to the tutorial on differential and linear crypt-
analysis by Heys [99] or the book by Knudsen and Robshaw [117].

Menezes et al. [137] give further information about MD5 and SHA-1; note,
though, that their treatment pre-dates the recent attacks on those hash func-
tions. Various other constructions of compression functions from block ciphers
are known [164, 37]. The sponge construction is described and analyzed by
Bertoni et al. [32]. For additional details about the SHA-3 competition, see
https://csrc.nist.gov/projects/hash-functions/sha-3-project .

The first explicit collision in SHA-1 was found in 2017 by Stevens et al. [192];
improved attacks, which have serious practical security implications, have
been shown even more recently [127, 128].

https://csrc.nist.gov
https://sweet32.info
https://www.ecrypt.eu.org

Practical Constructions of Symmetric-Key Primitives 255

Exercises

7.1 Consider a degree-6 LFSR where only c5 and c0 are set to 1.

(a) What are the first 10 bits output by this LFSR if it starts in initial
state (s5, s4, s3, s2, s1, s0) = (1, 1, 1, 1, 1, 1)?

(b) Is this LFSR maximum length?

7.2 Consider a degree-7 LFSR where only c6, c1, and c0 are set to 1.

(a) What are the first 10 bits output by this LFSR if it starts in the
initial state (s6, s5, s4, s3, s2, s1, s0) = (0, 0, 0, 0, 0, 0, 1)?

(b) Show that this LFSR is not maximum length.
Hint: Find a nonzero state with a self-loop in the transition graph.

7.3 Consider a stream cipher constructed from a degree-n LFSR where the
output at each clock tick is not s0, but instead g(sn−1, . . . , s0) for some
nonlinear function g. The n-bit key of the stream cipher is used as the
initial state of the LFSR. Show that this does not result in a secure
stream cipher for the following choices of g:

(a) g(sn−1, . . . , s0) = s0 ∧ s1.

(b) g(sn−1, . . . , s0) = s2 ⊕ (s1 ∧ s0).

7.4 Consider a stream cipher constructed from two LFSRs A and B of de-
grees na and nb, respectively, where the output at each clock tick is
computed by taking the AND of the outputs of the two LFSRs. The
key k ∈ {0, 1}na+nb is used to set the initial states of the two LFSRs.

(a) Show that this is never a secure stream cipher.

(b) Show that given a long enough output from this stream cipher, it
is possible to recover the key in time ≈ 2na + 2nb .

7.5 Fix a public, invertible permutation P , and define the keyed function

Fk(x)
def
= P (const‖k‖x). Show that F is not a pseudorandom function.

7.6 Let F be a block cipher with n-bit key length and block length. Say
there is a key-recovery attack on F that succeeds with probability 1 using
n chosen plaintexts and minimal computational effort. Prove formally
that F cannot be a pseudorandom permutation.

7.7 In our attack on a one-round SPN, we considered a block length of
64 bits and 8 S-boxes that each take a 8-bit input. Repeat the analysis
for the case of 16 S-boxes, each taking an 4-bit input. What is the
complexity of the attack now? Repeat the analysis again with a 128-bit
block length and 16 S-boxes that each take an 8-bit input.

256 Introduction to Modern Cryptography

7.8 Consider a modified SPN that first applies r rounds of key mixing (using
independent sub-keys), then carries out r rounds of substitution (using
different S-boxes in each round), and finally applies r (different) mixing
permutations. Show an attack on this construction.

7.9 In this question we assume a two-round SPN with 64-bit block length.

(a) Assume independent 64-bit sub-keys are used in each round, so the
master key is 192 bits long. Show a key-recovery attack using much
less than 2192 time.

(b) Assume the first and third sub-keys are equal, and the second sub-
key is independent, so the master key is 128 bits long. Show a
key-recovery attack using much less than 2128 time.

7.10 What is the output of an r-round Feistel network when the input is
(L0, R0) in each of the following two cases:

(a) Each round function outputs all 0s, regardless of the input.

(b) Each round function is the identity function.

7.11 Let Feistelf1,f2(·) denote a two-round Feistel network using functions f1

and f2 (in that order). Define swap(L,R) = (R,L).

(a) Show that if

(L2, R2) = swap(Feistelf1,f2(L0, R0))

then (L0, R0) = swap(Feistelf2,f1(L2, R2)).

(b) Show that if

(L16, R16) = swap (Feistelf15,f16(· · · (Feistelf1,f2(L0, R0)) · · ·))

then

(L0, R0) = swap (Feistelf2,f1(· · ·Feistelf16,f15(L16, R16) · · ·)) .

7.12 For this exercise, rely on the description of DES given in this chap-
ter. However, use the fact that in the actual construction of DES the
two halves of the output of the final round of the Feistel network are
swapped. That is, if the output of the final round of the Feistel network
is (L16, R16), then the output of DES is (R16, L16).

(a) Show that the only difference between computation of DESk and
DES−1

k is the order in which sub-keys are used. (Rely on the
previous exercise.)

(b) Show that when k = 056 then DESk(DESk(x)) = x for all x.
Hint: Consider the sub-keys generated from this key.

Practical Constructions of Symmetric-Key Primitives 257

(c) Find three other DES keys with the same property. These keys are
known as weak keys for DES. (Note: the keys you find will differ
from the actual weak keys of DES because of differences in our
description of the DES key schedule.)

(d) Do these 4 weak keys represent a serious vulnerability in the use
of triple-DES as a pseudorandom permutation? Explain.

7.13 (This exercise relies on Exercise 7.12.) Our goal is to show that for any
weak key k of DES, it is easy to find an input x such that DESk(x) = x.

(a) Assume we evaluate DESk on input (L0, R0), and the intermedi-
ate result after 8 rounds of the Feistel network is (L8, R8) with
L8 = R8. Show that (L0, R0) = DESk(L0, R0). (Recall from Ex-
ercise 7.12 that DES swaps the two halves of the output of the 16th
round of the Feistel network.)

(b) Show how to find an input (L0, R0) with the property in part (a).

7.14 Show that DES has the property that DESk(x) = DESk̄(x̄) for ev-
ery key k and input x (where z̄ denotes the bitwise complement of z).
(This is called the complementarity property of DES.) Does this repre-
sent a serious vulnerability in the use of triple-DES as a pseudorandom
permutation? Explain.

7.15 Describe attacks on the following modifications of DES:

(a) Each sub-key is 32 bits long, and the round function simply XORs

the sub-key with the input to the round (i.e., f̂(k,R) = ki ⊕ R).
For this question, the key schedule is unimportant and you can
treat the sub-keys ki as independent keys.

(b) Instead of using different sub-keys in every round, the same 48-
bit sub-key is used in every round. Show how to distinguish the
cipher from a random permutation using two chosen plaintexts and
negligible work.

Hint: Exercises 7.11 and 7.12 may help. . .

7.16 This question develops an attack on two-key triple encryption. Let F
be a block cipher with `-bit block length and n-bit key length (where

` ≥ n), and set F ′k1,k2(x)
def
= Fk1(Fk2(Fk1(x))). Assume an attacker

is given N � 2` input/output pairs {(xi, yi)}Ni=1 where the {xi} are
uniform and yi = F ′k1,k2(xi) for unknown keys k1, k2.

(a) Assume the attacker knows z ∈ {0, 1}` such that Fk1(xi) = z for
some i. (The attacker does not know i.) Show how the attacker
can find k1, k2 using 2n+1 +O(N) ≈ 2n+1 evaluations of F/F−1.

Hint: Start by computing {Fk(z)} for all possible keys.

258 Introduction to Modern Cryptography

(b) In general, the attacker does not know z as required for part (a).
Show how the attacker can nevertheless learn k1, k2 using roughly
2n+`+1/N evaluations of F/F−1.

Hint: What happens if the attacker chooses a random z?

7.17 Say the key schedule of DES is modified as follows: the left half of the
master key is used to derive all the sub-keys in rounds 1–8, while the
right half of the master key is used to derive all the sub-keys in rounds
9–16. Show an attack on this modified scheme that recovers the entire
key in time roughly 228.

7.18 Fix arbitrary G1, G2 : {0, 1}n → {0, 1}4n, and define

G(s1‖s2) = G1(s1)⊕G2(s2).

Show how to distinguish the output of G from random in time ≈ 2n+1.

Hint: Adapt the meet-in-the-middle attack.

7.19 Let f : {0, 1}m × {0, 1}` → {0, 1}` and g : {0, 1}n × {0, 1}` → {0, 1}`
be secure block ciphers with m > n, and define Fk1,k2(x) = fk1(gk2(x)).
Show a key-recovery attack on F using time O(2m) and space O(` · 2n).

7.20 Define DESYk,k′(x) = DESk(x⊕ k′). The key length of DESY is 120
bits. Show a key-recovery attack on DESY taking ≈ 256 time and O(1)
memory.

7.21 Choose random S-boxes and mixing permutations for SPNs of different
sizes, and develop differential attacks against them. We recommend
trying five-round SPNs with 16-bit and 24-bit block lengths, using S-
boxes with 4-bit input/output. Write code to compute the differential
tables, and to carry out the attack.

7.22 Implement the time/space tradeoff from Section 6.4.3 for a key-recovery
attack on 40-bit DES (e.g., fix the first 16 bits of the key to 0). Calculate
the time and memory needed, and empirically estimate the probability
of success. Experimentally verify the increase in success probability as
the number of tables is increased. (Warning: this is a big project!)

7.23 For each of the following constructions of a compression function h from
a block cipher F : {0, 1}n × {0, 1}n → {0, 1}n, either show an attack or
prove collision resistance in the ideal-cipher model:

(a) h(k, x) = Fk(x).

(b) h(k, x) = Fk(x)⊕ k ⊕ x.

(c) h(k, x) = Fk(x)⊕ k.

Practical Constructions of Symmetric-Key Primitives 259

7.24 Let F be a block cipher for which it is easy to find fixed points for some
key: namely, there is a key k for which it is easy to find inputs x for
which Fk(x) = x. Find a collision in the Davies–Meyer construction
when applied to F . (Consider this in light of Exercise 7.13.)

7.25 Consider using DES to construct a compression function in the following

way: Define h : {0, 1}112 → {0, 1}64 as h(x1, x2)
def
= DESx1

(DESx2
(064))

where |x1| = |x2| = 56.

(a) Write down an explicit collision in h.
Hint: Use Exercise 7.12(a–b).

(b) Show how to find a preimage of an arbitrary value y (that is, x1, x2

such that h(x1‖x2) = y) in roughly 256 time.

(c) Show a more clever preimage attack that runs in roughly 232 time
and succeeds with high probability.

Hint: Rely on the results of Appendix A.4.

7.26 Say S1, . . . , S8 : {0, 1}n → {0, 1}n are modeled as random permutations,
and say P : {0, 1}8n → {0, 1}8n is constructed by defining

P (x1‖ · · · ‖x8) = S1(x1)‖ · · · ‖S8(xn).

Show that it is easy to find a collision in Construction 7.6 for λ = 1 and
r = c = v = 4n when using this P .

http://taylorandfrancis.com

Chapter 8

*Theoretical Constructions of
Symmetric-Key Primitives

In Chapter 3 we introduced the notion of pseudorandomness and defined some
basic cryptographic primitives including pseudorandom generators, functions,
and permutations. We further showed in Chapters 3–5 that these primitives
can serve as building blocks for all of private-key cryptography. As such, it is
of great importance to understand these primitives from a theoretical point
of view. In this chapter we formally introduce the concept of one-way func-
tions—functions that are, informally, easy to compute but hard to invert—and
show how pseudorandom generators, functions, and permutations can be con-
structed under the sole assumption that one-way functions exist.1 Moreover,
we will see that one-way functions are necessary for “non-trivial” private-key
cryptography. That is: the existence of one-way functions is equivalent to
the existence of all (non-trivial) private-key cryptography. This is one of the
major contributions of modern cryptography.

The constructions we show in this chapter should be viewed as complemen-
tary to the constructions of stream ciphers and block ciphers discussed in the
previous chapter. The focus of the previous chapter was on how various cryp-
tographic primitives are currently realized in practice, and the intent of that
chapter was to introduce some basic approaches and design principles that are
used. Somewhat disappointing, though, was the fact that none of the con-
structions we showed could be proven secure based on any weaker (i.e., more
reasonable) assumptions. In contrast, in this chapter we will show construc-
tions that can be proven secure starting from the very mild assumption that
one-way functions exist. That assumption is more appealing than assuming,
say, that AES is a pseudorandom permutation, both because it is a qualita-
tively weaker assumption and also because we have a number of candidate,
number-theoretic one-way functions that have been studied for many years,
even before the advent of cryptography. (See the very beginning of Chapter 7
for further discussion of this point.) The downside, however, is that the con-
structions we show here are all far less efficient than those of Chapter 7, and
thus (currently) have little practical significance. It remains an important
challenge for cryptographers to “bridge this gap” and develop provably secure

1Although we will for the most part rely on the stronger assumption of one-way permuta-
tions in this chapter, it is known that one-way functions suffice.

261

262 Introduction to Modern Cryptography

constructions of pseudorandom generators and permutations whose efficiency
is comparable to the best available stream ciphers and block ciphers.

Collision-resistant hash functions. Unlike the previous chapter, here we
do not consider collision-resistant hash functions. The reason is that construc-
tions of such hash functions from one-way functions are unknown and, in fact,
there is evidence suggesting that such constructions are impossible. We will
see a provably secure construction of a collision-resistant hash function—based
on a specific, number-theoretic assumption—in Section 9.4.2.

A note regarding this chapter. The material in this chapter is somewhat
more advanced than the material in the rest of this book. This material is not
used explicitly anywhere else in the book, and so can be skipped if desired.
Having said this, we have tried to present the material in such a way that it
is understandable (with effort) to an advanced undergraduate or beginning
graduate student. We encourage all readers to peruse Sections 8.1 and 8.2,
which introduce one-way functions and provide an overview of the rest of this
chapter. We believe that familiarity with at least some of the topics covered
here is important enough to warrant the effort.

8.1 One-Way Functions

In this section we formally define one-way functions, and then briefly discuss
some candidates that are believed to satisfy this definition. (We will see more
examples of conjectured one-way functions in Chapter 9.) We next introduce
the notion of hard-core predicates, which can be viewed as encapsulating the
hardness of inverting a one-way function and will be used extensively in the
constructions that follow in subsequent sections.

8.1.1 Definitions

A one-way function f : {0, 1}∗ → {0, 1}∗ is easy to compute, yet hard to
invert. The first condition is easy to formalize: we will simply require that
f be computable in polynomial time. Since we are ultimately interested in
building cryptographic schemes that are hard for a probabilistic polynomial-
time adversary to break except with negligible probability, we will formalize
the second condition by requiring that it be infeasible for any probabilistic
polynomial-time algorithm to invert f—that is, to find a preimage of a given
value y—except with negligible probability. A technical point is that this
probability is taken over an experiment in which y is generated by choosing a
uniform element x in the domain of f and then setting y := f(x) (rather than
choosing y uniformly from the range of f). The reason for this should become
clear from the constructions we will see in the remainder of the chapter.

Theoretical Constructions of Symmetric-Key Primitives 263

Let f : {0, 1}∗ → {0, 1}∗ be a function. Consider the following experiment
defined for any algorithm A and any value n for the security parameter:

The inverting experiment InvertA,f (n)

1. Choose uniform x ∈ {0, 1}n, and compute y := f(x).

2. A is given 1n and y as input, and outputs x′.

3. The output of the experiment is defined to be 1 if f(x′) = y,
and 0 otherwise.

We stress that A need not find the original preimage x; it suffices for A to
find any value x′ for which f(x′) = y = f(x). The security parameter 1n is
given to A in the second step to stress that A may run in time polynomial in
the security parameter n, regardless of the length of y.

We can now define what it means for a function f to be one-way.

DEFINITION 8.1 A function f : {0, 1}∗ → {0, 1}∗ is one-way if the
following two conditions hold:

1. (Easy to compute:) There exists a polynomial-time algorithm Mf

computing f ; that is, Mf (x) = f(x) for all x.

2. (Hard to invert:) For every probabilistic polynomial-time algorithm
A, there is a negligible function negl such that

Pr[InvertA,f (n) = 1] ≤ negl(n).

Notation. In this chapter we will often make the probability space more
explicit by subscripting (part of) it in the probability notation. For example,
we can succinctly express the second requirement in the definition above as
follows: For every probabilistic polynomial-time algorithm A, there exists a
negligible function negl such that

Pr
x←{0,1}n

[
A(1n, f(x)) ∈ f−1(f(x))

]
≤ negl(n).

(Recall that x← {0, 1}n means that x is chosen uniformly from {0, 1}n.) The
probability above is also taken over the randomness used by A, which here is
left implicit.

Successful inversion of one-way functions. A function that is not one-
way is not necessarily easy to invert all the time (or even “often”). Rather,
the converse of the second condition of Definition 8.1 is that there exists a
probabilistic polynomial-time algorithm A and a non-negligible function γ
such that A inverts f(x) with probability at least γ(n) (where the probability
is taken over uniform choice of x ∈ {0, 1}n and the randomness of A). This
means, in turn, that there exists a positive polynomial p(·) such that for

264 Introduction to Modern Cryptography

infinitely many values of n, algorithm A inverts f with probability at least
1/p(n). Thus, if there exists an A that inverts f with probability n−10 for
all even values of n (but always fails to invert f when n is odd), then f is
not one-way—even though A only succeeds on half the values of n, and only
succeeds with probability n−10 (for values of n where it succeeds at all).

Exponential-time inversion. Any one-way function can be inverted at any
point y in exponential time, by simply trying all values x ∈ {0, 1}n until a
value x is found such that f(x) = y. Thus, the existence of one-way functions
is inherently an assumption about computational complexity and computa-
tional hardness. That is, it concerns a problem that can be solved in principle
but is assumed to be hard to solve efficiently.

One-way permutations. We will often be interested in one-way functions
with additional structural properties. We say a function f is length-preserving
if |f(x)| = |x| for all x. A one-way function that is length-preserving and one-
to-one is called a one-way permutation. If f is a one-way permutation, then
any value y has a unique preimage x = f−1(y). Nevertheless, it is still hard
to find x in polynomial time.

One-way function/permutation families. The above definitions of one-
way functions and permutations are convenient in that they consider a single
function over an infinite domain and range. However, most candidate one-way
functions and permutations do not fit neatly into this framework. Instead,
there is an algorithm generating some set of parameters I that define a func-
tion fI ; one-wayness here means essentially that fI should be one-way with
all but negligible probability over choice of I. Because each value of I de-
fines a different function, we now refer to families of one-way functions (resp.,
permutations). We give the definition now, and refer the reader to the next
section for a concrete example. (See also Section 9.4.1.)

DEFINITION 8.2 A tuple Π = (Gen,Samp, f) of probabilistic polynomial-
time algorithms is a function family if the following hold:

1. The parameter-generation algorithm Gen, on input 1n, outputs parameters
I with |I| ≥ n. Each value of I output by Gen defines sets DI and RI
that constitute the domain and range, respectively, of a function fI .

2. The sampling algorithm Samp, on input I, outputs a uniformly distributed
element of DI .

3. The deterministic evaluation algorithm f , on input I and x ∈ DI , outputs
an element y ∈ RI . We write this as y := fI(x).

Π is a permutation family if for each value of I output by Gen(1n), it holds
that DI = RI and the function fI : DI → DI is a bijection.

Theoretical Constructions of Symmetric-Key Primitives 265

Let Π be a function family. What follows is the natural analogue of the
experiment introduced previously.

The inverting experiment InvertA,Π(n):

1. Gen(1n) is run to obtain I, and then Samp(I) is run to obtain
a uniform x ∈ DI . Finally, y := fI(x) is computed.

2. A is given I and y as input, and outputs x′.

3. The output of the experiment is 1 if fI(x
′) = y.

DEFINITION 8.3 A function/permutation family Π = (Gen, Samp, f)
is one-way if for all probabilistic polynomial-time algorithms A there exists a
negligible function negl such that

Pr[InvertA,Π(n) = 1] ≤ negl(n).

Throughout this chapter we work with one-way functions/permutations
over an infinite domain (as in Definition 8.1), rather than working with fam-
ilies of one-way functions/permutations. This is primarily for convenience,
and does not significantly affect any of the results. (See Exercise 8.7.)

8.1.2 Candidate One-Way Functions

One-way functions are of interest only if they exist. We do not know how
to prove they exist unconditionally (this would be a major breakthrough in
complexity theory), so we must conjecture or assume their existence. Such a
conjecture is based on the fact that several natural computational problems
have received much attention, yet still are not known to be solvable by any
polynomial-time algorithm. Perhaps the most famous such problem is integer
factorization, i.e., finding the prime factors of a large integer. It is easy to
multiply two numbers and obtain their product, but difficult to take a number
and find its factors. This leads us to define the function fmult(x, y) = x · y.
If we do not restrict the lengths of x and y, however, fmult is easy to invert:
with high probability x · y will be even, in which case (2, xy/2) is an inverse.
This issue can be addressed by restricting the domain of fmult to equal-length
primes x and y. We return to this idea in Section 9.2.

Another candidate one-way function, not relying directly on number theory,
is based on the subset-sum problem and is defined by

fss(x1, . . . , xn, J) =
(
x1, . . . , xn,

[∑
j∈J xj mod 2n

])
,

where each xi is an n-bit string interpreted as an integer, and J is an n-
bit string interpreted as specifying a subset of {1, . . . , n}. Inverting fss on
an output (x1, . . . , xn, y) requires finding a subset J ′ ⊆ {1, . . . , n} such that

266 Introduction to Modern Cryptography∑
j∈J′ xj = y mod 2n. Readers who have studied NP-completeness may re-

call that this problem is NP-complete. But even P 6= NP would not imply
that fss is one-way: P 6= NP would mean that every polynomial-time algo-
rithm fails to solve the subset-sum problem on at least one input, whereas
for fss to be one-way it is required that every polynomial-time algorithm fails
to solve the subset-sum problem (at least for certain parameters) almost al-
ways. Thus, our belief that the function above is one-way is based on the lack
of known algorithms to solve this problem even with “small” probability on
random inputs, and not merely the fact that the problem is NP-complete.

We conclude by showing a family of permutations that is believed to be one-
way. Let Gen be a probabilistic polynomial-time algorithm that, on input 1n,
outputs an n-bit prime p along with a special element g ∈ {2, . . . , p−1}. (The
element g should be a generator of Z∗p; see Section 9.3.3.) Let Samp be an
algorithm that, given p and g, outputs a uniform integer x ∈ {1, . . . , p − 1}.
Finally, define

fp,g(x) = [gx mod p].

(The fact that fp,g can be computed efficiently follows from the results in
Appendix B.2.3.) It can be shown that this function is one-to-one, and thus
a permutation. The presumed difficulty of inverting this function is based on
the conjectured hardness of the discrete-logarithm problem; we will have much
more to say about this in Section 9.3.

Finally, we remark that very efficient one-way functions can be obtained
from practical cryptographic constructions such as SHA-2 or AES under the
assumption that they are collision resistant or a pseudorandom permutation,
respectively; see Exercises 8.4 and 8.5. (Technically speaking, they cannot
satisfy the definition of one-wayness since they have fixed-length input/output
and so their asymptotic behavior is undefined. Nevertheless, it is plausible to
conjecture that they are one-way in a concrete sense.)

8.1.3 Hard-Core Predicates

By definition, a one-way function is hard to invert. Stated differently: given
y = f(x), the value x cannot be computed in its entirety by any polynomial-
time algorithm (except with negligible probability; we ignore this here). One
might get the impression that nothing about x can be determined from f(x)
in polynomial time. This is not necessarily the case. Indeed, it is possible for
f(x) to “leak” a lot of information about x even if f is one-way. For a trivial

example, let g be a one-way function and define f(x1, x2)
def
= (x1, g(x2)), where

|x1| = |x2|. It is easy to show that f is also a one-way function (this is left as
an exercise), even though it reveals half its input.

For our applications, we will need to identify a specific piece of information
about x that is “hidden” by f(x). This motivates the notion of a hard-core
predicate. A hard-core predicate hc : {0, 1}∗ → {0, 1} of a function f has the
property that hc(x) is hard to compute with probability significantly better

Theoretical Constructions of Symmetric-Key Primitives 267

than 1/2 given f(x). (Since hc is a boolean function, it is always possible to
compute hc(x) with probability 1/2 by random guessing.) Formally:

DEFINITION 8.4 A function hc : {0, 1}∗ → {0, 1} is a hard-core predi-
cate of a function f if hc can be computed in polynomial time, and for every
probabilistic polynomial-time algorithm A there is a negligible function negl
such that

Pr
x←{0,1}n

[A(1n, f(x)) = hc(x)] ≤ 1

2
+ negl(n),

where the probability is taken over the uniform choice of x in {0, 1}n and the
randomness of A.

We stress that hc(x) is efficiently computable given x (since the function
hc can be computed in polynomial time); the definition requires that hc(x)
is hard to compute given f(x). The above definition does not require f to
be one-way; if f is a permutation, however, then it cannot have a hard-core
predicate unless it is one-way. (See Exercise 8.13.)

Simple ideas don’t work. Consider the predicate hc(x)
def
=
⊕n

i=1 xi where
x1, . . . , xn denote the bits of x. One might hope that this is a hard-core
predicate of any one-way function f : if f cannot be inverted, then f(x) must
hide at least one of the bits xi of its preimage x, which would seem to imply
that the XOR of all of the bits of x is hard to compute. Despite its appeal,
this argument is incorrect. To see this, let g be a one-way function and define

f(x)
def
= (g(x),

⊕n
i=1 xi). It is not hard to show that f is one-way. However, it

is clear that f(x) does not hide the value of hc(x) =
⊕n

i=1 xi because this is
part of its output; therefore, hc(x) is not a hard-core predicate of f . Extending
this, one can show that for any fixed predicate hc, there is a one-way function f
for which hc is not a hard-core predicate of f .

Trivial hard-core predicates. Some functions have “trivial” hard-core
predicates. For example, let f be the function that drops the last bit of
its input (i.e., f(x1 · · ·xn) = x1 · · ·xn−1). It is hard to determine xn given
f(x) since xn is independent of the output; thus, hc(x) = xn is a hard-core
predicate of f . However, f is not one-way. When we use hard-core predicates
in our constructions, it will become clear why trivial hard-core predicates of
this sort are of no use.

8.2 From One-Way Functions to Pseudorandomness

In this chapter we show how to construct pseudorandom generators, func-
tions, and permutations from any one-way function/permutation. In this

268 Introduction to Modern Cryptography

section, we give an overview of these constructions. Details are given in the
sections that follow.

A hard-core predicate from any one-way function. The first step is
to show that a hard-core predicate exists for any one-way function. Actually,
it remains open whether this is true; we show something weaker that suffices
for our purposes: Namely, we show that given a one-way function f we can
construct another one-way function g along with a hard-core predicate of g.

THEOREM 8.5 (Goldreich–Levin theorem) Assume one-way func-
tions (resp., permutations) exist. Then there exists a one-way function (resp.,
permutation) g and a hard-core predicate gl of g.

Let f be a one-way function. Functions g and gl are constructed as follows:

set g(x, r)
def
= (f(x), r), for |x| = |r|, and define

gl(x, r)
def
=

n⊕
i=1

xi · ri,

where xi (resp., ri) denotes the ith bit of x (resp., r). Notice that if r is
uniform, then gl(x, r) outputs the XOR of a random subset of the bits of x.
(When ri = 1 the bit xi is included in the XOR, and otherwise it is not.) The
Goldreich–Levin theorem thus states that if f is a one-way function then f(x)
hides the XOR of a random subset of the bits of x.

Pseudorandom generators from one-way permutations. The next step
is to show how a hard-core predicate of a one-way permutation can be used to
construct a pseudorandom generator. (It is known that a hard-core predicate
of a one-way function suffices, but the proof is extremely complicated and
well beyond the scope of this book.) Specifically, we show:

THEOREM 8.6 Let f be a one-way permutation and let hc be a hard-core

predicate of f . Then, G defined by G(s)
def
= f(s) ‖ hc(s) is a pseudorandom

generator with expansion factor `(n) = n+ 1.

As intuition for why G is a pseudorandom generator, note first that the
initial n bits of G(s) (i.e., the bits of f(s)) are uniformly distributed when s
is uniformly distributed, since f is a permutation. Next, the fact that hc is
a hard-core predicate of f means that hc(s) “looks random”—i.e., is pseudo-
random—even given f(s) (assuming again that s is uniform). Putting these
observations together, we see that the entire output of G is pseudorandom.

Pseudorandom generators with arbitrary expansion. The existence of
a pseudorandom generator that stretches its seed by even a single bit (as we
have just seen) is already highly non-trivial. But for applications (e.g., for
efficient encryption of large messages as in Section 3.3), we need a pseudoran-

Theoretical Constructions of Symmetric-Key Primitives 269

dom generator with much larger expansion. Fortunately, we can obtain any
polynomial expansion factor we like:

THEOREM 8.7 If there exists a pseudorandom generator with expansion
factor `(n) = n+1, then for any polynomial poly there exists a pseudorandom
generator with expansion factor poly(n).

We conclude that pseudorandom generators with arbitrary (polynomial)
expansion can be constructed from any one-way permutation.

Pseudorandom permutations from pseudorandom generators. Pseu-
dorandom generators suffice for constructing EAV-secure private-key encryp-
tion schemes. For CPA-secure private-key encryption (not to mention message
authentication codes), however, we relied on pseudorandom functions. The
following result shows that the latter can be constructed from the former:

THEOREM 8.8 If there exists a pseudorandom generator with expansion
factor `(n) = 2n, then there exists a pseudorandom function.

In fact, we can do even more:

THEOREM 8.9 If there exists a pseudorandom function, then there exists
a strong pseudorandom permutation.

Combining the above theorems and the results of Chapters 3–5 we have:

COROLLARY 8.10 Assuming the existence of one-way permutations:

� There exist pseudorandom generators with any expansion factor, pseu-
dorandom functions, and strong pseudorandom permutations.

� There exist authenticated encryption schemes and secure message au-
thentication codes.

As noted earlier, even one-way functions suffice.

8.3 Hard-Core Predicates from One-Way Functions

In this section, we prove Theorem 8.5 by showing the following:

THEOREM 8.11 Let f be a one-way function and define g(x, r)
def
=

(f(x), r), where |x| = |r|, and gl(x, r)
def
=
⊕n

i=1 xi · ri. Then gl is a hard-
core predicate of g.

270 Introduction to Modern Cryptography

Due to the complexity of the proof, we prove three successively stronger
results culminating in what is claimed in the theorem.

8.3.1 A Simple Case

We first show that if there exists a polynomial-time adversary A that always
correctly computes gl(x, r) given g(x, r) = (f(x), r), then it is possible to
invert f in polynomial time. (Note that such an A can only possibly exist if f
is one-to-one.) Given the assumption that f is a one-way function, it follows
that no such adversary A exists.

PROPOSITION 8.12 Let f and gl be as in Theorem 8.11. If there exists
a polynomial-time algorithm A such that A(f(x), r) = gl(x, r) for all n and
all x, r ∈ {0, 1}n, then there exists a polynomial-time algorithm A′ such that
A′(1n, f(x)) = x for all n and all x ∈ {0, 1}n.

PROOF We construct A′ as follows. A′(1n, y) computes xi := A(y, ei)
for i = 1, . . . , n, where ei denotes the n-bit string with 1 in the ith position
and 0 everywhere else. Then A′ outputs x = x1 · · ·xn. Clearly A′ runs in
polynomial time.

In the execution of A′(1n, f(x̂)), the value xi computed by A′ satisfies

xi = A(f(x̂), ei) = gl(x̂, ei) =

n⊕
j=1

x̂j · eij = x̂i.

Thus, xi = x̂i for all i and so A′ outputs the correct inverse x = x̂.

If f is one-way, it is impossible for any probabilistic polynomial-time al-
gorithm to invert f with non-negligible probability. Thus, we conclude that
there is no polynomial-time algorithm that always correctly computes gl(x, r)
from (f(x), r). This is a rather weak result that is very far from our ultimate
goal of showing that gl(x, r) cannot be computed with probability significantly
better than 1/2 given (f(x), r).

8.3.2 A More Involved Case

We now show that it is hard for any probabilistic polynomial-time algo-
rithm A to compute gl(x, r) from (f(x), r) with probability significantly better
than 3/4. We will again show that any such A would imply the existence of a
polynomial-time algorithm A′ that inverts f with non-negligible probability.
Notice that the strategy in the proof of Proposition 8.12 fails here because it
may be that A never succeeds when r = ei (although it may succeed, say,
on all other values of r). Furthermore, in the present case A′ does not know

Theoretical Constructions of Symmetric-Key Primitives 271

if the result A(f(x), r) is equal to gl(x, r) or not; the only thing A′ knows is
that with high probability, algorithm A is correct. This further complicates
the proof.

PROPOSITION 8.13 Let f and gl be as in Theorem 8.11. If there exists
a probabilistic polynomial-time algorithm A and a polynomial p(·) such that

Pr
x,r←{0,1}n

[
A(f(x), r) = gl(x, r)

]
≥ 3

4
+

1

p(n)

for infinitely many values of n, then there exists a probabilistic polynomial-
time algorithm A′ such that

Pr
x←{0,1}n

[
A′(1n, f(x)) ∈ f−1(f(x))

]
≥ 1

4 · p(n)

for infinitely many values of n.

PROOF The main observation underlying the proof of this proposition is
that for every r ∈ {0, 1}n, the values gl(x, r⊕ ei) and gl(x, r) together can be
used to compute the ith bit of x. (Recall that ei denotes the n-bit string with
0s everywhere except the ith position.) This is true because

gl(x, r)⊕ gl(x, r ⊕ ei)

=

 n⊕
j=1

xj · rj

⊕
 n⊕
j=1

xj · (rj ⊕ eij)

 = xi · ri ⊕
(
xi · r̄i

)
= xi ,

where r̄i is the complement of ri, and the second equality is due to the fact
that for j 6= i, the value xj · rj appears in both sums and so is canceled out.

The above demonstrates that if A answers correctly on both (f(x), r) and
(f(x), r ⊕ ei), then A′ can correctly compute xi. Unfortunately, A′ does not
know when A answers correctly and when it does not; A′ knows only that A
answers correctly with “high” probability. For this reason, A′ will use multiple
random values of r, using each one to obtain an estimate of xi, and then take
the estimate occurring a majority of the time as its final guess for xi.

As a preliminary step, we show that for many x’s the probability that A
answers correctly for both (f(x), r) and (f(x), r ⊕ ei), when r is uniform, is
sufficiently high. This allows us to fix x and then focus solely on uniform
choice of r, which makes the analysis easier.

CLAIM 8.14 Let n be such that

Pr
x,r←{0,1}n

[
A(f(x), r) = gl(x, r)

]
≥ 3

4
+

1

p(n)
.

272 Introduction to Modern Cryptography

Then there exists a set Sn ⊆ {0, 1}n of size at least 1
2p(n) · 2

n such that for

every x ∈ Sn it holds that

Pr
r←{0,1}n

[A(f(x), r) = gl(x, r)] ≥ 3

4
+

1

2p(n)
.

PROOF Let ε(n) = 1/p(n), and define Sn ⊆ {0, 1}n to be the set of all
x’s for which

Pr
r←{0,1}n

[A(f(x), r) = gl(x, r)] ≥ 3

4
+
ε(n)

2
.

We have:

Pr
x,r←{0,1}n

[
A(f(x), r) = gl(x, r)

]
=

1

2n

∑
x∈{0,1}n

Pr
r←{0,1}n

[
A(f(x), r) = gl(x, r)

]
=

1

2n

∑
x∈Sn

Pr
r←{0,1}n

[
A(f(x), r) = gl(x, r)

]
+

1

2n

∑
x 6∈Sn

Pr
r←{0,1}n

[
A(f(x), r) = gl(x, r)

]
≤ |Sn|

2n
+

1

2n
·
∑
x 6∈Sn

(
3

4
+
ε(n)

2

)

≤ |Sn|
2n

+

(
3

4
+
ε(n)

2

)
.

Since 3
4 + ε(n) ≤ Prx,r←{0,1}n

[
A(f(x), r) = gl(x, r)

]
, straightforward algebra

gives |Sn| ≥ ε(n)
2 · 2

n.

The following is an easy consequence.

CLAIM 8.15 Let n be such that

Pr
x,r←{0,1}n

[
A(f(x), r) = gl(x, r)

]
≥ 3

4
+

1

p(n)
.

Then there exists a set Sn ⊆ {0, 1}n of size at least 1
2p(n) · 2

n such that for

every x ∈ Sn and every i it holds that

Pr
r←{0,1}n

[
A(f(x), r) = gl(x, r)

∧
A(f(x), r ⊕ ei) = gl(x, r ⊕ ei)

]
≥ 1

2
+

1

p(n)
.

Theoretical Constructions of Symmetric-Key Primitives 273

PROOF Let ε(n) = 1/p(n), and take Sn to be the set guaranteed by the
previous claim. Fix any x ∈ Sn. We have:

Pr
r←{0,1}n

[A(f(x), r) 6= gl(x, r)] ≤ 1

4
− ε(n)

2
.

Fix any i ∈ {1, . . . , n}. If r is uniform then so is r ⊕ ei; thus

Pr
r←{0,1}n

[A(f(x), r ⊕ ei) 6= gl(x, r ⊕ ei)] ≤ 1

4
− ε(n)

2
.

We are interested in lower-bounding the probability thatA outputs the correct
answer for both gl(x, r) and gl(x, r⊕ei); equivalently, we want to upper-bound
the probability that A fails to output the correct answer in either of these
cases. Note that r and r⊕ ei are not independent, so we cannot just multiply
the probabilities of failure. However, we can apply the union bound (see
Proposition A.7) and sum the probabilities of failure. That is, the probability
that A is incorrect on either gl(x, r) or gl(x, r ⊕ ei) is at most(

1

4
− ε(n)

2

)
+

(
1

4
− ε(n)

2

)
=

1

2
− ε(n),

and so A is correct on both gl(x, r) and gl(x, r ⊕ ei) with probability at least
1/2 + ε(n). This proves the claim.

For the rest of the proof we set ε(n) = 1/p(n) and consider only those values
of n for which

Pr
x,r←{0,1}n

[
A(f(x), r) = gl(x, r)

]
≥ 3

4
+ ε(n) . (8.1)

The previous claim states that for an ε(n)/2 fraction of inputs x, and any i,
algorithm A answers correctly on both (f(x), r) and (f(x), r⊕ ei) with prob-
ability at least 1/2 + ε(n) over uniform choice of r, and from now on we focus
only on such values of x. We construct a probabilistic polynomial-time algo-
rithm A′ that inverts f(x) with probability at least 1/2 when x ∈ Sn. This
suffices to prove Proposition 8.13 since then, for infinitely many values of n,

Pr
x←{0,1}n

[A′(1n, f(x)) ∈ f−1(f(x))]

≥ Pr
x←{0,1}n

[A′(1n, f(x)) ∈ f−1(f(x)) | x ∈ Sn] · Pr
x←{0,1}n

[x ∈ Sn]

≥ 1

2
· ε(n)

2
=

1

4p(n)
.

Algorithm A′, given as input 1n and y, works as follows:

1. For i = 1, . . . , n do:

274 Introduction to Modern Cryptography

� Repeatedly choose a uniform r ∈ {0, 1}n and compute A(y, r) ⊕
A(y, r ⊕ ei) as an “estimate” for the ith bit of the preimage of y.
After doing this sufficiently many times (see below), let xi be the
“estimate” that occurs a majority of the time.

2. Output x = x1 · · ·xn.

We sketch an analysis of the probability that A′ correctly inverts its given
input y. (We allow ourselves to be a bit laconic, since a full proof for a more
difficult case is given in the following section.) Say y = f(x̂) and recall that
we assume here that n is such that Equation (8.1) holds and x̂ ∈ Sn. Fix
some i. The previous claim implies that the estimate A(y, r) ⊕ A(y, r ⊕ ei)
is equal to gl(x̂, ei) with probability at least 1

2 + ε(n) over choice of r. By
obtaining sufficiently many estimates and letting xi be the majority value, A′
can ensure that xi is equal to gl(x̂, ei) with probability at least 1− 1

2n . Since
ε(n) = 1/p(n) for some polynomial p, and an independent value of r is used
for obtaining each estimate, the Chernoff bound (cf. Proposition A.14) shows
that polynomially many estimates suffice.

Summarizing, we have that for each i the value xi computed by A′ is in-
correct with probability at most 1

2n . A union bound thus shows that A′ is
incorrect for some i with probability at most n · 1

2n = 1
2 . That is, A′ is correct

for all i—and thus correctly inverts y—with probability at least 1 − 1
2 = 1

2 .
This completes the proof of Proposition 8.13.

A corollary of Proposition 8.13 is that if f is a one-way function, then for
any polynomial-time algorithm A the probability that A correctly guesses
gl(x, r) when given (f(x), r) is at most negligibly more than 3/4.

8.3.3 The Full Proof

We assume familiarity with the simplified proofs in the previous sections,
and build on the ideas developed there. We rely on some terminology and
standard results from probability theory discussed in Appendix A.3.

PROPOSITION 8.16 Let f and gl be as in Theorem 8.11. If there exists
a probabilistic polynomial-time algorithm A and a polynomial p(·) such that

Pr
x,r←{0,1}n

[
A(f(x), r) = gl(x, r)

]
≥ 1

2
+

1

p(n)

for infinitely many values of n, then there exists a probabilistic polynomial-
time algorithm A′ and a polynomial p′(·) such that

Pr
x←{0,1}n

[
A′(1n, f(x)) ∈ f−1(f(x))

]
≥ 1

p′(n)

for infinitely many values of n.

Theoretical Constructions of Symmetric-Key Primitives 275

PROOF Once again we set ε(n) = 1/p(n) and consider only those values

of n for which Prx,r←{0,1}n
[
A(f(x), r) = gl(x, r)

]
≥ 1

2 + 1
p(n) . The following

is analogous to Claim 8.14 and is proved in the same way.

CLAIM 8.17 Let n be such that

Pr
x,r←{0,1}n

[
A(f(x), r) = gl(x, r)

]
≥ 1

2
+ ε(n).

Then there exists a set Sn ⊆ {0, 1}n of size at least ε(n)
2 ·2

n such that for every
x ∈ Sn it holds that

Pr
r←{0,1}n

[A(f(x), r) = gl(x, r)] ≥ 1

2
+
ε(n)

2
. (8.2)

If we start by trying to prove an analogue of Claim 8.15, the best we can
claim here is that when x ∈ Sn we have

Pr
r←{0,1}n

[
A(f(x), r) = gl(x, r)

∧
A(f(x), r ⊕ ei) = gl(x, r ⊕ ei)

]
≥ ε(n)

for any i. Thus, if we try to use A(f(x), r) ⊕ A(f(x), r ⊕ ei) as an estimate
for xi, all we can claim is that this estimate will be correct with probability
at least ε(n), which may not be any better than taking a random guess! We
cannot claim that flipping the result gives a good estimate, either.

Instead, we designA′ so that it computes gl(x, r) and gl(x, r⊕ei) by invoking
A only once. We do this by having A′ run A(f(x), r ⊕ ei), and then simply
“guessing” the value gl(x, r) itself. The naive way to do this would be to
choose the r’s independently, as before, and to have A′ make an independent
guess of gl(x, r) for each value of r. But then the probability that all such
guesses are correct—which, as we will see, is necessary if A′ is to output the
correct inverse—would be negligible because polynomially many r’s are used.

The crucial observation of the present proof is that A′ can generate the r’s
in a pairwise-independent manner and make its guesses in a particular way so
that with non-negligible probability all its guesses are correct. Specifically, in
order to generate m values of r, we have A′ select ` = dlog(m+ 1)e indepen-
dent and uniformly distributed strings s1, . . . , s` ∈ {0, 1}n. Then, for every
nonempty subset I ⊆ {1, . . . , `}, we set rI := ⊕i∈I si. Since there are 2` − 1
nonempty subsets, this defines a collection of 2dlog(m+1)e − 1 ≥ m strings.
Each such string is uniformly distributed. The strings are not independent,
but they are pairwise independent. To see this, notice that for every two
subsets I 6= J there is an index j ∈ I ∪ J such that j /∈ I ∩ J . Without loss of
generality, assume j 6∈ I. Then the value of sj is uniform and independent of
the value of rI . Since sj is included in the XOR that defines rJ , this implies
that rJ is uniform and independent of rI as well.

We now have the following two important observations:

276 Introduction to Modern Cryptography

1. Given gl(x, s1), . . . , gl(x, s`), it is possible to compute gl(x, rI) for every
subset I ⊆ {1, . . . , `}. This is because

gl(x, rI) = gl(x,⊕i∈I si) = ⊕i∈I gl(x, si).

2. If A′ simply guesses the values of gl(x, s1), . . . , gl(x, s`) by choosing a
uniform bit for each, then all these guesses will be correct with proba-
bility 1/2`. If m is polynomial in the security parameter n, then 1/2` is
not negligible, and so with non-negligible probability A′ correctly guesses
all the values gl(x, s1), . . . , gl(x, s`).

Combining the above yields a way of obtaining m = poly(n) uniform and
pairwise-independent strings {rI} along with correct values for {gl(x, rI)}
with non-negligible probability. These values can then be used to compute xi
in the same way as in the proof of Proposition 8.13. Details follow.

The inversion algorithm A′. We now provide a full description of an
algorithm A′ that receives inputs 1n, y and tries to compute an inverse of y.
The algorithm proceeds as follows:

1. Set ` := dlog(2n/ε(n)2 + 1)e.

2. Choose uniform, independent s1, . . . , s` ∈ {0, 1}n and σ1, . . . , σ` ∈ {0, 1}.

3. For every nonempty subset I ⊆ {1, . . . , `}, compute rI := ⊕i∈I si and
σI := ⊕i∈I σi.

4. For i = 1, . . . , n do:

(a) For every nonempty subset I ⊆ {1, . . . , `}, set

xIi := σI ⊕A(y, rI ⊕ ei).

(b) Set xi := majorityI{xIi } (i.e., take the bit that appeared a majority
of the time in the previous step).

5. Output x = x1 · · ·xn.

It remains to compute the probability that A′ outputs x ∈ f−1(y). As
in the proof of Proposition 8.13, we focus only on n as in Claim 8.17 and
assume y = f(x̂) for some x̂ ∈ Sn. Each σi represents a “guess” for the value
of gl(x̂, si). As noted earlier, with non-negligible probability all these guesses
are correct; we show that conditioned on this event, A′ outputs x = x̂ with
probability at least 1/2.

Assume σi = gl(x̂, si) for all i. Then σI = gl(x̂, rI) for all I. Fix an in-
dex i ∈ {1, . . . , n} and consider the probability that A′ obtains the correct
value xi = x̂i. For any nonempty I we have A(y, rI ⊕ ei) = gl(x̂, rI ⊕ ei) with
probability at least 1

2 + ε(n)/2 over choice of r; this follows because x̂ ∈ Sn

Theoretical Constructions of Symmetric-Key Primitives 277

and rI⊕ei is uniformly distributed. Thus, for any nonempty subset I we have
Pr[xIi = x̂i] ≥ 1

2 + ε(n)/2. Moreover, the {xIi }I⊆{1,...,`} are pairwise indepen-
dent because the {rI}I⊆{1,...,`} (and hence the {rI⊕ei}I⊆{1,...,`}) are pairwise
independent. Since xi is defined to be the value that occurs a majority of the
time among the {xIi }I⊆{1,...,`}, we can apply Proposition A.13 to obtain

Pr[xi 6= x̂i] ≤
1

4 · (ε(n)/2)2 · (2` − 1)

≤ 1

4 · (ε(n)/2)2 · (2n/ε(n)2)

=
1

2n
.

The above holds for all i, so by applying a union bound we see that the
probability that xi 6= x̂i for some i is at most 1/2. That is, xi = x̂i for all i
(and hence x = x̂) with probability at least 1/2.

Putting everything together: Let n be as in Claim 8.17 and y = f(x̂). With
probability at least ε(n)/2 we have x̂ ∈ Sn. All the guesses σi are correct
with probability at least

1

2`
≥ 1

2 · (2n/ε(n)2 + 1)
>
ε(n)2

5n

for n sufficiently large. Conditioned on both the above, A′ outputs x = x̂
with probability at least 1/2. The overall probability with which A′ inverts
its input is thus at least ε(n)3/20n = 1/(20np(n)3) for infinitely many n.
Since 20np(n)3 is polynomial in n, this proves Proposition 8.16.

8.4 Constructing Pseudorandom Generators

We first show how to construct pseudorandom generators that stretch their
input by a single bit, under the assumption that one-way permutations exist.
We then show how to extend this to obtain any polynomial expansion factor.

8.4.1 Pseudorandom Generators with Minimal Expansion

Let f be a one-way permutation with hard-core predicate hc. This means
that hc(s) “looks random” given f(s), when s is uniform. Furthermore, since f
is a permutation, f(s) itself is uniformly distributed. (Applying a permutation
to a uniformly distributed value yields a uniformly distributed value.) So if s
is a uniform n-bit string, the (n+1)-bit string f(s)‖hc(s) consists of a uniform
n-bit string plus an additional bit that looks uniform even conditioned on the

278 Introduction to Modern Cryptography

initial n bits; in other words, this (n + 1)-bit string is pseudorandom. Thus,
the algorithm G defined by G(s) = f(s)‖hc(s) is a pseudorandom generator.

THEOREM 8.18 Let f be a one-way permutation with hard-core predi-
cate hc. Then algorithm G defined by G(s) = f(s)‖hc(s) is a pseudorandom
generator with expansion factor `(n) = n+ 1.

PROOF Let D be a probabilistic polynomial-time algorithm. We prove
that there is a negligible function negl such that

Pr
r←{0,1}n+1

[D(r) = 1]− Pr
s←{0,1}n

[D(G(s)) = 1] ≤ negl(n). (8.3)

A similar argument shows that there is a negligible function negl′ for which

Pr
s←{0,1}n

[D(G(s)) = 1]− Pr
r←{0,1}n+1

[D(r) = 1] ≤ negl′(n),

which completes the proof.
Observe first that

Pr
r←{0,1}n+1

[D(r) = 1] = Pr
r←{0,1}n, r′←{0,1}

[D (r‖r′) = 1]

= Pr
s←{0,1}n,r′←{0,1}

[D (f(s)‖r′) = 1]

=
1

2
· Pr
s←{0,1}n

[D
(
f(s) ‖ hc(s)

)
= 1]

+
1

2
· Pr
s←{0,1}n

[D
(
f(s) ‖ hc(s)

)
= 1],

using the fact that f is a permutation for the second equality, and that a
uniform bit r′ is equal to hc(s) with probability exactly 1/2 for the third
equality. Since

Pr
s←{0,1}n

[D(G(s)) = 1] = Pr
s←{0,1}n

[D (f(s)‖hc(s)) = 1]

(by definition of G), this means that Equation (8.3) is equivalent to

1

2
·
(

Pr
s←{0,1}n

[D
(
f(s)‖hc(s)

)
= 1]− Pr

s←{0,1}n
[D
(
f(s)‖hc(s)

)
= 1]

)
≤ negl(n).

Consider the following algorithm A that is given as input a value y = f(s)
and tries to predict the value of hc(s):

1. Choose uniform r′ ∈ {0, 1}.

2. Run D(y‖r′). If D outputs 0, output r′; otherwise output r̄′.

Theoretical Constructions of Symmetric-Key Primitives 279

Clearly A runs in polynomial time. By definition of A, we have

Pr
s←{0,1}n

[A(f(s)) = hc(s)]

=
1

2
· Pr
s←{0,1}n

[A(f(s)) = hc(s) | r′ = hc(s)]

+
1

2
· Pr
s←{0,1}n

[A(f(s)) = hc(s) | r′ 6= hc(s)]

=
1

2
·
(

Pr
s←{0,1}n

[D(f(s)‖hc(s)) = 0] + Pr
s←{0,1}n

[D(f(s)‖hc(s)) = 1]

)
=

1

2
·
((

1− Pr
s←{0,1}n

[D(f(s)‖hc(s)) = 1]

)
+ Pr
s←{0,1}n

[D(f(s)‖hc(s)) = 1]

)
=

1

2
+

1

2
·
(

Pr
s←{0,1}n

[D(f(s)‖hc(s)) = 1]− Pr
s←{0,1}n

[D (f(s)‖hc(s)) = 1]

)
.

Since hc is a hard-core predicate of f , it follows that there exists a negligible
function negl for which

1

2
·
(

Pr
s←{0,1}n

[D
(
f(s)‖hc(s)

)
= 1]− Pr

s←{0,1}n
[D
(
f(s)‖hc(s)

)
= 1]

)
≤ negl(n),

as desired.

8.4.2 Increasing the Expansion Factor

We now show that the expansion factor of a pseudorandom generator can be
increased by any desired (polynomial) amount. This means that the previous
construction, with expansion factor `(n) = n + 1, suffices for constructing a
pseudorandom generator with arbitrary (polynomial) expansion factor.

THEOREM 8.19 If there exists a pseudorandom generator G with expan-
sion factor n + 1, then for any polynomial poly there exists a pseudorandom
generator Ĝ with expansion factor poly(n).

PROOF We first consider constructing a pseudorandom generator Ĝ that
outputs n + 2 bits. Ĝ works as follows: Given an initial seed s ∈ {0, 1}n, it
computes t1 := G(s) to obtain n + 1 pseudorandom bits. The initial n bits
of t1 are then used again as a seed for G; the resulting n+1 bits, concatenated
with the final bit of t1, yield the (n + 2)-bit output. (See Figure 8.1.) The
second application of G uses a pseudorandom seed rather than a random
one. The proof of security we give next shows that this does not impact the
pseudorandomness of the output.

280 Introduction to Modern Cryptography

We now prove that Ĝ is a pseudorandom generator. Define three sequences
of distributions {H0

n}n=1,..., {H1
n}n=1,..., and {H2

n}n=1,..., where each of H0
n,

H1
n, and H2

n is a distribution on strings of length n + 2. In distribution
H0
n, a uniform string t0 ∈ {0, 1}n is chosen and the output is t2 := Ĝ(t0).

In distribution H1
n, a uniform string t1 ∈ {0, 1}n+1 is chosen and parsed

as s1‖σ1 (where s1 is the initial n bits of t1 and σ1 is the final bit). The
output is t2 := G(s1)‖σ1. In distribution H2

n, the output is a uniform string
t2 ∈ {0, 1}n+2. We denote by t2 ← Hi

n the process of generating an (n+2)-bit
string t2 according to distribution Hi

n.
Fix an arbitrary probabilistic polynomial-time distinguisher D. We first

claim that there is a negligible function negl′ such that∣∣∣∣ Pr
t2←H0

n

[D(t2) = 1]− Pr
t2←H1

n

[D(t2) = 1]

∣∣∣∣ ≤ negl′(n). (8.4)

To see this, consider the polynomial-time distinguisher D′ that, on input
t1 ∈ {0, 1}n+1, parses t1 as s1‖σ1 with |s1| = n, computes t2 := G(s1)‖σ1,
and outputs D(t2). Clearly D′ runs in polynomial time. Observe that:

1. If t1 is uniform, the distribution on t2 generated by D′ is exactly that
of distribution H1

n. Thus,

Pr
t1←{0,1}n+1

[D′(t1) = 1] = Pr
t2←H1

n

[D(t2) = 1].

2. If t1 = G(s) for uniform s ∈ {0, 1}n, the distribution on t2 generated by
D′ is exactly that of distribution H0

n. That is,

Pr
s←{0,1}n

[D′(G(s)) = 1] = Pr
t2←H0

n

[D(t2) = 1].

Pseudorandomness of G implies that there is a negligible function negl′ with∣∣∣∣ Pr
s←{0,1}n

[D′(G(s)) = 1]− Pr
t1←{0,1}n+1

[D′(t1) = 1]

∣∣∣∣ ≤ negl′(n).

Equation (8.4) follows.
We next claim that there is a negligible function negl′′ such that∣∣∣∣ Pr

t2←H1
n

[D(t2) = 1]− Pr
t2←H2

n

[D(t2) = 1]

∣∣∣∣ ≤ negl′′(n). (8.5)

To see this, consider the polynomial-time distinguisher D′′ that, on input
w ∈ {0, 1}n+1, chooses uniform σ1 ∈ {0, 1}, sets t2 := w‖σ1, and outputs
D(t2). If w is uniform then so is t2; thus,

Pr
w←{0,1}n+1

[D′′(w) = 1] = Pr
t2←H2

n

[D(t2) = 1].

Theoretical Constructions of Symmetric-Key Primitives 281

On the other hand, if w = G(s) for uniform s ∈ {0, 1}n, then t2 is distributed
exactly according to H1

n and so

Pr
s←{0,1}n

[D′′(G(s)) = 1] = Pr
t2←H1

n

[D(t2) = 1].

As before, pseudorandomness of G implies Equation (8.5).
Putting everything together, we have∣∣∣∣ Pr
s←{0,1}n

[D(Ĝ(s)) = 1]− Pr
r←{0,1}n+2

[D(r) = 1]

∣∣∣∣ (8.6)

=

∣∣∣∣ Pr
t2←H0

n

[D(t2) = 1]− Pr
t2←H2

n

[D(t2) = 1]

∣∣∣∣
≤
∣∣∣∣ Pr
t2←H0

n

[D(t2) = 1]− Pr
t2←H1

n

[D(t2) = 1]

∣∣∣∣
+

∣∣∣∣ Pr
t2←H1

n

[D(t2) = 1]− Pr
t2←H2

n

[D(t2) = 1]

∣∣∣∣
≤ negl′(n) + negl′′(n),

using Equations (8.4) and (8.5). Since D was an arbitrary polynomial-time
distinguisher, this proves that Ĝ is a pseudorandom generator.

FIGURE 8.1: Increasing the expansion of a pseudorandom generator.

The general case. The same idea as above can be iteratively applied to
generate as many pseudorandom bits as desired. Formally, say we wish to
construct a pseudorandom generator Ĝ with expansion factor n + p(n), for
some polynomial p. On input s ∈ {0, 1}n, algorithm Ĝ does (cf. Figure 8.1):

282 Introduction to Modern Cryptography

1. Set t0 := s. For i = 1, . . . , p(n) do:

(a) Let si−1 be the first n bits of ti−1, and let σi−1 denote the remaining
i− 1 bits. (When i = 1, s0 = t0 and σ0 is the empty string.)

(b) Set ti := G(si−1)‖σi−1.

2. Output tp(n).

We show that Ĝ is a pseudorandom generator. The proof uses a common
technique known as a hybrid argument. (Actually, even the case of p(n) = 2,
above, used a simple hybrid argument.) The main difference with respect to
the previous proof is a technical one. Previously, we could define and explicitly
work with three sequences of distributions {H0

n}, {H1
n}, and {H2

n}. Here that
is not possible since the number of distributions to consider grows with n.

For any n and 0 ≤ j ≤ p(n), let Hj
n be the distribution on strings of length

n+p(n) defined as follows: choose uniform tj ∈ {0, 1}n+j , then run Ĝ starting
from iteration j + 1 and output tp(n). (When j = p(n) this means we simply

choose uniform tp(n) ∈ {0, 1}n+p(n) and output it.) The crucial observation

is that H0
n corresponds to outputting Ĝ(s) for uniform s ∈ {0, 1}n, while

H
p(n)
n corresponds to outputting a uniform (n + p(n))-bit string. Fixing any

polynomial-time distinguisher D, this means that∣∣∣∣ Pr
s←{0,1}n

[D(Ĝ(s)) = 1]− Pr
r←{0,1}n+p(n)

[D(r) = 1]

∣∣∣∣
=

∣∣∣∣∣ Pr
t←H0

n

[D(t) = 1]− Pr
t←Hp(n)

n

[D(t) = 1]

∣∣∣∣∣ . (8.7)

We prove the above is negligible, hence Ĝ is a pseudorandom generator.
Fix D as above, and consider the distinguisher D′ that does the following

when given a string w ∈ {0, 1}n+1 as input:

1. Choose uniform j ∈ {1, . . . , p(n)}.

2. Choose uniform σ′j ∈ {0, 1}j−1. (When j = 1 then σ′j is the empty
string.)

3. Set tj := w‖σ′j . Then run Ĝ starting from iteration j + 1 to com-

pute tp(n) ∈ {0, 1}n+p(n). Output D(tp(n)).

Clearly D′ runs in polynomial time. Analyzing the behavior of D′ is more
complicated than before, although the underlying ideas are the same. Fix n
and say D′ chooses j = j∗. If w is uniform, then tj∗ is uniform and so the

distribution on t
def
= tp(n) is exactly that of distribution Hj∗

n . That is,

Pr
w←{0,1}n+1

[D′(w) = 1 | j = j∗] = Pr
t←Hj∗

n

[D(t) = 1].

Theoretical Constructions of Symmetric-Key Primitives 283

Since each value for j is chosen with equal probability,

Pr
w←{0,1}n+1

[D′(w) = 1] =
1

p(n)
·
p(n)∑
j∗=1

Pr
w←{0,1}n+1

[D′(w) = 1 | j = j∗]

=
1

p(n)
·
p(n)∑
j∗=1

Pr
t←Hj∗

n

[D(t) = 1]. (8.8)

On the other hand, say D′ chooses j = j∗ and w = G(s) for uniform
s ∈ {0, 1}n. Defining tj∗−1 = s‖σ′j∗ , we see that tj∗−1 is uniform and so

the experiment involving D′ is equivalent to running Ĝ from iteration j∗ to

compute tp(n). That is, the distribution on t
def
= tp(n) is now exactly that of

distribution Hj∗−1
n , and so

Pr
s←{0,1}n

[D′(G(s)) = 1 | j = j∗] = Pr
t←Hj∗−1

n

[D(t) = 1].

Therefore,

Pr
s←{0,1}n

[D′(Ĝ(s)) = 1] =
1

p(n)
·
p(n)∑
j∗=1

Pr
s←{0,1}n

[D′(G(s)) = 1 | j = j∗]

=
1

p(n)
·
p(n)∑
j∗=1

Pr
t←Hj∗−1

n

[D(t) = 1]

=
1

p(n)
·
p(n)−1∑
j∗=0

Pr
t←Hj∗

n

[D(t) = 1]. (8.9)

We can now analyze how well D′ distinguishes outputs of G from random:∣∣∣∣ Pr
s←{0,1}n

[D′(G(s)) = 1]− Pr
w←{0,1}n+1

[D′(w) = 1]

∣∣∣∣ (8.10)

=
1

p(n)
·

∣∣∣∣∣∣
p(n)−1∑
j∗=0

Pr
t←Hj∗

n

[D(t) = 1]−
p(n)∑
j∗=1

Pr
t←Hj∗

n

[D(t) = 1]

∣∣∣∣∣∣
=

1

p(n)
·

∣∣∣∣∣ Pr
t←H0

n

[D(t) = 1]− Pr
t←Hp(n)

n

[D(t) = 1]

∣∣∣∣∣ ,
relying on Equations (8.8) and (8.9) for the first equality. (The second equal-
ity holds because the same terms are included in each sum, except for the
first term of the left sum and the last term of the right sum.) Since G is a
pseudorandom generator, the term on the left-hand side of Equation (8.10) is
negligible; because p is polynomial, this implies that Equation (8.7) is negli-
gible, completing the proof that Ĝ is a pseudorandom generator.

284 Introduction to Modern Cryptography

Putting it all together. Let f be a one-way permutation. Taking the
pseudorandom generator with expansion factor n+ 1 from Theorem 8.18, and
increasing the expansion factor to n+ ` using the approach from the proof of
Theorem 8.19, we obtain the following pseudorandom generator Ĝ:

Ĝ(s) = f (`)(s) ‖ hc(f (`−1)(s)) ‖ · · · ‖ hc(s),

where f (i) refers to i-fold iteration of f . Note that Ĝ uses ` evaluations
of f , and generates one pseudorandom bit per evaluation using the hard-core
predicate hc.

Connection to stream ciphers. Recall from Section 3.6.1 that a stream
cipher (without an IV) is defined by algorithms (Init,Next), where Init takes
a seed s ∈ {0, 1}n and returns initial state st, and Next takes as input the
current state st and outputs a bit σ and updated state st′. The construction
Ĝ from the preceding proof fits nicely into this paradigm: take Init to be the
trivial algorithm that outputs st = s, and define Next(st) to compute G(st),
parse the result as st′‖σ with |st′| = n, and output the bit σ and updated
state st′. (If we use this stream cipher to generate p(n) output bits starting
from seed s, then we get exactly the final p(n) bits of Ĝ(s) in reverse order.)
The preceding proof shows that this yields a pseudorandom generator.

Hybrid arguments. A hybrid argument is a basic tool for proving indistin-
guishability when a primitive is (or several different primitives are) applied
multiple times. Somewhat informally, the technique works by defining a series
of intermediate “hybrid distributions” that bridge between two “extreme dis-
tributions” that we wish to prove indistinguishable. (In the proof above, these
extreme distributions correspond to the output of Ĝ and a random string.)
To apply the proof technique, three conditions should hold: First, the ex-
treme distributions should match the original cases of interest. (In the proof

above, H0
n was equal to the distribution induced by Ĝ, while H

p(n)
n was the

uniform distribution.) Second, it must be possible to translate the capability
of distinguishing consecutive hybrid distributions into breaking some under-
lying assumption. (Intuitively, we showed that distinguishing Hi

n from Hi+1
n

was equivalent to distinguishing the output of G from random.) Finally, the
number of hybrid distributions should be polynomial. See also Theorem 8.31.

8.5 Constructing Pseudorandom Functions

We now show how to construct a pseudorandom function from any (length-
doubling) pseudorandom generator. Recall that a pseudorandom function is
an efficiently computable, keyed function F that is indistinguishable from a
truly random function in the sense described in Section 3.5.1. For simplicity,

Theoretical Constructions of Symmetric-Key Primitives 285

we restrict our attention here to the case where F is length preserving, mean-
ing that for k ∈ {0, 1}n the function Fk maps n-bit inputs to n-bit outputs.

A length-preserving pseudorandom function can be viewed, informally, as
a pseudorandom generator with expansion factor n · 2n; given such a pseudo-
random generator G we could define Fk(i) (for 0 ≤ i < 2n) to be the ith n-bit
block of G(k). One reason this does not work is that F must be efficiently
computable; there are exponentially many blocks, and we need a way to com-
pute the ith block without having to compute all other blocks. We show how
to do this by computing “blocks” of the output by walking down a binary
tree. We exemplify the idea by first showing a pseudorandom function taking
2-bit inputs.

Let G be a pseudorandom generator with expansion factor 2n. If we use
G as in the proof of Theorem 8.19 we can obtain a pseudorandom generator
Ĝ with expansion factor 4n that uses three invocations of G. (We produce
n additional pseudorandom bits each time G is applied.) If we define F ′k(i)
(where 0 ≤ i < 4 and i is encoded as a 2-bit binary string) to be the ith block
of Ĝ(k), then computation of F ′k(0) would require computing Ĝ in its entirety
and hence three invocations of G. We show how to construct a pseudorandom
function F using only two invocations of G on any input.

Let G0 and G1 be functions denoting the first and second halves of the
output of G; i.e., G(k) = G0(k) ‖G1(k) where |G0(k)| = |G1(k)| = |k|. Define
F as follows:

Fk(00) = G0(G0(k)) Fk(10) = G0(G1(k))

Fk(01) = G1(G0(k)) Fk(11) = G1(G1(k)).

We claim that the four strings above are indistinguishable from four uniform,
independent n-bit strings. (This suffices to prove that F is pseudorandom.)
Intuitively, this is because G0(k)‖G1(k) = G(k) is pseudorandom and hence
indistinguishable from a uniform 2n-bit string k0‖k1. But then

G0(G0(k)) ‖G1(G0(k)) ‖G0(G1(k)) ‖G1(G1(k))

is indistinguishable from

G0(k0) ‖G1(k0) ‖G0(k1) ‖G1(k1) = G(k0) ‖G(k1).

Since G is a pseudorandom generator, the above is indistinguishable from a
uniform 4n-bit string. (A formal proof uses a hybrid argument.)

Generalizing this idea, we can obtain a pseudorandom function on n-bit
inputs by defining

Fk(x) = Gxn
(· · ·Gx1

(k) · · ·),

where x = x1 · · ·xn; see Construction 8.20. The intuition for why this function
is pseudorandom is the same as before, but the formal proof is complicated
by the fact that there are now exponentially many inputs to consider.

286 Introduction to Modern Cryptography

CONSTRUCTION 8.20

Let G be a pseudorandom generator with expansion factor `(n) = 2n,
and define G0, G1 as in the text. For k ∈ {0, 1}n, define the function
Fk : {0, 1}n → {0, 1}n as:

Fk(x1x2 · · ·xn) = Gxn (· · · (Gx2(Gx1(k))) · · ·) .

A pseudorandom function from a pseudorandom generator.

It is useful to view this construction as defining, for each key k ∈ {0, 1}n, a
complete binary tree of depth n in which each node contains an n-bit value.
(See Figure 8.2, where n = 3.) The root has value k, and every non-leaf node
with value v has left child with value G0(v) and right child with value G1(v).
The result Fk(x) for x = x1 · · ·xn is defined to be the value on the leaf node
reached by traversing the tree according to the bits of x, where xi = 0 means
“go left” and xi = 1 means “go right.” (The function is only defined for inputs
of length n, and thus only values at the leaves are ever output.) The size of
the tree is exponential in n. Nevertheless, to compute Fk(x) the entire tree
need not be constructed or stored; only n evaluations of G are needed.

0

0 1

0 1 0 1

1

0 1

0 1 0 1

k

G (k)0

G (G (k))01

F (011) = G (G (G (k)))1 1 0k

FIGURE 8.2: Constructing a pseudorandom function.

THEOREM 8.21 If G is a pseudorandom generator with expansion factor
`(n) = 2n, then Construction 8.20 is a pseudorandom function.

PROOF We first show that for any polynomial t it is infeasible to distin-
guish t(n) uniform 2n-bit strings from t(n) pseudorandom strings; i.e., for any
polynomial t and any ppt algorithm A, the following is negligible:∣∣Pr

[
A
(
r1‖ · · · ‖rt(n)

)
= 1
]
− Pr

[
A
(
G(s1)‖ · · · ‖G(st(n))

)
= 1
]∣∣ ,

Theoretical Constructions of Symmetric-Key Primitives 287

where the first probability is over uniform choice of r1, . . . , rt(n) ∈ {0, 1}2n,
and the second probability is over uniform choice of s1, . . . , st(n) ∈ {0, 1}n.

The proof is by a hybrid argument. Fix a polynomial t and a ppt algo-
rithm A, and consider the following algorithm A′:

Distinguisher A′:
A′ is given as input a string w ∈ {0, 1}2n.

1. Choose uniform j ∈ {1, . . . , t(n)}.
2. Choose uniform, independent values r1, . . . , rj−1 ∈ {0, 1}2n

and sj+1, . . . , st(n) ∈ {0, 1}n.

3. Output A
(
r1‖ · · · ‖rj−1‖w ‖G(sj+1)‖ · · · ‖G(st(n))

)
.

For any n and 0 ≤ i ≤ t(n), let Gin denote the distribution on strings of
length 2n · t(n) in which the first i “blocks” of length 2n are uniform and the

remaining t(n)− i blocks are pseudorandom. Note that G
t(n)
n corresponds to

the distribution in which all t(n) blocks are uniform, while G0
n corresponds to

the distribution in which all t(n) blocks are pseudorandom. That is,∣∣∣∣∣ Pr
y←Gt(n)

n

[A(y) = 1]− Pr
y←G0

n

[A(y) = 1]

∣∣∣∣∣ (8.11)

=
∣∣Pr

[
A
(
r1‖ · · · ‖rt(n)

)
= 1
]
− Pr

[
A
(
G(s1)‖ · · · ‖G(st(n))

)
= 1
]∣∣

Say A′ chooses j = j∗. If its input w is a uniform 2n-bit string, then A is run
on an input distributed according to Gj

∗

n . If, on the other hand, w = G(s) for
uniform s, then A is run on an input distributed according to Gj

∗−1
n . This

means that

Pr
r←{0,1}2n

[A′(r) = 1] =
1

t(n)
·
t(n)∑
j=1

Pr
y←Gj

n

[A(y) = 1]

and

Pr
s←{0,1}n

[A′(G(s)) = 1] =
1

t(n)
·
t(n)−1∑
j=0

Pr
y←Gj

n

[A(y) = 1].

Therefore, ∣∣∣∣ Pr
r←{0,1}2n

[A′(r) = 1]− Pr
s←{0,1}n

[A′(G(s)) = 1]

∣∣∣∣ (8.12)

=
1

t(n)
·

∣∣∣∣∣ Pr
y←Gt(n)

n

[A(y) = 1]− Pr
y←G0

n

[A(y) = 1]

∣∣∣∣∣ .
Since G is a pseudorandom generator and A′ runs in polynomial time, we
know that the left-hand side of Equation (8.12) must be negligible; because

288 Introduction to Modern Cryptography

t(n) is polynomial, this implies that the left-hand side of Equation (8.11) is
negligible as well.

Turning to the crux of the proof, we now show that F as in Construc-
tion 8.20 is a pseudorandom function. Let D be an arbitrary ppt distinguisher
that is given 1n as input. We show that D cannot distinguish between the case
when it is given oracle access to a function that is equal to Fk for a uniform k,
or a function chosen uniformly from Funcn. (See Section 3.5.1.) To do so, we
use another hybrid argument. Here, we define distributions over n-bit values
at the leaves of a complete binary tree of depth n. By associating each leaf of
these binary trees with an n-bit input as in Construction 8.20, we can equiva-
lently view these as distributions over functions mapping n-bit inputs to n-bit
outputs. For any n and 0 ≤ i ≤ n, let Hi

n be the following distribution over
the values at the leaves of a binary tree of depth n: first choose values for the
nodes at level i independently and uniformly from {0, 1}n. Then for every
node at level i or below with value k, its left child is given value G0(k) and its
right child is given value G1(k). Note that Hn

n corresponds to the distribu-
tion in which all values at the leaves are chosen uniformly and independently,
and thus corresponds to choosing a uniform function from Funcn, whereas H0

n

corresponds to choosing a uniform key k in Construction 8.20 since in that
case only the value at the root (at level 0) is chosen uniformly. That is,∣∣∣∣ Pr

k←{0,1}n
[DFk(·)(1n) = 1]− Pr

f←Funcn
[Df(·)(1n) = 1]

∣∣∣∣
=

∣∣∣∣ Pr
f←H0

n

[Df(·)(1n) = 1]− Pr
f←Hn

n

[Df(·)(1n) = 1]

∣∣∣∣ . (8.13)

We show that Equation (8.13) is negligible, completing the proof.

Let t = t(n) be a polynomial upper bound on the number of queriesD makes
to its oracle on input 1n. Define a distinguisher A that tries to distinguish
t(n) uniform 2n-bit strings from t(n) pseudorandom strings, as follows:

Distinguisher A:
A is given as input a 2n · t(n)-bit string w1‖ · · · ‖wt(n).

1. Choose uniform j ∈ {0, . . . , n − 1}. In what follows, A (im-
plicitly) maintains a binary tree of depth n with n-bit values
at (a subset of) the internal nodes at depth j + 1 and below.

2. Run D(1n). When D makes oracle query x = x1 · · ·xn, look
at the prefix x1 · · ·xj . There are two cases:

� If D has never made a query with this prefix before, then
use x1 · · ·xj to reach a node v on the jth level of the tree.
Take the next unused 2n-bit string w and set the value
of the left child of node v to the first half of w, and the
value of the right child of v to the second half of w.

Theoretical Constructions of Symmetric-Key Primitives 289

� If D has made a query with prefix x1 · · ·xj before, then
node x1 · · ·xj+1 has already been assigned a value.

Using the value at node x1 · · ·xj+1, compute the value at the
leaf corresponding to x1 · · ·xn as in Construction 8.20, and
return this value to D.

3. When execution of D is done, output the bit returned by D.

A runs in polynomial time. It is important here that A does not need to
store the entire binary tree of exponential size. Instead, it “fills in” the values
of at most 2t(n) nodes in the tree.

Say A chooses j = j∗. Observe that:

1. If A’s input is a uniform 2n · t(n)-bit string, then the answers it gives
to D are distributed exactly as if D were interacting with a function
chosen from distribution Hj∗+1

n . This holds because the values of the
nodes at level j∗ + 1 of the tree are uniform and independent.

2. If A’s input consists of t(n) pseudorandom strings—i.e., wi = G(si) for
uniform seed si—then the answers it gives to D are distributed exactly
as if D were interacting with a function chosen from distribution Hj∗

n .
This holds because the values of the nodes at level j∗ of the tree (namely,
the {si}) are uniform and independent. (The {si} are unknown to A,
but that makes no difference.)

Proceeding as before, one can show that∣∣Pr
[
A
(
r1‖ · · · ‖rt(n)

)
= 1
]
− Pr

[
A
(
G(s1)‖ · · · ‖G(st(n))

)
= 1
]∣∣ (8.14)

=
1

n
·
∣∣∣∣ Pr
f←H0

n

[Df(·)(1n) = 1]− Pr
f←Hn

n

[Df(·)(1n) = 1]

∣∣∣∣ .
We have shown earlier that Equation (8.14) must be negligible. The above
thus implies that Equation (8.13) must be negligible as well.

8.6 Constructing (Strong) Pseudorandom Permutations

We next show how pseudorandom permutations and strong pseudorandom
permutations can be constructed from any pseudorandom function. Recall
from Section 3.5.1 that a pseudorandom permutation is a pseudorandom func-
tion that is also efficiently invertible, while a strong pseudorandom permuta-
tion is additionally hard to distinguish from a random permutation even by
an adversary given oracle access to both the permutation and its inverse.

290 Introduction to Modern Cryptography

Feistel networks revisited. A Feistel network, introduced in Section 7.2.2,
provides a way of constructing an efficiently invertible permutation from an
arbitrary set of functions. A Feistel network operates in a series of rounds.
The input to the ith round is a string of length 2n, divided into two n-bit
halves Li−1 and Ri−1 (the “left half” and the “right half,” respectively). The
output of the ith round is the 2n-bit string (Li, Ri), where

Li := Ri−1 and Ri := Li−1 ⊕ fi(Ri−1)

for some efficiently computable (but not necessarily invertible) function fi
mapping n-bit inputs to n-bit outputs. We denote by Feistelf1,...,fr the r-round
Feistel network using functions f1, . . . , fr. (That is, Feistelf1,...,fr (L0, R0) out-
puts the 2n-bit string (Lr, Rr).) We saw in Section 7.2.2 that Feistelf1,...,fr is
an efficiently invertible permutation regardless of the {fi}.

We can define a keyed permutation by using a Feistel network in which the
{fi} depend on a key. For example, let F : {0, 1}n × {0, 1}n → {0, 1}n be a
pseudorandom function, and define the keyed permutation F (1) as

F
(1)
k (x)

def
= FeistelFk

(x).

(Note that F
(1)
k has an n-bit key and maps 2n-bit inputs to 2n-bit outputs.)

Is F (1) pseudorandom? A little thought shows that it is decidedly not. For

any key k ∈ {0, 1}n, the first n bits of the output of F
(1)
k (that is, L1) are

equal to the last n bits of the input (i.e., R0), something that occurs with
only negligible probability for a random permutation.

Trying again, define F (2) : {0, 1}2n × {0, 1}2n → {0, 1}2n as follows:

F
(2)
k1,k2

(x)
def
= FeistelFk1

,Fk2
(x). (8.15)

(Note that k1 and k2 are independent keys.) Unfortunately, F (2) is not pseu-
dorandom either, as you are asked to show in Exercise 8.16.

Given this, it may be somewhat surprising that a three-round Feistel net-
work is pseudorandom. Define the keyed permutation F (3), taking a key of
length 3n and mapping 2n-bit inputs to 2n-bit outputs, as follows:

F
(3)
k1,k2,k3

(x)
def
= FeistelFk1

,Fk2
,Fk3

(x) (8.16)

where, once again, k1, k2, and k3 are independent. We have:

THEOREM 8.22 If F is a pseudorandom function, then F (3) is a pseu-
dorandom permutation.

PROOF In the standard way, we can replace the pseudorandom functions
used in the construction of F (3) with functions chosen uniformly at random

Theoretical Constructions of Symmetric-Key Primitives 291

L
0

F
k1

R
0

L
1

R
1

F
k2

F
k3

L
2

R
2

L
3

R
3

FIGURE 8.3: A three-round Feistel network, as used to construct a
pseudorandom permutation from a pseudorandom function.

instead. Pseudorandomness of F implies that this has only a negligible effect
on the output of any probabilistic polynomial-time distinguisher interacting
with F (3) as an oracle. We leave the details as an exercise.

Let D be a probabilistic polynomial-time distinguisher. In the remainder
of the proof, we show the following is negligible:∣∣∣Pr[DFeistelf1,f2,f3

(·)(1n) = 1]− Pr[Dπ(·)(1n) = 1]
∣∣∣ ,

where the first probability is taken over uniform and independent choice of
f1, f2, f3 from Funcn, and the second probability is taken over uniform choice
of π from Perm2n. Fix some value for the security parameter n, and let
q = q(n) denote a polynomial upper bound on the number of oracle queries
made by D. We assume without loss of generality that D never makes the
same oracle query twice. Focusing on D’s interaction with Feistelf1,f2,f3(·),
let (Li0, R

i
0) denote the ith query D makes to its oracle, and let (Li1, R

i
1),

(Li2, R
i
2), and (Li3, R

i
3) denote the intermediate values after rounds 1, 2, and 3,

respectively, that result from that query. (See Figure 8.3.) Note that D
chooses (Li0, R

i
0) and sees the result (Li3, R

i
3), but does not directly observe

(Li1, R
i
1) or (Li2, R

i
2).

We say there is a collision at R1 if Ri1 = Rj1 for some distinct i, j. We first
prove that a collision at R1 occurs with only negligible probability. Consider
any fixed, distinct i, j. If Ri0 = Rj0 then Li0 6= Lj0, but then

Ri1 = Li0 ⊕ f1(Ri0) 6= Lj0 ⊕ f1(Rj0) = Rj1.

292 Introduction to Modern Cryptography

If Ri0 6= Rj0 then f1(Ri0) and f1(Rj0) are uniform and independent, so

Pr[Ri1 = Rj1] = Pr
[
f1(Rj0) = Li0 ⊕ f1(Ri0)⊕ Lj0

]
= 2−n.

Taking a union bound over all distinct i, j shows that the probability of a
collision at R1 is at most q2/2n.

Say there is a collision at R2 if Ri2 = Rj2 for some distinct i, j. We prove
that conditioned on no collision at R1, the probability of a collision at R2 is
negligible. The analysis is as above: consider any fixed i, j, and note that if
there is no collision at R1 then Ri1 6= Rj1. Thus f2(Ri1) and f2(Rj1) are uniform
and independent, and therefore

Pr
[
Li1 ⊕ f2(Ri1) = Lj1 ⊕ f2(Rj1) | no collision at R1

]
= 2−n.

(Note that f2 is independent of f1, making the above calculation easy.) Taking
a union bound over all distinct i, j gives

Pr[collision at R2 | no collision at R1] ≤ q2/2n.

Note that Li3 = Ri2 = Li1⊕f2(Ri1); so, conditioned on there being no collision
at R1, the values L1

3, . . . , L
q
3 are all independent and uniformly distributed

in {0, 1}n. If we additionally condition on the event that there is no collision at
R2, then the values L1

3, . . . , L
q
3 are uniformly distributed among all sequences

of q distinct values in {0, 1}n. Similarly, Ri3 = Li2⊕ f3(Ri2); thus, conditioned
on there being no collision at R2, the values R1

3, . . . , R
q
3 are all uniformly

distributed in {0, 1}n, independent of each other as well as L1
3, . . . , L

q
3.

To summarize: when querying F (3) (with uniform round functions) on a
series of q distinct inputs, except with negligible probability the output val-
ues (L1

3, R
1
3), . . . , (Lq3, R

q
3) are distributed such that the {Li3} are uniform

and independent, but distinct, n-bit values, and the {Ri3} are uniform and
independent n-bit values. In contrast, when querying a random permutation
on a series of q distinct inputs, the output values (L1

3, R
1
3), . . . , (Lq3, R

q
3) are

uniform and independent, but distinct, 2n-bit values. It can be shown that
the best distinguishing attack for D, then, is to guess that it is interacting
with a random permutation if Li3 = Lj3 for some distinct i, j. But that event
occurs with negligible probability even in that case.

F (3) is not a strong pseudorandom permutation, as you are asked to demon-
strate in Exercise 8.17. Fortunately, adding a fourth round does yield a strong
pseudorandom permutation. The details are given as Construction 8.23.

THEOREM 8.24 If F is a pseudorandom function, then Construction 8.23
is a strong pseudorandom permutation that maps 2n-bit inputs to 2n-bit out-
puts (and uses a 4n-bit key).

Theoretical Constructions of Symmetric-Key Primitives 293

CONSTRUCTION 8.23

Let F be a keyed, length-preserving function. Define the keyed permu-
tation F (4) as follows:

� Inputs: A key k = (k1, k2, k3, k4) with |ki| = n, and an input
x ∈ {0, 1}2n parsed as (L0, R0) with |L0| = |R0| = n.

� Computation:

1. Compute L1 := R0 and R1 := L0 ⊕ Fk1(R0).

2. Compute L2 := R1 and R2 := L1 ⊕ Fk2(R1).

3. Compute L3 := R2 and R3 := L2 ⊕ Fk3(R2).

4. Compute L4 := R3 and R4 := L3 ⊕ Fk4(R3).

5. Output (L4, R4).

A strong pseudorandom permutation from any pseudorandom function.

8.7 Assumptions for Private-Key Cryptography

We have shown that (1) if there exist one-way permutations, then there
exist pseudorandom generators; (2) if there exist pseudorandom generators,
then there exist pseudorandom functions; and (3) if there exist pseudorandom
functions, then there exist (strong) pseudorandom permutations. Although
we did not prove it here, it is possible to construct pseudorandom generators
from one-way functions. We thus have the following fundamental theorem:

THEOREM 8.25 If one-way functions exist, then so do pseudorandom
generators, pseudorandom functions, and strong pseudorandom permutations.

All the private-key schemes we have studied in Chapters 3–5 can be con-
structed from pseudorandom generators/functions. We therefore have:

THEOREM 8.26 If one-way functions exist, then so do authenticated
encryption schemes and secure message authentication codes.

That is, one-way functions are sufficient for all private-key cryptography.
Here, we show that one-way functions are also necessary.

Pseudorandomness implies one-way functions. We begin by showing
that pseudorandom generators imply the existence of one-way functions:

PROPOSITION 8.27 If a pseudorandom generator exists, then so do
one-way functions.

294 Introduction to Modern Cryptography

PROOF Let G be a pseudorandom generator with expansion factor `(n) =
2n. (By Theorem 8.19, we know that the existence of a pseudorandom gen-
erator implies the existence of one with this expansion factor.) We show that
G itself is one-way. Efficient computability is straightforward (since G can
be computed in polynomial time). We show that the ability to invert G can
be translated into the ability to distinguish the output of G from uniform.
Intuitively, this holds because the ability to invert G implies the ability to
find the seed used by the generator.

Let A be an arbitrary probabilistic polynomial-time algorithm. We show
that Pr[InvertA,G(n) = 1] is negligible (cf. Definition 8.1). To see this, consider
the following ppt distinguisher D: on input a string w ∈ {0, 1}2n, run A(w)
to obtain output s. If G(s) = w then output 1; otherwise, output 0.

We now analyze the behavior of D. First consider the probability that D
outputs 1 when its input string w is uniform. Since there are at most 2n values
in the range of G (namely, the values {G(s)}s∈{0,1}n), the probability that w
is in the range of G is at most 2n/22n = 2−n. When w is not in the range
of G, it is impossible for A to compute an inverse of w and thus impossible
for D to output 1. We conclude that Prw←{0,1}2n [D(w) = 1] ≤ 2−n.

On the other hand, if w = G(s) for a seed s ∈ {0, 1}n chosen uniformly at
random then, by definition, A computes a correct inverse (and so D outputs 1)
with probability exactly equal to Pr[InvertA,G(n) = 1]. Thus,∣∣∣∣ Pr
w←{0,1}2n

[D(w) = 1]− Pr
s←{0,1}n

[D(G(s)) = 1]

∣∣∣∣ ≥ Pr[InvertA,G(n) = 1]−2−n .

Since G is a pseudorandom generator, the above must be negligible. Since
2−n is negligible, this implies that Pr[InvertA,G(n) = 1] is negligible as well
and so G is one-way.

Non-trivial private-key encryption implies one-way functions. Propo-
sition 8.27 does not imply that one-way functions are needed for constructing
secure private-key encryption schemes, since it may be possible to construct
the latter without relying on a pseudorandom generator. Furthermore, it is
possible to construct perfectly secret encryption schemes (see Chapter 2), as
long as the plaintext is no longer than the key. Thus, a proof that secure
private-key encryption implies one-way functions requires more care.

PROPOSITION 8.28 If there exists an EAV-secure private-key encryp-
tion scheme that encrypts messages twice as long as its key, then a one-way
function exists.

PROOF Let Π = (Enc,Dec) be a private-key encryption scheme that has
indistinguishable encryptions in the presence of an eavesdropper and encrypts
messages of length 2n when the key has length n. (We assume for simplicity

Theoretical Constructions of Symmetric-Key Primitives 295

that the key is chosen uniformly.) Let `(n) be a bound on the number of
random bits used by Enc. Denote the encryption of a message m using key k
and randomness r by Enck(m; r).

Define the following function f :

f(k,m, r)
def
= Enck(m; r) ‖m,

where |k| = n, |m| = 2n, and |r| = `(n). We claim that f is a one-way func-
tion. Clearly it can be efficiently computed; we show that it is hard to invert.
Letting A be an arbitrary ppt algorithm, we show that Pr[InvertA,f (n) = 1]
is negligible (cf. Definition 8.1).

Consider the following probabilistic polynomial-time adversaryA′ attacking
private-key encryption scheme Π (i.e., in experiment PrivKeav

A′,Π(n)):

Adversary A′(1n)

1. Choose uniform m0,m1 ← {0, 1}2n and output them. Re-
ceive in return a challenge ciphertext c.

2. Run A(c ‖m0) to obtain (k′,m′, r′). If f(k′,m′, r′) = c ‖m0,
output 0; else, output 1.

We now analyze the behavior of A′. When c is an encryption of m0, then
c‖m0 is distributed exactly as f(k,m0, r) for uniform k,m0, and r. Therefore,
A outputs a valid inverse of c‖m0 (and hence A′ outputs 0) with probability
exactly equal to Pr[InvertA,f (n) = 1].

On the other hand, when c is an encryption of m1 then c is independent
of m0. For any fixed value of the challenge ciphertext c, there are at most
2n possible messages (one for each possible key) to which c can correspond.
Since m0 is a uniform 2n-bit string, the probability that there exists some
key k for which Deck(c) = m0 is at most 2n/22n = 2−n. This gives an upper
bound on the probability with which A can possibly output a valid inverse of
c ‖m0 under f , and hence an upper bound on the probability with which A′
outputs 0 in that case.

Putting the above together, we have:

Pr
[
PrivKeav

A′,Π(n) = 1
]

=
1

2
· Pr [A′ outputs 0 | b = 0] +

1

2
· Pr [A′ outputs 1 | b = 1]

≥ 1

2
· Pr[InvertA,f (n) = 1] +

1

2
·
(
1− 2−n

)
=

1

2
+

1

2
·
(
Pr[InvertA,f (n) = 1]− 2−n

)
.

Security of Π means that Pr
[
PrivKeav

A′,Π(n) = 1
]
≤ 1

2 +negl(n) for some negligi-
ble function negl. This, in turn, implies that Pr[InvertA,f (n) = 1] is negligible,
completing the proof that f is one-way.

296 Introduction to Modern Cryptography

Message authentication codes imply one-way functions. It is also
true that message authentication codes satisfying Definition 4.2 imply the ex-
istence of one-way functions. As in the case of private-key encryption, a proof
of this fact is somewhat subtle because unconditional message authentication
codes do exist when there is a bound on the number of messages that will be
authenticated. (See Section 4.6.) Thus, a proof relies on the fact that Defini-
tion 4.2 requires security even when the adversary sees tags for an arbitrary
(polynomial) number of messages. The proof is somewhat involved, so we do
not give it here.

Discussion. We conclude that the existence of one-way functions is necessary
and sufficient for all (non-trivial) private-key cryptography. In other words,
one-way functions are a minimal assumption as far as private-key cryptog-
raphy is concerned. Interestingly, this appears not to be the case for hash
functions and public-key encryption, where one-way functions are known to
be necessary but are not known (or believed) to be sufficient.

8.8 Computational Indistinguishability

The notion of computational indistinguishability is central to the theory
of cryptography, and underlies much of what we have seen in Chapter 3 and
this chapter. Informally, two probability distributions are computationally
indistinguishable if no efficient algorithm can tell them apart (or distinguish
them). In more detail, consider two distributions X and Y over strings of
some length `; that is, X and Y each assigns some probability to every string
in {0, 1}`. When we say that some algorithm D cannot distinguish these two
distributions, we mean that D cannot tell whether it is given a string sampled
according to distribution X or whether it is given a string sampled according
to distribution Y . Put differently, if we imagine D outputting “0” when it
believes its input was sampled according to X and outputting “1” if it thinks
its input was sampled according to Y , then the probability that D outputs
“1” should be roughly the same regardless of whether D is provided with a
sample from X or from Y . In other words, we want∣∣∣ Pr

s←X
[D(s) = 1]− Pr

s←Y
[D(s) = 1]

∣∣∣
to be small.

This should be reminiscent of the way we defined pseudorandom generators
and, indeed, we will soon formally redefine the notion of a pseudorandom
generator using this terminology.

The formal definition of computational indistinguishability refers to prob-
ability ensembles, which are infinite sequences of probability distributions.

Theoretical Constructions of Symmetric-Key Primitives 297

(This formalism is necessary for a meaningful asymptotic approach.) Al-
though the notion can be generalized, for our purposes we consider proba-
bility ensembles in which the underlying distributions are indexed by natural
numbers. If for every natural number n we have a distribution Xn, then
X = {Xn}n∈N is a probability ensemble. It is often the case that Xn = Yt(n)

for some function t, in which case we write {Yt(n)}n∈N in place of {Xn}n∈N.
We will only be interested in efficiently sampleable probability ensembles.

An ensemble X = {Xn}n∈N is efficiently sampleable if there is a probabilistic
polynomial-time algorithm S such that the random variables S(1n) andXn are
identically distributed. That is, algorithm S is an efficient way of sampling X .

We can now formally define what it means for two ensembles to be compu-
tationally indistinguishable.

DEFINITION 8.29 Two probability ensembles X = {Xn}n∈N and

Y = {Yn}n∈N are computationally indistinguishable, denoted X c≡ Y, if for
every probabilistic polynomial-time distinguisher D there exists a negligible
function negl such that:∣∣∣∣ Pr

x←Xn

[D(1n, x) = 1]− Pr
y←Yn

[D(1n, y) = 1]

∣∣∣∣ ≤ negl(n).

In the definition, D is given the unary input 1n so it can run in time
polynomial in n. This is important when the outputs of Xn and Yn may have
length less than n. As shorthand in probability expressions, we will sometimes
write X as a placeholder for a random sample from distribution X. That is,
we would write Pr[D(1n, Xn) = 1] in place of Prx←Xn

[D(1n, x) = 1].

Pseudorandomness and pseudorandom generators. Pseudorandom-
ness is just a special case of computational indistinguishability. For any in-
teger `, let U` denote the uniform distribution over {0, 1}`. We can define a
pseudorandom generator as follows:

DEFINITION 8.30 Let `(·) be a polynomial and let G be a (deterministic)
polynomial-time algorithm where for all s it holds that |G(s)| = `(|s|). We
say that G is a pseudorandom generator if the following two conditions hold:

1. (Expansion.) For every n it holds that `(n) > n.

2. (Pseudorandomness.) The ensemble {G(Un)}n∈N is computationally
indistinguishable from the ensemble {U`(n)}n∈N.

Many of the other definitions and assumptions in this book can also be cast
as special cases or variants of computational indistinguishability.

Multiple samples. An important theorem regarding computational indis-
tinguishability is that polynomially many samples of (efficiently sampleable)

298 Introduction to Modern Cryptography

computationally indistinguishable ensembles are also computationally indis-
tinguishable.

THEOREM 8.31 Let X and Y be efficiently sampleable probability ensem-
bles that are computationally indistinguishable. Then, for every polynomial t,

the ensemble X = {(X(1)
n , . . . , X

(t(n))
n)}n∈N is computationally indistinguish-

able from the ensemble Y = {(Y (1)
n , . . . , Y

(t(n))
n)}n∈N.

For example, let G be a pseudorandom generator with expansion factor 2n,
in which case the ensembles {G(Un)}n∈N and {U2n}n∈N are computationally
indistinguishable. In the proof of Theorem 8.21 we showed that for any poly-
nomial t the ensembles

{(G(Un), . . . , G(Un)︸ ︷︷ ︸
t(n)

)}n∈N and {(U2n, . . . , U2n︸ ︷︷ ︸
t(n)

)}n∈N

are also computationally indistinguishable. Theorem 8.31 is proved by a hy-
brid argument in exactly the same way.

References and Additional Reading

The notion of a one-way function was first proposed by Diffie and Hell-
man [65] and later formalized by Yao [205]. Hard-core predicates were in-
troduced by Blum and Micali [41], and the fact that there exists a hard-core
predicate for every one-way function was proved by Goldreich and Levin [86].

The first construction of pseudorandom generators (under a specific number-
theoretic hardness assumption) was given by Blum and Micali [41]. The con-
struction of a pseudorandom generator from any one-way permutation was
given by Yao [205], and the result that pseudorandom generators can be con-
structed from any one-way function was shown by H̊astad et al. [93]. Pseudo-
random functions were defined and constructed by Goldreich, Goldwasser and
Micali [85] and their extension to (strong) pseudorandom permutations was
shown by Luby and Rackoff [132]. The fact that one-way functions are a nec-
essary assumption for most of private-key cryptography was shown in [101].
The proof of Proposition 8.28 is from [79].

Our presentation is heavily influenced by Goldreich’s book [82], which is
highly recommended for those interested in exploring the topics of this chapter
in greater detail.

Theoretical Constructions of Symmetric-Key Primitives 299

Exercises

8.1 Prove that if there exists a one-way function, then there exists a one-way
function f such that f(0n) = 0n for every n. Note that for infinitely
many values y, it is easy to compute f−1(y). Why does this not contra-
dict one-wayness?

8.2 Prove that if f is a one-way function, then the function g defined by

g(x1, x2)
def
= (f(x1), x2), where |x1| = |x2|, is also a one-way function.

Observe that g reveals half of its input, but is nevertheless one-way.

8.3 Prove that if there exists a one-way function, then there exists a length-
preserving one-way function.

Hint: Let f be a one-way function and let p(·) be a polynomial such

that |f(x)| ≤ p(|x|). (Justify the existence of such a p.) Define f ′(x)
def
=

f(x)‖10p(|x|)−|f(x)|. Further modify f ′ to get a length-preserving func-

tion that remains one-way.

8.4 Let (Gen, H) be a collision-resistant hash function, whereH maps strings
of length 2n to strings of length n. Prove that the function family
(Gen,Samp, H) is one-way (cf. Definition 8.3), where Samp is the trivial
algorithm that samples a uniform string of length 2n.

Hint: Choosing uniform x ∈ {0, 1}2n and finding an inverse of y =

Hs(x) does not guarantee a collision. But it does yield a collision most

of the time. . .

8.5 Let F be a (length-preserving) pseudorandom permutation.

(a) Show that the function f(x, y) = Fx(y) is not one-way.

(b) Show that the function f(y) = F0n(y) (where n = |y|) is not one-
way.

(c) Prove that the function f(x) = Fx(0n) (where n = |x|) is one-way.

8.6 Let f be a length-preserving one-way function, and let hc be a hard-
core predicate of f . Define G as G(x) = f(x)‖hc(x). Is G necessarily a
pseudorandom generator? Prove your answer.

8.7 Prove that there exist one-way functions if and only if there exist one-
way function families. Discuss why your proof does not carry over to
the case of one-way permutations.

8.8 Let f be a length-preserving one-way function. Is g(x)
def
= f(f(x))

necessarily one-way? What about g′(x)
def
= f(x)‖f(f(x))?

300 Introduction to Modern Cryptography

8.9 Let Π = (Gen,Samp, f) be a function family. A function hc : {0, 1}∗ →
{0, 1} is a hard-core predicate of Π if it is efficiently computable and if
for every ppt algorithm A there is a negligible function negl such that

Pr
I←Gen(1n), x←Samp(I)

[A(I, fI(x)) = hc(I, x)] ≤ 1

2
+ negl(n).

Prove a version of the Goldreich–Levin theorem for this setting, namely,
if a one-way function (resp., permutation) family Π exists, then there
exists a one-way function (resp., permutation) family Π′ and a hard-core
predicate hc of Π′.

8.10 Show a construction of a pseudorandom generator from any one-way
permutation family. You may use the result of the previous exercise.

8.11 This exercise is for students who have taken a course in complexity
theory or are otherwise familiar with NP-completeness.

(a) Show that the existence of one-way functions implies P 6= NP.

(b) Assume that P 6= NP. Show that there exists a function f
that is: (1) computable in polynomial time, (2) hard to invert
in the worst case (i.e., for all probabilistic polynomial-time A,
Prx←{0,1}n [f(A(f(x))) = f(x)] 6= 1), but (3) is not one-way.

8.12 For x ∈ {0, 1}n let x = x1 · · ·xn. Prove that if there exists a one-way
function, then there exists a one-way function f such that for every i
there is an algorithm Ai such that

Pr
x←{0,1}n

[Ai(f(x)) = xi] ≥
1

2
+

1

2n
.

(This exercise demonstrates that it is not possible to claim that every
one-way function hides at least one specific bit of the input.)

8.13 Show that if an efficiently computable one-to-one function f has a hard-
core predicate, then f is one-way.

8.14 Show that if Construction 8.20 is modified in the natural way so that
Fk(x) is defined for every nonempty string x of length at most n, then
the construction is no longer a pseudorandom function.

8.15 Prove that if there exists a pseudorandom function that, using a key of
length n, maps n-bit inputs to single-bit outputs, then there exists a
pseudorandom function that maps n-bit inputs to n-bit outputs.

Hint: Use a key of length n2, and prove your construction secure using

a hybrid argument.

8.16 Prove that a two-round Feistel network using pseudorandom round func-
tions (as in Equation (8.15)) is not a pseudorandom permutation.

Theoretical Constructions of Symmetric-Key Primitives 301

8.17 Prove that a three-round Feistel network using pseudorandom round
functions (as in Equation (8.16)) is not a strong pseudorandom permu-
tation.

Hint: This is significantly more difficult than the previous exercise. Use

a distinguisher that makes two queries to the permutation and one query

to its inverse.

8.18 Consider the keyed permutation F ∗ defined by

F ∗k (x)
def
= FeistelFk,Fk,Fk

(x).

(Note that the same key is used in each round.) Show that F ∗ is not a
pseudorandom permutation.

8.19 Let X ,Y,Z be probability ensembles. Prove that if X c≡ Y and Y c≡ Z,

then X c≡ Z.

8.20 Prove Theorem 8.31.

8.21 Let X = {Xn}n∈N and Y = {Yn}n∈N be computationally indistinguish-
able probability ensembles. Prove that for any probabilistic polynomial-
time algorithm A, the ensembles {A(Xn)}n∈N and {A(Yn)}n∈N are com-
putationally indistinguishable.

http://taylorandfrancis.com

Part III

Public-Key (Asymmetric)
Cryptography

http://taylorandfrancis.com

Chapter 9

Number Theory and Cryptographic
Hardness Assumptions

Modern cryptosystems are invariably based on an assumption that some
problem is hard. In Chapters 3–5, for example, we saw that private-key
cryptography—both encryption schemes and message authentication codes—
can be based on the assumption that pseudorandom permutations (a.k.a.
block ciphers) exist. On the face of it, the assumption that pseudorandom per-
mutations exist seems quite strong and unnatural, and it is reasonable to ask
whether this assumption is true or whether there is any evidence to support
it. In Chapter 7 we explored how block ciphers are constructed in practice.
The fact that these constructions have resisted attack serves as an indication
that the existence of pseudorandom permutations is plausible. Still, it may be
difficult to believe that there are no efficient distinguishing attacks on existing
block ciphers. Moreover, the current state of our theory is such that we do
not know how to prove the pseudorandomness of any of the existing practical
constructions relative to any “simpler” or “more reasonable” assumption. All
in all, this is not an entirely satisfying state of affairs.

In contrast, as mentioned in Chapter 3 (and investigated in detail in Chap-
ter 8) it is possible to prove that pseudorandom permutations exist based on
the much milder assumption that one-way functions exist. (Informally, a func-
tion is one-way if it is easy to compute but hard to invert; see Section 9.4.1.)
Apart from a brief discussion in Section 8.1.2, however, we have not seen any
concrete examples of functions believed to be one-way.

One goal of this chapter is to introduce various problems believed to be
“hard,” and to present conjectured one-way functions based on those prob-
lems.1 As such, this chapter can be viewed as a culmination of a “top down”
approach to private-key cryptography. (See Figure 9.1.) That is, in Chap-
ters 3–5 we have shown that private-key cryptography can be based on pseu-
dorandom functions and permutations. We have then seen that the latter can
be instantiated in practice using block ciphers, as explored in Chapter 7, or
can be provably constructed from any one-way function, as shown in Chap-
ter 8. Here, we take this one step further and show how one-way functions
can be based on certain hard mathematical problems.

1Recall we currently do not know how to prove that one-way functions exist, so the best we
can do is base one-way functions on assumptions regarding the hardness of certain problems.

305

306 Introduction to Modern Cryptography

Chapter 8

Chapters 3, 5

Chapter 7

Chapter 4

This chapter

FIGURE 9.1: Private-key cryptography: a top-down approach.

The examples we explore are number theoretic in nature, and we therefore
begin with a short introduction to number theory. Because we are also in-
terested in problems that can be solved efficiently (even a one-way function
must be easy to compute in one direction, and cryptographic schemes must
admit efficient algorithms for the honest parties), we also initiate a study of
algorithmic number theory. Even the reader who is familiar with number the-
ory is encouraged to read this chapter, since algorithmic aspects are typically
ignored in a purely mathematical treatment of these topics.

A second goal of this chapter is to develop the material needed for public-key
cryptography, whose study we will begin in Chapter 11. Strikingly, although
in the private-key setting there exist efficient constructions of the necessary
primitives (both block ciphers and hash functions) without invoking any num-
ber theory, in the public-key setting all known constructions rely on hard
number-theoretic problems. The material in this chapter thus serves not only
as a culmination of our study of private-key cryptography, but also as the
foundation for our treatment of public-key cryptography.

9.1 Preliminaries and Basic Group Theory

We begin with a review of prime numbers and basic modular arithmetic.
Even the reader who has seen these topics before should skim the next two

Number Theory and Cryptographic Hardness Assumptions 307

sections since some of the material may be new and we include proofs for most
of the stated results.

9.1.1 Primes and Divisibility

The set of integers is denoted by Z. For a, b ∈ Z, we say that a divides b,
written a | b, if there exists an integer c such that ac = b. If a does not divide
b, we write a6 | b. (We are primarily interested in the case where a, b, and c
are all positive, although the definition makes sense even when one or more
of them is negative or zero.) A simple observation is that if a | b and a | c then
a | (Xb+ Y c) for any X,Y ∈ Z.

If a | b and a is positive, we call a a divisor of b. If in addition a 6∈ {1, b} then
a is called a nontrivial divisor, or a factor, of b. A positive integer p > 1 is
prime if it has no factors; i.e., it has only two divisors: 1 and itself. A positive
integer greater than 1 that is not prime is called composite. By convention,
the number 1 is neither prime nor composite.

A fundamental theorem of arithmetic is that every integer greater than 1
can be expressed uniquely (up to ordering) as a product of primes. That is,
any positive integer N > 1 can be written as N =

∏
i p
ei
i , where the {pi}

are distinct primes and ei ≥ 1 for all i; furthermore, the {pi} (and {ei}) are
uniquely determined up to ordering.

We are familiar with the process of division with remainder from elementary
school. The following proposition formalizes this notion.

PROPOSITION 9.1 Let a be an integer and let b be a positive integer.
Then there exist unique integers q, r for which a = qb+ r and 0 ≤ r < b.

Furthermore, given integers a and b as in the proposition it is possible to
compute q and r in polynomial time; see Appendix B.1. (An algorithm’s
running time is measured as a function of the length(s) of its input(s). An
important point in the context of algorithmic number theory is that integer
inputs are always assumed to be represented in binary. The running time of an
algorithm taking as input an integer N is therefore measured in terms of ‖N‖,
the length of the binary representation of N . Note that ‖N‖ = blogNc+ 1.)

The greatest common divisor of two integers a, b, written gcd(a, b), is the
largest integer c such that c | a and c | b. (We leave gcd(0, 0) undefined.) The
notion of greatest common divisor makes sense when either or both of a, b are
negative but we will typically have a, b ≥ 1; anyway, gcd(a, b) = gcd(|a|, |b|).
Note that gcd(b, 0) = gcd(0, b) = b; also, if p is prime then gcd(a, p) is either
equal to 1 or p. If gcd(a, b) = 1 we say that a and b are relatively prime.

The following is a useful result:

PROPOSITION 9.2 Let a, b be positive integers. Then there exist in-
tegers X,Y such that Xa + Y b = gcd(a, b). Furthermore, gcd(a, b) is the
smallest positive integer that can be expressed in this way.

308 Introduction to Modern Cryptography

PROOF Consider the set I
def
= {X̂a+ Ŷ b | X̂, Ŷ ∈ Z}. Note that a, b ∈ I,

and so I certainly contains some positive integers. Let d be the smallest
positive integer in I. We show that d = gcd(a, b); since d can be written as
d = Xa+ Y b for some X,Y ∈ Z (because d ∈ I), this proves the theorem.

To show that d = gcd(a, b), we must prove that d | a and d | b, and that d is
the largest integer with this property. In fact, we can show that d divides every
element in I. To see this, take an arbitrary c ∈ I and write c = X ′a + Y ′b
with X ′, Y ′ ∈ Z. Using division with remainder (Proposition 9.1) we have
that c = qd+ r with q, r integers and 0 ≤ r < d. Then

r = c− qd = X ′a+ Y ′b− q(Xa+ Y b) = (X ′ − qX)a+ (Y ′ − qY)b ∈ I.

If r 6= 0, this contradicts our choice of d as the smallest positive integer in I
(because r < d). So, r = 0 and hence d | c. This shows that d divides every
element of I.

Since a ∈ I and b ∈ I, the above shows that d | a and d | b and so d is a
common divisor of a and b. It remains to show that it is the greatest common
divisor. Assume there is an integer d′ > d such that d′ | a and d′ | b. Then by
the observation made earlier, d′ |Xa+ Y b. Since the latter is equal to d, this
means d′ | d. But this is impossible if d′ is larger than d. We conclude that d
is the largest integer dividing both a and b, and hence d = gcd(a, b).

Given a and b, the Euclidean algorithm can be used to compute gcd(a, b)
in polynomial time. The extended Euclidean algorithm can be used to com-
pute X,Y (as in the above proposition) in polynomial time as well. See
Appendix B.1.2 for details.

The preceding proposition is very useful in proving additional results about
divisibility. We show two examples now.

PROPOSITION 9.3 If c | ab and gcd(a, c) = 1, then c | b. Thus, if p is
prime and p | ab then either p | a or p | b.

PROOF Since c | ab we have γc = ab for some integer γ. If gcd(a, c) = 1
then, by the previous proposition, we know there exist integers X,Y such that
1 = Xa+ Y c. Multiplying both sides by b, we obtain

b = Xab+ Y cb = Xγc+ Y cb = c · (Xγ + Y b).

Since (Xγ + Y b) is an integer, it follows that c | b.
The second part of the proposition follows from the fact that if p6 | a and

p is prime then gcd(a, p) = 1.

PROPOSITION 9.4 If a |N , b |N , and gcd(a, b) = 1, then ab |N .

Number Theory and Cryptographic Hardness Assumptions 309

PROOF Write ac = N , bd = N , and (using Proposition 9.2) 1 = Xa+Y b,
where c, d,X, Y are all integers. Multiplying both sides of the last equation
by N we obtain

N = XaN + Y bN = Xabd+ Y bac = ab(Xd+ Y c),

showing that ab |N .

9.1.2 Modular Arithmetic

Let a, b,N ∈ Z with N > 1. We use the notation [a mod N] to denote the
remainder of a upon division by N . In more detail: by Proposition 9.1 there
exist unique q, r with a = qN + r and 0 ≤ r < N , and we define [a mod N] to
be equal to this r. Note therefore that 0 ≤ [a mod N] < N . We refer to the
process of mapping a to [a mod N] as reduction modulo N .

We say that a and b are congruent modulo N , written a = b mod N , if
[a mod N] = [b mod N], i.e., if the remainder when a is divided by N is the
same as the remainder when b is divided by N . Note that a = b mod N if and
only if N | (a− b). By way of notation, in an expression such as

a = b = c = · · · = z mod N,

the understanding is that every equal sign in this sequence (and not just the
last) refers to congruence modulo N .

Note that a = [b mod N] implies a = b mod N , but not vice versa. For
example, 36 = 21 mod 15 but 36 6= [21 mod 15] = 6. On the other hand,
[a mod N] = [b mod N] if and only if a = b mod N .

Congruence modulo N is an equivalence relation, i.e., it is reflexive (a =
a mod N for all a), symmetric (a = b mod N implies b = a mod N), and tran-
sitive (if a = b mod N and b = c mod N , then a = c mod N). Congruence
modulo N also obeys the standard rules of arithmetic with respect to addi-
tion, subtraction, and multiplication; so, for example, if a = a′ mod N and
b = b′ mod N then (a + b) = (a′ + b′) mod N and ab = a′b′ mod N . A con-
sequence is that we can “reduce and then add/multiply” instead of having to
“add/multiply and then reduce,” which can often simplify calculations.

Example 9.5
Let us compute [1093028 ·190301 mod 100]. Since 1093028 = 28 mod 100 and
190301 = 1 mod 100, we have

1093028 · 190301 = [1093028 mod 100] · [190301 mod 100] mod 100

= 28 · 1 = 28 mod 100.

The alternate way of calculating the answer (i.e., computing the product
1093028 · 190301 and then reducing the result modulo 100) is less efficient. ♦

310 Introduction to Modern Cryptography

Congruence modulo N does not (in general) respect division. That is, if
a = a′ mod N and b = b′ mod N then it is not necessarily true that a/b =
a′/b′ mod N ; in fact, the expression “a/b mod N” is not necessarily well-
defined. As a specific example that often causes confusion, ab = cb mod N
does not necessarily imply that a = c mod N .

Example 9.6

Take N = 24. Then 3 · 2 = 6 = 15 · 2 mod 24, but 3 6= 15 mod 24. ♦

In certain cases, however, we can define a meaningful notion of division.
If for a given integer b there exists an integer c such that bc = 1 mod N , we
say that b is invertible modulo N and call c a (multiplicative) inverse of b
modulo N . Clearly, 0 is never invertible. It is also not difficult to show that if
c is a multiplicative inverse of b modulo N then so is [c mod N]. Furthermore,
if c′ is another multiplicative inverse of b then [c mod N] = [c′ mod N]. When
b is invertible we can therefore simply let b−1 denote the unique multiplicative
inverse of b that lies in the range {1, . . . , N − 1}.

When b is invertible modulo N , we define division by b modulo N as mul-

tiplication by b−1 (i.e., we define [a/b mod N]
def
= [ab−1 mod N]). We stress

that division by b is only defined when b is invertible. If ab = cb mod N and
b is invertible, then we may divide each side of the equation by b (or, really,
multiply each side by b−1) to obtain

(ab) · b−1 = (cb) · b−1 mod N ⇒ a = c mod N.

We see that in this case, division works as expected. Thus, invertible integers
modulo N are “nicer” to work with, in some sense.

The natural question is: which integers are invertible modulo a given mod-
ulus N? We can fully answer this question using Proposition 9.2:

PROPOSITION 9.7 Let b,N be integers, with b ≥ 1 and N > 1. Then b
is invertible modulo N if and only if gcd(b,N) = 1.

PROOF Assume b is invertible modulo N , and let c denote its inverse.
Since bc = 1 mod N , this implies that bc − 1 = γN for some γ ∈ Z. Equiv-
alently, bc − γN = 1. Since, by Proposition 9.2, gcd(b,N) is the smallest
positive integer that can be expressed in this way, and there is no positive
integer smaller than 1, this implies that gcd(b,N) = 1.

Conversely, if gcd(b,N) = 1 then by Proposition 9.2 there exist integers
X,Y such that Xb+Y N = 1. Reducing each side of this equation modulo N
gives Xb = 1 mod N , and we see that X is a multiplicative inverse of b. (In
fact, this gives an efficient algorithm to compute inverses.)

Number Theory and Cryptographic Hardness Assumptions 311

Example 9.8
Let b = 11 and N = 17. Then (−3) · 11 + 2 · 17 = 1, and so 14 = [−3 mod 17]
is the inverse of 11. One can verify that 14 · 11 = 1 mod 17. ♦

Addition, subtraction, multiplication, and computation of inverses (when
they exist) modulo N can all be carried out in polynomial time; see Ap-
pendix B.2. Exponentiation (i.e., computing [ab mod N] for b > 0 an integer)
can also be computed in polynomial time; see Appendix B.2.3.

9.1.3 Groups

Let G be a set. A binary operation ◦ on G is simply a function ◦(·, ·) that
maps two elements of G to another element of G. If g, h ∈ G then instead of
using the cumbersome notation ◦(g, h), we write g ◦ h.

We now introduce the important notion of a group.

DEFINITION 9.9 A group is a set G along with a binary operation ◦ for
which the following conditions hold:

� (Closure:) For all g, h ∈ G, g ◦ h ∈ G.

� (Existence of an identity:) There exists an identity e ∈ G such that
for all g ∈ G, e ◦ g = g = g ◦ e.

� (Existence of inverses:) For all g ∈ G there exists an element h ∈ G
such that g ◦ h = e = h ◦ g. Such an h is called an inverse of g.

� (Associativity:) For all g1, g2, g3 ∈ G, (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3).

When G has a finite number of elements, we say G is finite and let |G| denote
the order of the group (that is, the number of elements in G).

A group G with operation ◦ is abelian if the following holds:

� (Commutativity:) For all g, h ∈ G, g ◦ h = h ◦ g.

When the binary operation is understood, we simply call the set G a group.

We will always deal with finite, abelian groups. We will be careful to specify,
however, when a result requires these assumptions.

Associativity implies that we do not need to include parentheses when writ-
ing long expressions; that is, the notation g1 ◦ g2 ◦ · · · ◦ gn is unambiguous
since it does not matter in what order we evaluate the operation ◦.

One can show that the identity element in a group G is unique, and so we
can therefore refer to the identity of a group. One can also show that each
element g of a group has a unique inverse. See Exercise 9.1.

If G is a group, a set H ⊆ G is a subgroup of G if H itself forms a group
under the same operation associated with G. To check that H is a subgroup,

312 Introduction to Modern Cryptography

we need to verify closure, existence of identity and inverses, and associativity
as per Definition 9.9. (In fact, associativity—as well as commutativity if G is
abelian—is inherited automatically from G.) Every group G always has the
trivial subgroups G and {1}. We call H a strict subgroup of G if H 6= G.

In general, we will not use the notation ◦ to denote the group operation.
Instead, we will use either additive notation or multiplicative notation de-
pending on the group under discussion. This does not imply that the group
operation corresponds to integer addition or multiplication; it is merely useful
notation. When using additive notation, the group operation applied to two
elements g, h is denoted g + h; the identity is denoted by 0; the inverse of an
element g is denoted by −g; and we write h − g in place of h + (−g). When
using multiplicative notation, the group operation applied to g, h is denoted
by g · h or simply gh; the identity is denoted by 1; the inverse of an element
g is denoted by g−1; and we sometimes write h/g in place of hg−1.

At this point, it may be helpful to see some examples.

Example 9.10

A set may be a group under one operation, but not another. For example,
the set of integers Z is an abelian group under addition: the identity is the
element 0, and every integer g has inverse −g. On the other hand, it is not a
group under multiplication since, for example, the integer 2 does not have a
multiplicative inverse in the integers. ♦

Example 9.11

The set of real numbers R is not a group under multiplication, since 0 does
not have a multiplicative inverse. The set of nonzero real numbers, however,
is an abelian group under multiplication with identity 1. ♦

The following example introduces the group ZN that we will use frequently.

Example 9.12

Let N > 1 be an integer. The set {0, . . . , N − 1} with respect to addition

modulo N (i.e., where a+ b
def
= [a+ b mod N]) is an abelian group of order N .

Closure is obvious; associativity and commutativity follow from the fact that
the integers satisfy these properties; the identity is 0; and, since a+(N−a) =
0 mod N , it follows that the inverse of any element a is [(N − a) mod N]. We
denote this group by ZN . (We will also sometimes use ZN to denote the set
{0, . . . , N − 1} without regard to any particular group operation.) ♦

We end this section with an easy lemma that formalizes a “cancelation law”
for groups.

LEMMA 9.13 Let G be a group and a, b, c ∈ G. If ac = bc, then a = b.
In particular, if ac = c then a is the identity in G.

Number Theory and Cryptographic Hardness Assumptions 313

PROOF We know ac = bc. Multiplying both sides by the unique inverse
c−1 of c, we obtain a = b. In detail:

ac = bc ⇒ (ac)c−1 = (bc) · c−1 ⇒ a(cc−1) = b(cc−1) ⇒ a · 1 = b · 1,

i.e., a = b.

Compare the above proof to the discussion (preceding Proposition 9.7) re-
garding a cancelation law for division modulo N . As indicated by the sim-
ilarity, the invertible elements modulo N form a group under multiplication
modulo N . We will return to this example in more detail shortly.

Group Exponentiation

It is often useful to be able to describe the group operation applied m times
to a fixed element g, where m is a positive integer. When using additive
notation, we express this as m · g or mg; that is,

mg = m · g def
= g + · · ·+ g︸ ︷︷ ︸

m times

.

Note that m is an integer, while g is a group element. So mg does not represent
the group operation applied to m and g (indeed, we are working in a group
where the group operation is written additively). Thankfully, however, the
notation “behaves as it should”; so, for example, if g ∈ G and m,m′ are
integers then (mg) + (m′g) = (m+m′)g, m(m′g) = (mm′)g, and 1 · g = g. In
an abelian group G with g, h ∈ G, (mg) + (mh) = m(g + h).

When using multiplicative notation, we express application of the group
operation m times to an element g by gm. That is,

gm
def
= g · · · g︸ ︷︷ ︸
m times

.

The familiar rules of exponentiation hold: gm · gm′ = gm+m′ , (gm)m
′

= gmm
′
,

and g1 = g. Also, if G is an abelian group and g, h ∈ G then gm ·hm = (gh)m.
All these are simply “translations” of the results from the previous paragraph
to the setting of groups written multiplicatively rather than additively.

The above notation is extended in the natural way to the case when m is

zero or a negative integer. When using additive notation we define 0 · g def
= 0

(note that the 0 on the left-hand side is the integer 0 while the 0 on the right-

hand side is the identity element of the group) and define (−m) ·g def
= m · (−g)

for m a positive integer. Observe that −g is the inverse of g and, as one would

expect, (−m) · g = −(mg). When using multiplicative notation, g0 def
= 1 and

g−m
def
= (g−1)m. Again, g−1 is the inverse of g, and we have g−m = (gm)

−1
.

314 Introduction to Modern Cryptography

Let g ∈ G and b ≥ 0 be an integer. Then the exponentiation gb can be
computed using polynomially many group operations in G. Thus, if the group
operation can be computed in polynomial time then so can exponentiation.
This is discussed in Appendix B.2.3.

We now know enough to prove the following remarkable result:

THEOREM 9.14 Let G be a finite group with m = |G|, the order of the
group. Then for any element g ∈ G, it holds that gm = 1.

PROOF We prove the theorem only when G is abelian (although it holds
for any finite group). Fix arbitrary g ∈ G, and let g1, . . . , gm be the elements
of G. We claim that

g1 · g2 · · · gm = (gg1) · (gg2) · · · (ggm).

To see this, note that ggi = ggj implies gi = gj by Lemma 9.13. So each of the
m elements in parentheses on the right-hand side is distinct. Because there
are exactly m elements in G, the m elements being multiplied together on the
right-hand side are simply all elements of G in some permuted order. Since
G is abelian, the order in which elements are multiplied does not matter, and
so the right-hand side is equal to the left-hand side.

Again using the fact that G is abelian, we can “pull out” all occurrences of
g and obtain

g1 · g2 · · · gm = (gg1) · (gg2) · · · (ggm) = gm · (g1 · g2 · · · gm).

Appealing once again to Lemma 9.13, this implies gm = 1.

An important corollary of the above is that we can work “modulo the group
order” in the exponent:

COROLLARY 9.15 Let G be a finite group with m = |G| > 1. Then for
any g ∈ G and any integer x, we have gx = g[x mod m].

PROOF Say x = qm+ r, where q, r are integers and r = [x mod m]. Then

gx = gqm+r = gqm · gr = (gm)q · gr = 1q · gr = gr

(using Theorem 9.14), as claimed.

Example 9.16
Written additively, the above corollary says that if g is an element in a group
of order m, then x · g = [x mod m] · g. As an example, consider the group Z15

Number Theory and Cryptographic Hardness Assumptions 315

of order m = 15, and take g = 11. The corollary says that

152 · 11 = [152 mod 15] · 11 = 2 · 11 = 11 + 11 = 22 = 7 mod 15.

The above agrees with the fact (cf. Example 9.5) that we can “reduce and
then multiply” rather than having to “multiply and then reduce.” ♦

Another corollary that will be extremely useful for cryptographic applica-
tions is the following:

COROLLARY 9.17 Let G be a finite group with m = |G| > 1. Let
e > 0 be an integer, and define the function fe : G → G by fe(g) = ge.
If gcd(e,m) = 1, then fe is a permutation (i.e., a bijection). Moreover,
if d = e−1 mod m then fd is the inverse of fe. (Note by Proposition 9.7,
gcd(e,m) = 1 implies e is invertible modulo m.)

PROOF Since G is finite, the second part of the claim implies the first;
thus, we need only show that fd is the inverse of fe. This is true because for
any g ∈ G, we have

fd (fe(g)) = fd(g
e) = (ge)d = ged = g[ed mod m] = g1 = g,

where the fourth equality follows from Corollary 9.15.

9.1.4 The Group Z∗N
As discussed in Example 9.12, the set ZN = {0, . . . , N−1} is a group under

addition modulo N . Can we define a group with respect to multiplication
modulo N? In doing so, we will have to eliminate those elements in ZN that
are not invertible; e.g., we will have to eliminate 0 since it has no multiplicative
inverse. Nonzero elements may also fail to be invertible (cf. Proposition 9.7).

Which elements b ∈ {1, . . . , N−1} are invertible moduloN? Proposition 9.7
says that these are exactly the elements b for which gcd(b,N) = 1. We have
also seen in Section 9.1.2 that whenever b is invertible, it has an inverse lying
in the range {1, . . . , N − 1}. This leads us to define, for any N > 1, the set

Z∗N
def
= {b ∈ {1, . . . , N − 1} | gcd(b,N) = 1} ;

i.e., Z∗N consists of integers in the set {1, . . . , N − 1} that are relatively prime

to N . The group operation is multiplication modulo N ; i.e., ab
def
= [ab mod N].

We claim that Z∗N is an abelian group with respect to this operation.
Since 1 is always in Z∗N , the set clearly contains an identity element. The
discussion above shows that each element in Z∗N has a multiplicative in-
verse in the same set. Commutativity and associativity follow from the fact

316 Introduction to Modern Cryptography

that these properties hold over the integers. To show that closure holds, let
a, b ∈ Z∗N ; then [ab mod N] has inverse [b−1a−1 mod N], which means that
gcd([ab mod N], N) = 1 and so ab ∈ Z∗N . Summarizing:

PROPOSITION 9.18 Let N > 1 be an integer. Then Z∗N is an abelian
group under multiplication modulo N .

Define φ(N)
def
= |Z∗N |, the order of the group Z∗N . (φ is called the Euler phi

function.) What is the value of φ(N)? First consider the case when N = p
is prime. Then all elements in {1, . . . , p − 1} are relatively prime to p, and
so φ(p) = |Z∗p| = p − 1. Next consider the case that N = pq, where p, q are
distinct primes. If an integer a ∈ {1, . . . , N − 1} is not relatively prime to
N , then either p | a or q | a (a cannot be divisible by both p and q since this
would imply pq | a but a < N = pq). The elements in {1, . . . , N − 1} divisible
by p are exactly the (q − 1) elements p, 2p, 3p, . . . , (q − 1)p, and the elements
divisible by q are exactly the (p− 1) elements q, 2q, . . . , (p− 1)q. The number
of elements remaining (i.e., those that are neither divisible by p nor q) is
therefore given by

(N − 1)− (q − 1)− (p− 1) = pq − p− q + 1 = (p− 1)(q − 1).

We have thus proved that φ(N) = (p − 1)(q − 1) when N is the product of
two distinct primes p and q.

You are asked to prove the following general result (used only rarely in the
rest of the book) in Exercise 9.4:

THEOREM 9.19 Let N =
∏
i p
ei
i , where the {pi} are distinct primes and

ei ≥ 1. Then φ(N) =
∏
i p
ei−1
i (pi − 1).

Example 9.20
Take N = 15 = 5 · 3. Then Z∗15 = {1, 2, 4, 7, 8, 11, 13, 14} and |Z∗15| = 8 =
4 · 2 = φ(15). The inverse of 8 in Z∗15 is 2, since 8 · 2 = 16 = 1 mod 15. ♦

We have shown that Z∗N is a group of order φ(N). The following are now
easy corollaries of Theorem 9.14 and Corollary 9.17:

COROLLARY 9.21 Take arbitrary integer N > 1 and a ∈ Z∗N . Then

aφ(N) = 1 mod N.

For the specific case that N = p is prime and a ∈ {1, . . . , p− 1}, we have

ap−1 = 1 mod p.

Number Theory and Cryptographic Hardness Assumptions 317

COROLLARY 9.22 Fix N > 1. For integer e > 0 define fe : Z∗N → Z∗N
by fe(x) = [xe mod N]. If e is relatively prime to φ(N) then fe is a permuta-
tion. Moreover, if d = e−1 mod φ(N) then fd is the inverse of fe.

9.1.5 *Isomorphisms and the Chinese Remainder Theorem

Two groups are isomorphic if they have the same underlying structure.
From a mathematical point of view, an isomorphism of a group G provides
an alternate, but equivalent, way of thinking about G. From a computational
perspective, an isomorphism provides a different way to represent elements
in G, which can often have a significant impact on algorithmic efficiency.

DEFINITION 9.23 Let G,H be groups with respect to the operations
◦G, ◦H, respectively. A function f : G→ H is an isomorphism from G to H if:

1. f is a bijection, and

2. For all g1, g2 ∈ G we have f(g1 ◦G g2) = f(g1) ◦H f(g2).

If there exists an isomorphism from G to H then we say that these groups are
isomorphic and write G ' H.

In essence, an isomorphism from G to H is just a renaming of elements of G
as elements of H. Note that if G is finite and G ' H, then H must be finite
and of the same size as G. Also, if there exists an isomorphism f from G to
H then f−1 is an isomorphism from H to G. It is possible, however, that f is
efficiently computable while f−1 is not (or vice versa).

The aim of this section is to use the language of isomorphisms to better
understand the group structure of ZN and Z∗N when N = pq is a product of
two distinct primes. We first need to introduce the notion of a direct product
of groups. Given groups G,H with group operations ◦G, ◦H, respectively, we
define a new group G × H (the direct product of G and H) as follows. The
elements of G × H are ordered pairs (g, h) with g ∈ G and h ∈ H; thus, if G
has n elements and H has n′ elements, G×H has n · n′ elements. The group
operation ◦ on G×H is applied component-wise; that is:

(g, h) ◦ (g′, h′)
def
= (g ◦G g′, h ◦H h′).

We leave it to Exercise 9.8 to verify that G×H is indeed a group. The above
notation can be extended to direct products of more than two groups in the
natural way, although we will not need this for what follows.

We may now state and prove the Chinese remainder theorem.

318 Introduction to Modern Cryptography

THEOREM 9.24 (Chinese remainder theorem) Let N = pq where
p, q > 1 are relatively prime. Then

ZN ' Zp × Zq and Z∗N ' Z∗p × Z∗q .

Moreover, let f be the function mapping elements x ∈ {0, . . . , N − 1} to pairs
(xp, xq) with xp ∈ {0, . . . , p− 1} and xq ∈ {0, . . . , q − 1} defined by

f(x)
def
= ([x mod p], [x mod q]).

Then f is an isomorphism from ZN to Zp × Zq, and the restriction of f to
Z∗N is an isomorphism from Z∗N to Z∗p × Z∗q .

PROOF For any x ∈ ZN the output f(x) is a pair of elements (xp, xq)
with xp ∈ Zp and xq ∈ Zq. We claim that if x ∈ Z∗N , then (xp, xq) ∈ Z∗p ×Z∗q .
Indeed, if xp 6∈ Z∗p then this means that gcd([x mod p], p) 6= 1. But then
gcd(x, p) 6= 1. This implies gcd(x,N) 6= 1, contradicting the assumption that
x ∈ Z∗N . (An analogous argument holds if xq 6∈ Z∗q .)

We now show that f is an isomorphism from ZN to Zp×Zq. (The proof that
it is an isomorphism from Z∗N to Z∗p × Z∗q is similar.) Let us start by proving
that f is one-to-one. Say f(x) = (xp, xq) = f(x′). Then x = xp = x′ mod p
and x = xq = x′ mod q. This in turn implies that (x − x′) is divisible by
both p and q. Since gcd(p, q) = 1, Proposition 9.4 says that pq = N divides
(x − x′). But then x = x′ mod N . For x, x′ ∈ ZN , this means that x = x′

and so f is indeed one-to-one. Since |ZN | = N = p · q = |Zp| · |Zq|, the sizes
of ZN and Zp ×Zq are the same. This in combination with the fact that f is
one-to-one implies that f is bijective.

In the following paragraph, let +N denote addition modulo N , and let �
denote the group operation in Zp × Zq (i.e., addition modulo p in the first
component and addition modulo q in the second component). To conclude
the proof that f is an isomorphism from ZN to Zp×Zq, we need to show that
for all a, b ∈ ZN it holds that f(a+N b) = f(a) � f(b).

To see that this is true, note that

f(a+N b) =
(

[(a+N b) mod p], [(a+N b) mod q]
)

=
(

[(a+ b) mod p], [(a+ b) mod q]
)

=
(

[a mod p], [a mod q]
)
�
(

[b mod p], [b mod q]
)

= f(a) � f(b).

(For the second equality, above, we use the fact that [[X mod N] mod p] =
[[X mod p] mod p] when p |N ; see Exercise 9.9.)

An extension of the Chinese remainder theorem says that if p1, p2, . . . , p` are

pairwise relatively prime (i.e., gcd(pi, pj) = 1 for all i 6= j) and N
def
=
∏`
i=1 pi,

Number Theory and Cryptographic Hardness Assumptions 319

then

ZN ' Zp1 × · · · × Zp` and Z∗N ' Z∗p1 × · · · × Z∗p` .

An isomorphism in each case is obtained by a natural extension of the one
used in the theorem above.

By way of notation, with N understood and x ∈ {0, 1, . . . , N − 1} we write
x ↔ (xp, xq) for xp = [x mod p] and xq = [x mod q]. That is, x ↔ (xp, xq) if
and only if f(x) = (xp, xq), where f is as in the theorem above. One way to
think about this notation is that it means “x (in ZN) corresponds to (xp, xq)
(in Zp × Zq).” The same notation is used when dealing with x ∈ Z∗N .

Example 9.25
Take 15 = 5 · 3, and consider Z∗15 = {1, 2, 4, 7, 8, 11, 13, 14}. The Chinese
remainder theorem says this group is isomorphic to Z∗5×Z∗3. We can compute

1↔ (1, 1) 2↔ (2, 2) 4↔ (4, 1) 7↔ (2, 1)
8↔ (3, 2) 11↔ (1, 2) 13↔ (3, 1) 14↔ (4, 2)

,

where each pair (a, b) with a ∈ Z∗5 and b ∈ Z∗3 appears exactly once. ♦

Using the Chinese Remainder Theorem

If two groups are isomorphic, then they both serve as representations of the
same underlying “algebraic structure.” Nevertheless, the choice of which rep-
resentation to use can affect the computational efficiency of group operations.
We discuss this abstractly, and then in the specific context of ZN and Z∗N .

Let G,H be groups with operations ◦G, ◦H, respectively, and say f is an
isomorphism from G to H where both f and f−1 can be computed efficiently.
Then for g1, g2 ∈ G we can compute g = g1 ◦G g2 in two ways: either by
directly computing the group operation in G, or via the following steps:

1. Compute h1 = f(g1) and h2 = f(g2);

2. Compute h = h1 ◦H h2 using the group operation in H;

3. Compute g = f−1(h).

The above extends in the natural way when we want to compute multiple
group operations in G (e.g., to compute gx for some integer x). Which method
is better depends on the relative efficiency of computing the group operation
in each group, as well as the efficiency of computing f and f−1.

We now turn to the specific case of computations modulo N , when N = pq
is a product of distinct primes. The Chinese remainder theorem shows that
addition, multiplication, or exponentiation (which is just repeated multiplica-
tion) moduloN can be “transformed” to analogous operations modulo p and q.
Building on Example 9.25, we show some simple examples with N = 15.

320 Introduction to Modern Cryptography

Example 9.26
Say we want to compute the product 14 · 13 modulo 15 (i.e., in Z∗15). Exam-
ple 9.25 gives 14↔ (4, 2) and 13↔ (3, 1). In Z∗5 × Z∗3, we have

(4, 2) · (3, 1) = ([4 · 3 mod 5], [2 · 1 mod 3]) = (2, 2).

Note (2, 2)↔ 2, which is the correct answer since 14 · 13 = 2 mod 15. ♦

Example 9.27
Say we want to compute 1153 mod 15. Example 9.25 gives 11↔ (1, 2). Notice
that 2 = −1 mod 3 and so

(1, 2)53 = ([153 mod 5], [(−1)53 mod 3]) = (1, [−1 mod 3]) = (1, 2).

Thus, 1153 mod 15 = 11. ♦

Example 9.28
Say we want to compute [29100 mod 35]. We first compute the correspon-
dence 29 ↔ ([29 mod 5], [29 mod 7]) = ([−1 mod 5], 1). Using the Chinese
remainder theorem, we have

([−1 mod 5], 1)100 = ([(−1)100 mod 5], [1100 mod 7]) = (1, 1),

and it is immediate that (1, 1)↔ 1. We conclude that [29100 mod 35] = 1. ♦

Example 9.29
Say we want to compute [1825 mod 35]. We have 18↔ (3, 4) and so

1825 mod 35↔ (3, 4)25 = ([325 mod 5], [425 mod 7]).

Since Z∗5 is a group of order 4, we can “work modulo 4 in the exponent” (cf.
Corollary 9.15) and see that

325 = 3[25 mod 4] = 31 = 3 mod 5.

Similarly,

425 = 4[25 mod 6] = 41 = 4 mod 7.

Thus, ([325 mod 5], [425 mod 7]) = (3, 4)↔ 18 and so [1825 mod 35] = 18. ♦

One thing we have not yet discussed is how to convert back and forth
between the representation of an element modulo N and its representation
modulo p and q. The conversion can be carried out efficiently provided the
factorization of N is known. Assuming p and q are known, it is easy to map
an element x modulo N to its corresponding representation modulo p and q:

Number Theory and Cryptographic Hardness Assumptions 321

the element x corresponds to ([x mod p], [x mod q]), and both the modular
reductions can be carried out efficiently (cf. Appendix B.2).

For the other direction, we make use of the following observation: an ele-
ment with representation (xp, xq) can be written as

(xp, xq) = xp · (1, 0) + xq · (0, 1).

So, if we can find elements 1p, 1q ∈ {0, . . . , N − 1} such that 1p ↔ (1, 0) and
1q ↔ (0, 1), then (appealing to the Chinese remainder theorem) we know that

(xp, xq)↔ [(xp · 1p + xq · 1q) mod N].

Since p, q are distinct primes, gcd(p, q) = 1. We can use the extended Eu-
clidean algorithm (cf. Appendix B.1.2) to find integers X,Y such that

Xp+ Y q = 1.

Note that Y q = 0 mod q and Y q = 1 − Xp = 1 mod p. This means that
[Y q mod N]↔ (1, 0); i.e., [Y q mod N] = 1p. Similarly, [Xp mod N] = 1q.

In summary, we can convert an element represented as (xp, xq) to its rep-
resentation modulo N in the following way (assuming p and q are known):

1. Compute X,Y such that Xp+ Y q = 1.

2. Set 1p := [Y q mod N] and 1q := [Xp mod N].

3. Compute x := [(xp · 1p + xq · 1q) mod N].

If many such conversions will be performed, then 1p, 1q can be computed
once-and-for-all in a preprocessing phase.

Example 9.30
Take p = 5, q = 7, and N = 5 · 7 = 35. Say we are given the representation
(4, 3) and want to convert this to the corresponding element of Z35. Using
the extended Euclidean algorithm, we compute

3 · 5− 2 · 7 = 1.

Thus, 1p = [−2 · 7 mod 35] = 21 and 1q = [3 · 5 mod 35] = 15. (We can check
that these are correct: e.g., for 1p = 21 we can verify that [21 mod 5] = 1 and
[21 mod 7] = 0.) Using these values, we can then compute

(4, 3) = 4 · (1, 0) + 3 · (0, 1)

↔ [4 · 1p + 3 · 1q mod 35]

= [4 · 21 + 3 · 15 mod 35] = 24.

Since 24 = 4 mod 5 and 24 = 3 mod 7, this is indeed the correct result. ♦

322 Introduction to Modern Cryptography

9.2 Primes, Factoring, and RSA

In this section, we show the first examples of number-theoretic problems
that are conjectured to be “hard.” We begin with a discussion of one of the
oldest problems: integer factorization or just factoring.

Given a composite integer N , the factoring problem is to find integers
p, q > 1 such that pq = N . Factoring is a classic example of a hard problem,
both because it is so simple to describe and since it has been recognized as a
hard computational problem for a long time (even before its use in cryptog-
raphy). The problem can be solved in exponential time O(

√
N · polylog(N))

using trial division: that is, by exhaustively checking whether p divides N
for p = 2, . . . , b

√
Nc. (This method requires

√
N divisions, each one taking

polylog(N) = ‖N‖c time for some constant c.) This always succeeds because
although the largest prime factor of N may be as large as N/2, the smallest
prime factor of N can be at most b

√
Nc. Although algorithms with better

running time are known (see Chapter 10), no polynomial-time algorithm for
factoring has been demonstrated despite many years of effort.

Consider the following experiment for a given algorithm A and parameter n:

The weak factoring experiment w-FactorA(n):

1. Choose two uniform n-bit integers x1, x2.

2. Compute N := x1 · x2.

3. A is given N , and outputs x′1, x
′
2 > 1.

4. The output of the experiment is defined to be 1 if x′1 ·x′2 = N ,
and 0 otherwise.

We have just said that the factoring problem is believed to be hard. Does
this mean that

Pr[w-FactorA(n) = 1] ≤ negl(n)

is negligible for every ppt algorithm A? Not at all. For starters, the number
N in the above experiment is even with probability 3/4 (this occurs when
either x1 or x2 is even); it is, of course, easy for A to factor N in this case.
While we can make A’s job more difficult by requiring A to output integers
x′1, x

′
2 of length n, it remains the case that x1 or x2 (and hence N) might

have small prime factors that can still be easily found. For cryptographic
applications, we will need to prevent this.

As this discussion indicates, the “hardest” numbers to factor are those
having only large prime factors. This suggests redefining the above experiment
so that x1, x2 are random n-bit primes rather than random n-bit integers,
and in fact such an experiment will be used when we formally define the
factoring assumption in Section 9.2.3. For this experiment to be useful in a
cryptographic setting, however, it is necessary to be able to generate random
n-bit primes efficiently. This is the topic of the next two sections.

Number Theory and Cryptographic Hardness Assumptions 323

9.2.1 Generating Random Primes

A natural approach to generating a random n-bit prime is to repeatedly
choose random n-bit integers until we find one that is prime; we repeat this
at most t times or until we are successful. See Algorithm 9.31 for a high-level
description of the process.

ALGORITHM 9.31
Generating a random prime – high-level outline

Input: Length n; parameter t
Output: A uniform n-bit prime

for i = 1 to t:
p′ ← {0, 1}n−1

p := 1‖p′
if p is prime return p

return fail

Note that the algorithm forces the output to be an integer of length exactly n
(rather than length at most n) by fixing the high-order bit of p to “1.” Our
convention throughout this book is that an “integer of length n” means an
integer whose binary representation with most significant bit equal to 1 is
exactly n bits long.

Given a way to determine whether or not a given integer p is prime, the
above algorithm outputs a uniform n-bit prime conditioned on the event that
it does not output fail. The probability that the algorithm outputs fail depends
on t, and for our purposes we will want to set t so as to obtain a failure
probability that is negligible in n. To show that Algorithm 9.31 leads to an
efficient (i.e., polynomial-time in n) algorithm for generating primes, we need
a better understanding of two issues: (1) the probability that a uniform n-
bit integer is prime and (2) how to efficiently test whether a given integer
p is prime. We discuss these issues briefly now, and defer a more in-depth
exploration of the second topic to the following section.

The distribution of primes. The prime number theorem, an important
result in mathematics, gives fairly precise bounds on the fraction of integers
of a given length that are prime. We state a corollary (without proof) that
suffices for our purposes:

THEOREM 9.32 For any n > 1, the fraction of n-bit integers that are
prime is at least 1/3n.

Returning to the approach for generating primes described above, this implies
that if we set t = 3n2 then the probability that a prime is not chosen in all t

324 Introduction to Modern Cryptography

iterations of the algorithm is at most(
1− 1

3n

)t
=

((
1− 1

3n

)3n
)n
≤
(
e−1
)n

= e−n

(using Inequality A.2), which is negligible in n. Thus, using poly(n) iterations
we obtain an algorithm for which the probability of outputting fail is negligible
in n. (Tighter results than Theorem 9.32 are known, and so in practice even
fewer iterations are needed.)

Testing primality. The problem of efficiently determining whether a given
number is prime has a long history. In the 1970s the first efficient algorithms
for testing primality were developed. These algorithms were probabilistic and
had the following guarantee: if the input p were a prime number, the algorithm
would always output “prime.” On the other hand, if p were composite, then
the algorithm would almost always output “composite,” but might output the
wrong answer (“prime”) with probability negligible in the length of p. Put
differently, if the algorithm outputs “composite” then p is definitely composite,
but if the output is “prime” then it is very likely that p is prime but it is also
possible that a mistake has occurred (and p is really composite).

When using a randomized primality test of this sort in Algorithm 9.31 (the
prime-generation algorithm shown earlier), the output of the algorithm is a
uniform prime of the desired length so long as the algorithm does not output
fail and the randomized primality test did not err during the execution of
the algorithm. This means that an additional source of error (besides the
possibility of outputting fail) is introduced, and the algorithm may now output
a composite number by mistake. Since we can ensure that this happens with
only negligible probability, this remote possibility is of no practical concern
and we can safely ignore it.

A deterministic polynomial-time algorithm for testing primality was demon-
strated in a breakthrough result in 2002. That algorithm, although running in
polynomial time, is slower than the probabilistic tests mentioned above. For
this reason, probabilistic primality tests are still used exclusively in practice
for generating large prime numbers.

In Section 9.2.2 we describe and analyze one of the most commonly used
probabilistic primality tests: the Miller–Rabin algorithm. This algorithm
takes two inputs: an integer p and a parameter t (in unary) that determines
the error probability. The Miller–Rabin algorithm runs in time polynomial in
‖p‖ and t, and satisfies:

THEOREM 9.33 If p is prime, then the Miller–Rabin test always outputs
“prime.” If p is composite, the algorithm outputs “composite” except with
probability at most 2−t.

Number Theory and Cryptographic Hardness Assumptions 325

Putting it all together. Given the preceding discussion, we can now de-
scribe a polynomial-time prime-generation algorithm that, on input n, outputs
an n-bit prime except with probability negligible in n; moreover, conditioned
on the output p being prime, p is a uniformly distributed n-bit prime. The
full procedure is described in Algorithm 9.34.

ALGORITHM 9.34
Generating a random prime

Input: Length n
Output: A uniform n-bit prime

for i = 1 to 3n2:
p′ ← {0, 1}n−1

p := 1‖p′
run the Miller–Rabin test on input p and parameter 1n

if the output is “prime,” return p
return fail

Generating primes of a particular form. It is sometimes desirable to
generate a random n-bit prime p of a particular form, for example, satisfying
p = 3 mod 4 or such that p = 2q + 1 where q is also prime (p of the latter
type are called strong primes). In this case, appropriate modifications of the
prime-generation algorithm shown above can be used. (For example, in order
to obtain a prime of the form p = 2q + 1, modify the algorithm to generate a
random prime q, compute p := 2q + 1, and then output p if it too is prime.)
While these modified algorithms work well in practice, rigorous proofs that
they run in polynomial time and fail with only negligible probability are more
complex (and, in some cases, rely on unproven number-theoretic conjectures
regarding the density of primes of a particular form). A detailed exploration
of these issues is beyond the scope of this book, and we will simply assume
the existence of appropriate prime-generation algorithms when needed.

9.2.2 *Primality Testing

We now describe the Miller–Rabin primality test and prove Theorem 9.33.
(We rely on the material presented in Section 9.1.5.) This material is not used
directly in the rest of the book.

The key to the Miller–Rabin algorithm is to find a property that distin-
guishes primes and composites. Let N denote the input number to be tested.
We start with the following observation: if N is prime then |Z∗N | = N − 1,
and so for any a ∈ {1, . . . , N−1} we have aN−1 = 1 mod N by Theorem 9.14.
This suggests testing whether N is prime by choosing a uniform element a

and checking whether aN−1 ?
= 1 mod N . If aN−1 6= 1 mod N , then N can-

326 Introduction to Modern Cryptography

not be prime. Conversely, we might hope that if N is not prime then there
is a reasonable chance that we will pick a with aN−1 6= 1 mod N , and so
by repeating this test many times we can determine whether N is prime or
not with high confidence. The above approach is shown as Algorithm 9.35.
(Recall that exponentiation modulo N and computation of greatest common
divisors can be carried out in polynomial time. Choosing a uniform element
of {1, . . . , N − 1} can also be done in polynomial time. See Appendix B.2.)

ALGORITHM 9.35
Primality testing – first attempt

Input: Integer N and parameter 1t

Output: A decision as to whether N is prime or composite

for i = 1 to t:
a← {1, . . . , N − 1}
if aN−1 6= 1 mod N return “composite”

return “prime”

If N is prime the algorithm always outputs “prime.” If N is composite, the
algorithm outputs “composite” if in any iteration it finds an a ∈ {1, . . . , N−1}
such that aN−1 6= 1 mod N . Observe that if a 6∈ Z∗N then aN−1 6= 1 mod N .
(If gcd(a,N) 6= 1 then gcd(aN−1, N) 6= 1 and so [aN−1 mod N] cannot
equal 1.) For now, we therefore restrict our attention to a ∈ Z∗N . We re-
fer to any such a with aN−1 6= 1 mod N as a witness that N is composite, or
simply a witness. We might hope that when N is composite there are many
witnesses, and thus the algorithm finds such a witness with “high” probability.
This intuition is correct provided there is at least one witness. Before proving
this, we need two group-theoretic lemmas.

PROPOSITION 9.36 Let G be a finite group, and H ⊆ G. Assume H is
nonempty, and for all a, b ∈ H we have ab ∈ H. Then H is a subgroup of G.

PROOF We need to verify that H satisfies all the conditions of Defini-
tion 9.9. By assumption, H is closed under the group operation. Associativity
in H is inherited automatically from G. Let m = |G| (here is where we use
the fact that G is finite), and consider an arbitrary element a ∈ H. Closure
of H means that H contains am−1 = a−1 as well as am = 1. Thus, H contains
the inverse of each of its elements, as well as the identity.

LEMMA 9.37 Let H be a strict subgroup of a finite group G (i.e., H 6= G).
Then |H| ≤ |G|/2.

PROOF Let h̄ be an element of G that is not in H; since H 6= G, we

Number Theory and Cryptographic Hardness Assumptions 327

know such an h̄ exists. Consider the set H̄ def
= {h̄h | h ∈ H}. We show

that (1) |H̄| = |H|, and (2) every element of H̄ lies outside of H; i.e., the
intersection of H and H̄ is empty. Since both H and H̄ are subsets of G, these
imply |G| ≥ |H|+ |H̄| = 2|H|, proving the lemma.

For any h1, h2 ∈ H, if h̄h1 = h̄h2 then, multiplying by h̄−1 on each side, we
have h1 = h2. This shows that every distinct element h ∈ H corresponds to a
distinct element h̄h ∈ H̄, proving (1).

Assume toward a contradiction that h̄h ∈ H for some h. This means h̄h = h′

for some h′ ∈ H, and so h̄ = h′h−1. Now, h′h−1 ∈ H since H is a subgroup
and h′, h−1 ∈ H. But this means that h̄ ∈ H, in contradiction to the way h̄
was chosen. This proves (2) and completes the proof of the lemma.

The following theorem will enable us to analyze the algorithm given earlier.

THEOREM 9.38 Fix N . Say there exists a witness that N is composite.
Then at least half the elements of Z∗N are witnesses that N is composite.

PROOF Let Bad be the set of elements in Z∗N that are not witnesses;
that is, a ∈ Bad means aN−1 = 1 mod N . Clearly, 1 ∈ Bad. If a, b ∈ Bad,
then (ab)N−1 = aN−1 · bN−1 = 1 · 1 = 1 mod N and hence ab ∈ Bad. By
Lemma 9.36, we conclude that Bad is a subgroup of Z∗N . Since (by assumption)
there is at least one witness, Bad is a strict subgroup of Z∗N . Lemma 9.37
then shows that |Bad| ≤ |Z∗N |/2, showing that at least half the elements of
Z∗N are not in Bad (and hence are witnesses).

Let N be composite. If there exists a witness that N is composite, then
there are at least |Z∗N |/2 witnesses. The probability that we find either a
witness or an element not in Z∗N in any given iteration of the algorithm is
thus at least 1/2, and so the probability that the algorithm does not find a
witness in any of the t iterations (and hence the probability that the algorithm
mistakenly outputs “prime”) is at most 2−t.

The above, unfortunately, does not give a complete solution since there are
infinitely many composite numbers N that do not have any witnesses that
they are composite! Such values N are known as Carmichael numbers; a
detailed discussion is beyond the scope of this book.

Happily, a refinement of the above test can be shown to work for all N .
Let N − 1 = 2ru, where u is odd and r ≥ 1. (It is easy to compute r and u
given N . Also, restricting to r ≥ 1 means that N is odd, but testing primality
is easy when N is even!) The algorithm shown previously tests only whether
aN−1 = a2ru = 1 mod N . A more refined algorithm looks at the sequence of
r + 1 values au, a2u, . . . , a2ru (all modulo N). Each term in this sequence is
the square of the preceding term; thus, if some value is equal to ±1 then all
subsequent values will be equal to 1.

328 Introduction to Modern Cryptography

Say that a ∈ Z∗N is a strong witness that N is composite (or simply a

strong witness) if (1) au 6= ±1 mod N and (2) a2iu 6= −1 mod N for all
i ∈ {1, . . . , r − 1}. Note that when an element a is not a strong witness
then the sequence (au, a2u, . . . , a2ru) (all taken modulo N) takes one of the
following forms:

(±1, 1, . . . , 1) or (?, . . . , ?,−1, 1, . . . , 1) ,

where ? is an arbitrary term. If a is not a strong witness then we have
a2r−1u = ±1 mod N and

aN−1 = a2ru =
(
a2r−1u

)2

= 1 mod N,

and so a is not a witness that N is composite, either. Put differently, if a is
a witness then it is also a strong witness and so there can only possibly be
more strong witnesses than witnesses.

We first show that if N is prime then there does not exist a strong witness
that N is composite. In doing so, we rely on the following easy lemma (which
is a special case of Proposition 15.16 proved subsequently in Chapter 15):

LEMMA 9.39 Say x ∈ Z∗N is a square root of 1 modulo N if x2 = 1 mod N .
If N is an odd prime then the only square roots of 1 modulo N are [±1 mod N].

PROOF Say x2 = 1 mod N with x ∈ {1, . . . , N − 1}. Then 0 = x2 − 1 =
(x+ 1)(x− 1) mod N , implying that N | (x + 1) or N | (x − 1) by Proposi-
tion 9.3. This can only possibly occur if x = [±1 mod N].

Let N be an odd prime and fix arbitrary a ∈ Z∗N . Let i ≥ 0 be the minimum

value for which a2iu = 1 mod N ; since a2ru = aN−1 = 1 mod N we know that
some such i ≤ r exists. If i = 0 then au = 1 mod N and a is not a strong
witness. Otherwise, (

a2i−1u
)2

= a2iu = 1 mod N

and a2i−1u is a square root of 1. If N is an odd prime, the only square roots of
1 are ±1; by choice of i, however, a2i−1u 6= 1 mod N . So a2i−1u = −1 mod N ,
and a is not a strong witness. We conclude that when N is an odd prime
there is no strong witness that N is composite.

A composite integer N is a prime power if N = pr for some prime p and
integer r ≥ 1. We now show that every odd, composite N that is not a prime
power has many strong witnesses.

THEOREM 9.40 Let N be an odd number that is not a prime power.
Then at least half the elements of Z∗N are strong witnesses that N is composite.

Number Theory and Cryptographic Hardness Assumptions 329

PROOF Let Bad ⊆ Z∗N denote the set of elements that are not strong
witnesses. We define a set Bad′ and show that: (1) Bad is a subset of Bad′,
and (2) Bad′ is a strict subgroup of Z∗N . This suffices because by combining
(2) and Lemma 9.37 we have that |Bad′| ≤ |Z∗N |/2. Furthermore, by (1) it
holds that Bad ⊆ Bad′, and so |Bad| ≤ |Bad′| ≤ |Z∗N |/2 as in Theorem 9.38.
Thus, at least half the elements of Z∗N are strong witnesses. (We stress that
we do not claim that Bad is a subgroup of Z∗N .)

Note first that −1 ∈ Bad since (−1)u = −1 mod N (recall u is odd). Let
i ∈ {0, . . . , r−1} be the largest integer for which there exists an a ∈ Bad with

a2iu = −1 mod N ; alternatively, i is the largest integer for which there exists
an a ∈ Bad with

(au, a2u, . . . , a2ru) = (?, . . . , ?,−1︸ ︷︷ ︸
i+ 1 terms

, 1, . . . , 1).

Since −1 ∈ Bad and (−1)20u = −1 mod N , some such i exists.
Fix i as above, and define

Bad′
def
= {a | a2iu = ±1 mod N}.

We now prove what we claimed above.

CLAIM 9.41 Bad ⊆ Bad′.

Let a ∈ Bad. Then either au = 1 mod N or a2ju = −1 mod N for some
j ∈ {0, . . . , r−1}. In the first case, a2iu = (au)2i

= 1 mod N and so a ∈ Bad′.
In the second case, we have j ≤ i by choice of i. If j = i then clearly a ∈ Bad′.
If j < i then a2iu = (a2ju)2i−j

= 1 mod N and a ∈ Bad′. Since a was
arbitrary, this shows Bad ⊆ Bad′.

CLAIM 9.42 Bad′ is a subgroup of Z∗N .

Clearly 1 ∈ Bad′. Furthermore, if a, b ∈ Bad′ then

(ab)2iu = a2iub2
iu = (±1)(±1) = ±1 mod N

and so ab ∈ Bad′. By Lemma 9.36, Bad′ is a subgroup.

CLAIM 9.43 Bad′ is a strict subgroup of Z∗N .

If N is an odd, composite integer that is not a prime power, then N can be
written as N = N1N2 with N1, N2 > 1 odd and gcd(N1, N2) = 1. Appealing
to the Chinese remainder theorem, let a↔ (a1, a2) denote the representation
of a ∈ Z∗N as an element of Z∗N1

× Z∗N2
; that is, a1 = [a mod N1] and a2 =

330 Introduction to Modern Cryptography

[a mod N2]. Take a ∈ Bad′ such that a2iu = −1 mod N (such an a must exist
by the way we defined i), and say a↔ (a1, a2). Since −1↔ (−1,−1) we have

(a1, a2)2iu = (a2iu
1 , a2iu

2) = (−1,−1),

and so
a2iu

1 = −1 mod N1 and a2iu
2 = −1 mod N2.

Consider the element b ∈ Z∗N with b↔ (a1, 1). Then

b2
iu ↔ (a1, 1)2iu = ([a2iu

1 mod N1], 1) = (−1, 1) 6↔ ±1.

That is, b2
iu 6= ±1 mod N and so we have found an element b 6∈ Bad′. This

proves that Bad′ is a strict subgroup of Z∗N and so, by Lemma 9.37, the size
of Bad′ (and thus the size of Bad) is at most half the size of Z∗N .

An integer N is a perfect power if N = N̂e for integers N̂ and e ≥ 2 (here
it is not required for N̂ to be prime, although of course any prime power is
also a perfect power). Algorithm 9.44 gives the Miller–Rabin primality test.
Exercises 9.16 and 9.17 ask you to show that testing whether N is a perfect
power, and testing whether a particular a is a strong witness, can be done
in polynomial time. Given these results, the algorithm clearly runs in time
polynomial in ‖N‖ and t. We can now complete the proof of Theorem 9.33:

ALGORITHM 9.44
The Miller–Rabin primality test

Input: Integer N > 2 and parameter 1t

Output: A decision as to whether N is prime or composite

if N is even, return “composite”
if N is a perfect power, return “composite”
compute r ≥ 1 and u odd such that N − 1 = 2ru
for j = 1 to t:
a← {1, . . . , N − 1}
if au 6= ±1 mod N and a2

iu 6= −1 mod N for i ∈ {1, . . . , r − 1}
return “composite”

return “prime”

PROOF If N is an odd prime, there are no strong witnesses and so the
Miller–Rabin algorithm always outputs “prime.” If N is even or a prime
power, the algorithm always outputs “composite.” The interesting case is
when N is an odd, composite integer that is not a prime power. Consider any
iteration of the inner loop. Note first that if a 6∈ Z∗N then au 6= ±1 mod N and

Number Theory and Cryptographic Hardness Assumptions 331

a2iu 6= −1 mod N for i ∈ {1, . . . , r − 1}. The probability of finding either a
strong witness or an element not in Z∗N is at least 1/2 (invoking Theorem 9.40).
Thus, the probability that the algorithm never outputs “composite” in any of
the t iterations is at most 2−t.

9.2.3 The Factoring Assumption

Let GenModulus be a polynomial-time algorithm that, on input 1n, outputs
(N, p, q) where N = pq, and p and q are n-bit primes except with probability
negligible in n. (The natural way to do this is to generate two uniform n-bit
primes, as discussed previously, and then multiply them to obtain N .) Then
consider the following experiment for a given algorithm A and parameter n:

The factoring experiment FactorA,GenModulus(n):

1. Run GenModulus(1n) to obtain (N, p, q).

2. A is given N , and outputs p′, q′ > 1.

3. The output of the experiment is defined to be 1 if p′ · q′ = N ,
and 0 otherwise.

Note that if the output of the experiment is 1 then {p′, q′} = {p, q}, unless p
or q are composite (which happens with only negligible probability).

We now formally define the factoring assumption:

DEFINITION 9.45 Factoring is hard relative to GenModulus if for all
probabilistic polynomial-time algorithms A there exists a negligible function
negl such that

Pr[FactorA,GenModulus(n) = 1] ≤ negl(n).

The factoring assumption is the assumption that there exists a GenModulus
relative to which factoring is hard.

9.2.4 The RSA Assumption

The factoring problem has been studied for hundreds of years without an
efficient algorithm being found. Although the factoring assumption does give
a one-way function (see Section 9.4.1), it unfortunately does not directly yield
practical cryptosystems. (In Section 15.5.2, however, we show how to con-
struct efficient cryptosystems based on a problem whose hardness is equivalent
to that of factoring.) This has motivated a search for other problems whose
difficulty is related to the hardness of factoring. The best known of these is a
problem introduced in 1978 by Rivest, Shamir, and Adleman and now called
the RSA problem in their honor.

332 Introduction to Modern Cryptography

Given a modulus N and an integer e > 2 relatively prime to φ(N), Corol-
lary 9.22 shows that exponentiation to the eth power modulo N is a permu-
tation. We can therefore define [y1/e mod N] (for any y ∈ Z∗N) as the unique
element of Z∗N that yields y when raised to the eth power modulo N ; that is,
x = y1/e mod N if and only if xe = y mod N . The RSA problem, informally,
is to compute [y1/e mod N] for a modulus N of unknown factorization.

Formally, let GenRSA be a probabilistic polynomial-time algorithm that, on
input 1n, outputs a modulus N that is the product of two n-bit primes, as
well as integers e, d > 0 with gcd(e, φ(N)) = 1 and ed = 1 mod φ(N). (Such a
d exists since e is invertible modulo φ(N). The purpose of d will become clear
later.) The algorithm may fail with probability negligible in n. Consider the
following experiment for a given algorithm A and security parameter n:

The RSA experiment RSA-invA,GenRSA(n):

1. Run GenRSA(1n) to obtain (N, e, d).

2. Choose a uniform y ∈ Z∗N .

3. A is given N, e, y, and outputs x ∈ Z∗N .

4. The output of the experiment is defined to be 1 if xe = y mod N ,
and 0 otherwise.

DEFINITION 9.46 The RSA problem is hard relative to GenRSA if for all
probabilistic polynomial-time algorithms A there exists a negligible function
negl such that Pr[RSA-invA,GenRSA(n) = 1] ≤ negl(n).

The RSA assumption is that there exists a GenRSA algorithm relative to
which the RSA problem is hard. A suitable GenRSA algorithm can be con-
structed from any algorithm GenModulus that generates a composite modulus
along with its factorization. A high-level outline is provided as Algorithm 9.47,
where the only thing left unspecified is how exactly e is chosen. In fact, the
RSA problem is believed to be hard for any e that is relatively prime to φ(N).
We discuss some typical choices of e below.

ALGORITHM 9.47
GenRSA – high-level outline

Input: Security parameter 1n

Output: N , e, d as described in the text

(N, p, q)← GenModulus(1n)
φ(N) := (p− 1)(q − 1)
choose e > 1 such that gcd(e, φ(N)) = 1
compute d := [e−1 mod φ(N)]
return N, e, d

Number Theory and Cryptographic Hardness Assumptions 333

Example 9.48

Say GenModulus outputs (N, p, q) = (143, 11, 13). Then φ(N) = 120. Next,
we need to choose an e that is relatively prime to φ(N); say we take e = 7.
The next step is to compute d such that d = [e−1 mod φ(N)]. This can be
done as shown in Appendix B.2.2 to obtain d = 103. (One can check that
7 · 103 = 721 = 1 mod 120.) Our GenRSA algorithm in this case thus outputs
(N, e, d) = (143, 7, 103).

As an example of the RSA problem relative to these parameters, take y = 64
and so the problem is to compute the 7th root of 64 modulo 143 without
knowledge of d or the factorization of N . ♦

Computing eth roots moduloN becomes easy if d, φ(N), or the factorization
of N is known. (As we show in the next section, any of these can be used to
efficiently compute the others.) This follows from Corollary 9.22, which shows
that [yd mod N] is the eth root of y modulo N . This asymmetry—namely,
that the RSA problem appears to be hard when d or the factorization of
N is unknown, but becomes easy when d is known—serves as the basis for
applications of the RSA problem to public-key cryptography.

Example 9.49

Continuing the previous example, we can compute the 7th root of 64 mod-
ulo 143 using the value d = 103; the answer is 25 = 64d = 64103 mod 143. We
can verify that this is the correct solution since 25e = 257 = 64 mod 143. ♦

On the choice of e. There does not appear to be any difference in the
hardness of the RSA problem for different exponents e and, as such, different
methods have been suggested for selecting it. One popular choice is to set
e = 3, since then computing eth powers modulo N requires only two multi-
plications (see Appendix B.2.3). If e is to be set equal to 3, then p and q
must be chosen with p, q 6= 1 mod 3 so that gcd(e, φ(N)) = 1. For similar
reasons, another popular choice is e = 216 + 1 = 65537, a prime number with
low Hamming weight (in Appendix B.2.3, we explain why such exponents
are preferable). As compared to choosing e = 3, this makes exponentiation
slightly more expensive but reduces the constraints on p and q, and avoids
some “low-exponent attacks” (described at the end of Section 12.5.1) that can
result from poorly implemented cryptosystems based on the RSA problem.

Note that choosing d small (that is, changing GenRSA to choose small d
and then compute e := [d−1 mod φ(N)]) is a bad idea. If d lies in a very
small range then a brute-force search for d can be carried out (and, as noted,
once d is known the RSA problem can be solved easily). Even if d is chosen
so that d ≈ N1/4, and so brute-force attacks are ruled out, there are known
algorithms that can be used to recover d from N and e in this case. For similar
reasons, choosing d with low Hamming weight is also not recommended.

334 Introduction to Modern Cryptography

9.2.5 *Relating the Factoring and RSA Assumptions

Say GenRSA is constructed as in Algorithm 9.47. If N can be factored, then
we can compute φ(N) and use this to compute d := [e−1 mod φ(N)] for any
given e (using Algorithm B.11). So for the RSA problem to be hard relative
to GenRSA, the factoring problem must be hard relative to GenModulus. Put
differently, the RSA problem cannot be more difficult than factoring; hard-
ness of factoring (relative to GenModulus) can only potentially be a weaker
assumption than hardness of the RSA problem (relative to GenRSA).

What about the other direction? That is, is hardness of the RSA problem
implied by hardness of factoring? That remains an open question. The best
we can show is that computing an RSA private key from an RSA public key
(i.e., computing d from N and e) is as hard as factoring. We start by proving
a slightly more powerful result.

THEOREM 9.50 Fix N , and assume there is a subroutine that, given
x ∈ Z∗N , outputs an integer k > 0 with xk = 1 mod N . Then there is an
algorithm that finds a factor of N in time poly(‖N‖) (counting each call to
the subroutine as one step), except with probability negligible in ‖N‖.

PROOF For simplicity (and because it is most relevant to cryptography)
we focus on factoring N that are a product of two distinct, odd primes p
and q. We use the Chinese remainder theorem (Section 9.1.5), and rely on
Proposition 9.36 and Lemma 9.37 as well as the following facts (which follow
from more-general results proved in Sections 15.4.2 and 15.5.2):

� For N of the above form, 1 has exactly four square roots modulo N . Two
of these are the “trivial” square roots [±1 mod N], and two of these are
“nontrivial” square roots. In the Chinese remaindering representation,
the nontrivial square roots are (1,−1) and (−1, 1).

� Any nontrivial square root of 1 can be used to (efficiently) compute a
factor of N . This is by virtue of the fact that y2 = 1 mod N implies

0 = y2 − 1 = (y − 1)(y + 1) mod N,

and so N | (y − 1)(y + 1). However, N 6 | (y − 1) and N 6 | (y + 1) because
y 6= ±1 mod N . So it must be the case that gcd(y − 1, N) is equal to
one of the prime factors of N .

We use the following strategy to factor N : repeatedly choose a uniform
x ∈ Z∗N , compute k > 0 with xk = 1 mod N (using the assumed subroutine
for doing so), write k = 2s · v for v an odd integer, and compute the sequence

xv, x2v, . . . , x2sv

modulo N . Each term in this sequence is the square of the preceding term,

and the final term is 1. Let j be largest with y
def
= [x2jv mod N] 6= 1. (If

Number Theory and Cryptographic Hardness Assumptions 335

there is no such j, then start again by choosing another x.) By choice of j,
we have y2 = 1 mod N . If y 6= −1 mod N we have found a nontrivial square
root of N , and can then factor N as discussed earlier. All the above can be
done in polynomial time, and so it only remains to determine the probability,
over choice of x, that y exists and is a nontrivial square root of N .

We first observe that the probability that the sequence constructed above
contains a nontrivial square root of 1 indeed depends only on x, and not
on k. To see this, fix x and let λ be the smallest positive integer for which
xλ = 1 mod N . Write λ = 2α · β with β odd, and assume there is a j ≥ 0 for
which [x2jβ mod N] is a nontrivial square root of 1. Without loss of generality,

assume x2jβ ↔ (−1, 1). Now take any k > 0 for which xk = 1 mod N ,
and write k = 2s · v as before. Since k must be a multiple of λ, we have
v = β · γ for some odd γ. But then x2jv = x2jβγ ↔ (−1, 1)γ = (−1, 1), and

so [x2jv mod N] is a nontrivial square root of N . A similar argument shows
that the implication goes in the other direction as well.

Let φ(N) = 2r · u with u odd. We know that xφ(N) = x2ru = 1 mod N
for all x ∈ Z∗N . Let i ∈ {0, . . . , r − 1} be the largest integer for which there

exists an x ∈ Z∗N such that x2iu 6= 1 mod N . (Since u is odd (−1)u = −1 6=
1 mod N , and so the definition is not vacuous.) Then for all x ∈ Z∗N , we have

x2i+1u = 1 mod N and so [x2iu mod N] is a square root of 1. Define

Bad
def
= {x | x2iu = ±1 mod N}.

By the argument above, we know that if our algorithm chooses x 6∈ Bad then
it finds a nontrivial square root of 1. We show that Bad is a strict subgroup
of Z∗N ; by Lemma 9.37, this implies |Bad| ≤ |Z∗N |/2. This means that x 6∈ Bad
(and the algorithm factors N) with probability at least 1/2 in each iteration.
Using sufficiently many iterations gives the result of the theorem.

We now prove that Bad is a strict subgroup of Z∗N . If x, x′ ∈ Bad then

(xx′)2iu = x2iu(x′)2iu = (±1) · (±1) = ±1 mod N,

and so xx′ ∈ Bad and Bad is a subgroup. To see that Bad is a strict sub-
group, let x ∈ Z∗N be such that x2iu 6= 1 mod N (such an x must exist by

our definition of i). If x2iu 6= −1 mod N , then x 6∈ Bad and we are done.
Otherwise, let x↔ (xp, xq) be the Chinese remaindering representation of x.

Since x2iu = −1 mod N , we know that

(xp, xq)
2iu = (x2iu

p , x2iu
q) = (−1,−1)↔ −1.

But then the element corresponding to (xp, 1) is not in Bad since

(xp, 1)2iu = (x2iu
p , 1) = (−1, 1) 6↔ ±1.

This completes the proof.

336 Introduction to Modern Cryptography

COROLLARY 9.51 There is a probabilistic polynomial-time algorithm
that, given as input an integer N and integers e, d with ed = 1 mod φ(N),
factors N except with probability negligible in ‖N‖.

PROOF Let k = ed− 1 > 0 and note that φ(N) | k. Since xk = 1 mod N
for all x ∈ Z∗N (cf. Corollary 9.21), we can trivially implement the subroutine
needed by the previous theorem by always outputting k.

Assuming factoring is hard, the above result rules out the possibility of
efficiently solving the RSA problem by first computing d from N and e. How-
ever, it does not rule out the possibility that there might be some completely
different way of attacking the RSA problem that does not involve (or im-
ply) factoring N . Thus, based on our current knowledge, the RSA assump-
tion is stronger than the factoring assumption—that is, it may be that the
RSA problem can be solved in polynomial time even though factoring cannot.
Nevertheless, when GenRSA is constructed based on GenModulus as in Algo-
rithm 9.47, the prevailing conjecture is that the RSA problem is hard relative
to GenRSA whenever factoring is hard relative to GenModulus.

9.3 Cryptographic Assumptions in Cyclic Groups

In this section we introduce a class of cryptographic hardness assumptions
in cyclic groups. We begin with a general discussion of cyclic groups, followed
by abstract definitions of the relevant assumptions. We then look at two
concrete and widely used examples of cyclic groups in which these assumptions
are believed to hold.

9.3.1 Cyclic Groups and Generators

Let G be a finite group of order m. For arbitrary g ∈ G, consider the set

〈g〉 def
=
{
g0, g1, . . .

}
.

(We warn the reader that if G is an infinite group, 〈g〉 is defined differently.)
By Theorem 9.14, we have gm = 1. Let i ≤ m be the smallest positive integer
for which gi = 1. Then the above sequence repeats after i terms (i.e., gi = g0,
gi+1 = g1, etc.), and so

〈g〉 =
{
g0, . . . , gi−1

}
.

We see that 〈g〉 contains at most i elements. In fact, it contains exactly i
elements since if gj = gk with 0 ≤ j < k < i then gk−j = 1 and 0 < k− j < i,
contradicting our choice of i as the smallest positive integer for which gi = 1.

Number Theory and Cryptographic Hardness Assumptions 337

It is not hard to verify that 〈g〉 is a subgroup of G for any g (see Exercise 9.3);
we call 〈g〉 the subgroup generated by g. If the order of the subgroup 〈g〉 is i,
then i is called the order of g; that is:

DEFINITION 9.52 Let G be a finite group and g ∈ G. The order of g is
the smallest positive integer i with gi = 1.

The following is a useful analogue of Corollary 9.15 (the proof is identical):

PROPOSITION 9.53 Let G be a finite group, and g ∈ G an element of
order i. Then for any integer x, we have gx = g[x mod i].

We can prove something stronger:

PROPOSITION 9.54 Let G be a finite group, and g ∈ G an element of
order i. Then gx = gy if and only if x = y mod i.

PROOF If x = y mod i then [x mod i] = [y mod i] and the previous propo-
sition says that

gx = g[x mod i] = g[y mod i] = gy.

For the more interesting direction, say gx = gy. Then 1 = gx−y = g[x−y mod i]

(using the previous proposition). Since [x− y mod i] < i, but i is the smallest
positive integer with gi = 1, we must have [x− y mod i] = 0.

The identity element of any group G is the only element of order 1, and
generates the group 〈1〉 = {1}. At the other extreme, if there is an element
g ∈ G that has order m (where m is the order of G), then 〈g〉 = G. In this
case, we call G a cyclic group and say that g is a generator of G. (A cyclic
group may have multiple generators, and so we cannot speak of the generator.)
If g is a generator of G then, by definition, every element h ∈ G is equal to
gx for some x ∈ {0, . . . ,m− 1}, a point we will return to in the next section.

Different elements of the same group G may have different orders. We can,
however, place some restrictions on what these possible orders might be.

PROPOSITION 9.55 Let G be a finite group of order m, and say g ∈ G
has order i. Then i |m.

PROOF By Theorem 9.14 we know that gm = 1 = g0. Proposition 9.54
implies that m = 0 mod i.

The next corollary illustrates the power of this result:

338 Introduction to Modern Cryptography

COROLLARY 9.56 If G is a group of prime order p, then G is cyclic.
Furthermore, all elements of G except the identity are generators of G.

PROOF By Proposition 9.55, the only possible orders of elements in G
are 1 and p. Only the identity has order 1, and so all other elements have
order p and generate G.

Groups of prime order form one class of cyclic groups. The additive group
ZN , for N > 1, gives another example of a cyclic group (the element 1 is
always a generator). The next theorem—a special case of Theorem A.21—
gives an important additional class of cyclic groups; a proof is outside the
scope of this book, but can be found in any standard abstract algebra text.

THEOREM 9.57 If p is prime then Z∗p is a cyclic group of order p− 1.

For p > 3 prime, Z∗p does not have prime order and so the above does not
follow from the preceding corollary.

Example 9.58
Consider the (additive) group Z15. As we have noted, Z15 is cyclic and the
element 1 is a generator since 15 · 1 = 0 mod 15 and i · 1 = i 6= 0 mod 15 for
any 0 < i < 15 (recall that in this group the identity is 0).

Z15 has other generators. For example, 〈2〉 = {0, 2, 4, . . . , 14, 1, 3, . . . , 13}
and so 2 is also a generator.

Not every element generates Z15. For example, the element 3 has order 5
since 5 · 3 = 0 mod 15, and so 3 does not generate Z15. The subgroup 〈3〉
consists of the 5 elements {0, 3, 6, 9, 12}, and this is indeed a subgroup under
addition modulo 15. The element 10 has order 3 since 3 · 10 = 0 mod 15,
and the subgroup 〈10〉 consists of the 3 elements {0, 5, 10}. The orders of the
subgroups (i.e., 5 and 3) divide |Z15| = 15 as required by Proposition 9.55. ♦

Example 9.59
Consider the (multiplicative) group Z∗15 of order (5− 1)(3− 1) = 8. We have
〈2〉 = {1, 2, 4, 8}, and so the order of 2 is 4. As required by Proposition 9.55,
4 divides 8. ♦

Example 9.60
Consider the (additive) group Zp of prime order p. We know this group is
cyclic, but Corollary 9.56 tells us more: namely, every element except 0 is
a generator. Indeed, for any h ∈ {1, . . . , p − 1} and integer i > 0 we have
ih = 0 mod p if and only if p | ih. But then Proposition 9.3 says that either
p |h or p | i. The former cannot occur (since h < p), and the smallest positive

Number Theory and Cryptographic Hardness Assumptions 339

integer for which the latter can occur is i = p. We have thus shown that
every nonzero element h has order p (and so generates Zp), in accordance
with Corollary 9.56. ♦

Example 9.61
Consider the (multiplicative) group Z∗7, which is cyclic by Theorem 9.57. We
have 〈2〉 = {1, 2, 4}, and so 2 is not a generator. However,

〈3〉 = {1, 3, 2, 6, 4, 5} = Z∗7,

and so 3 is a generator of Z∗7. ♦

The following example relies on the material of Section 9.1.5.

Example 9.62
Let G be a cyclic group of order n, and let g be a generator of G. Then
the mapping f : Zn → G given by f(a) = ga is an isomorphism between Zn
and G. Indeed, for a, a′ ∈ Zn we have

f(a+ a′) = g[a+a′ mod n] = ga+a′ = ga · ga
′

= f(a) · f(a′).

Bijectivity of f can be proved using the fact that n is the order of g. ♦

The previous example shows that all cyclic groups of the same order are
isomorphic and thus the same from an algebraic point of view. We stress that
this is not true in a computational sense, and in particular an isomorphism
f−1 : G→ Zn (which we know must exist) need not be efficiently computable.
This point should become clearer from the discussion in the sections below as
well as Chapter 10.

9.3.2 The Discrete-Logarithm/Diffie–Hellman Assumptions

We now introduce several computational problems that can be defined for
any class of cyclic groups. We will keep the discussion in this section abstract,
and consider specific examples of groups in which these problems are believed
to be hard in Sections 9.3.3 and 9.3.4.

We let G denote a generic, polynomial-time, group-generation algorithm.
This is an algorithm that, on input 1n, outputs a description of a cyclic
group G, its order q (with ‖q‖ = n), and a generator g ∈ G. The descrip-
tion of a cyclic group specifies how elements of the group are represented as
bit-strings; we assume that each group element is represented by a unique
bit-string. We require that there are efficient algorithms (namely, algorithms
running in time polynomial in n) for testing whether a given bit-string rep-
resents an element of G, as well as for computing the group operation. This
implies efficient algorithms for exponentiation in G (see Appendix B.2.3),

340 Introduction to Modern Cryptography

computing inverses (the inverse of g is gq−1) and for sampling a uniform el-
ement h ∈ G (simply choose uniform x ∈ Zq and set h := gx). As discussed
at the end of the previous section, although all cyclic groups of a given order
are isomorphic, the representation of the group determines the computational
complexity of mathematical operations in that group.

If G is a cyclic group of order q with generator g, then {g0, g1, . . ., gq−1}
is all of G. Equivalently, for every h ∈ G there is a unique x ∈ Zq such that
gx = h. When the underlying group G is understood from the context, we
call this x the discrete logarithm of h with respect to g and write x = logg h.
(Logarithms in this case are called “discrete” since they take on integer values,
as opposed to “standard” logarithms from calculus whose values range over
the real numbers.) Note that if gx

′
= h for some arbitrary integer x′, then

[x′ mod q] = logg h.
Discrete logarithms obey many of the same rules as “standard” logarithms.

For example, logg 1 = 0 (where 1 is the identity of G); for any integer r, we
have logg h

r = [r · logg h mod q]; and logg(h1h2) = [(logg h1 + logg h2) mod q].
The discrete-logarithm problem in a cyclic group G with generator g is to

compute logg h for a uniform element h ∈ G. Consider the following experi-
ment for a group-generation algorithm G, algorithm A, and parameter n:

The discrete-logarithm experiment DLogA,G(n):

1. Run G(1n) to obtain (G, q, g), where G is a cyclic group of
order q (with ‖q‖ = n), and g is a generator of G.

2. Choose a uniform h ∈ G.

3. A is given G, q, g, h, and outputs x ∈ Zq.
4. The output of the experiment is defined to be 1 if gx = h,

and 0 otherwise.

DEFINITION 9.63 We say the discrete-logarithm problem is hard rela-
tive to G if for all probabilistic polynomial-time algorithms A there exists a
negligible function negl such that Pr[DLogA,G(n) = 1] ≤ negl(n).

The discrete-logarithm assumption is simply the assumption that there ex-
ists a G for which the discrete-logarithm problem is hard. The following two
sections discuss some candidate group-generation algorithms G for which this
is believed to be the case.

The Diffie–Hellman problems. The so-called Diffie–Hellman problems are
related, but not known to be equivalent, to the problem of computing discrete
logarithms. There are two important variants: the computational Diffie–
Hellman (CDH) problem and the decisional Diffie–Hellman (DDH) problem.

Fix a cyclic group G and a generator g ∈ G. Given elements h1, h2 ∈ G,

define DHg(h1, h2)
def
= glogg h1·logg h2 . That is, if h1 = gx1 and h2 = gx2 then

DHg(h1, h2) = gx1·x2 = hx2
1 = hx1

2 .

Number Theory and Cryptographic Hardness Assumptions 341

The CDH problem is to compute DHg(h1, h2) for uniform h1 and h2. Hardness
of this problem can be formalized by the natural experiment; we leave the
details as an exercise.

If the discrete-logarithm problem relative to some G is easy, then the CDH
problem is, too: given h1 and h2, first compute x1 := logg h1 and then output
the answer hx1

2 . In contrast, it is not clear (in general) whether hardness of
the discrete-logarithm problem implies that the CDH problem is hard as well.

The DDH problem, roughly speaking, is to distinguish DHg(h1, h2) from
a uniform group element when h1, h2 are uniform. That is, given uniform
h1, h2 and a third group element h′, the problem is to decide whether h′ =
DHg(h1, h2) or whether h′ was chosen uniformly from G. Formally:

DEFINITION 9.64 We say the DDH problem is hard relative to G if for all
probabilistic polynomial-time algorithms A there is a negligible function negl
such that∣∣∣Pr[A(G, q, g, gx, gy, gz) = 1]− Pr[A(G, q, g, gx, gy, gxy) = 1]

∣∣∣ ≤ negl(n),

where in each case the probabilities are taken over the experiment in which
G(1n) outputs (G, q, g), and then uniform x, y, z ∈ Zq are chosen. (Note that
when z is uniform in Zq, then gz is uniformly distributed in G.)

We have already seen that if the discrete-logarithm problem is easy relative
to some G, then the CDH problem is too. Similarly, if the CDH problem is
easy relative to G then so is the DDH problem; you are asked to show this in
Exercise 9.19. The converse, however, does not appear to be true, and there
are examples of groups in which the discrete-logarithm and CDH problems are
believed to be hard even though the DDH problem is easy; see Exercise 15.16.

Using Prime-Order Groups

There are various (classes of) cyclic groups in which the discrete-logarithm
and Diffie–Hellman problems are believed to be hard. There is a preference,
however, for cyclic groups of prime order, for reasons we now explain.

One reason for preferring groups of prime order is because, in a certain
sense, the discrete-logarithm problem is hardest in such groups. This is a
consequence of the Pohlig–Hellman algorithm, described in Chapter 10, which
shows that the discrete-logarithm problem in a group of order q becomes easier
if q has (small) prime factors. This does not necessarily mean that the discrete-
logarithm problem is easy in groups of nonprime order; it merely means that
the problem becomes easier.

Related to the above is the fact that the DDH problem is easy if the group
order q has small prime factors. We refer to Exercise 15.16 for one example
of this phenomenon.

342 Introduction to Modern Cryptography

A second motivation for using prime-order groups is because finding a gen-
erator in such groups is trivial. This follows from Corollary 9.56, which says
that every element of a prime-order group (except the identity) is a generator.
In contrast, efficiently finding a generator of an arbitrary cyclic group requires
the factorization of the group order to be known (see Appendix B.3).

Proofs of security for some cryptographic constructions require computing
multiplicative inverses of certain exponents. When the group order is prime,
any nonzero exponent will be invertible, making this computation possible.
In particular, we have the following useful result:

LEMMA 9.65 Fix a group G of prime order q, and elements g, h ∈ G
with g 6= 1. Given distinct pairs (x, y), (x′, y′) ∈ Zq × Zq with gxhy = gx

′
hy
′
,

it is possible to efficiently compute logg h.

PROOF Note that g is a generator of G. Simple algebra gives

gx−x
′

= hy
′−y. (9.1)

Note that y′ − y 6= 0 mod q; otherwise, we would have x− x′ = 0 mod q and
then the pairs (x, y) and (x′, y′) would not be distinct. Since q is prime, the

inverse ∆
def
= [(y′ − y)−1 mod q] exists. Raising each side of Equation (9.1) to

this power gives:

g(x−x′)·∆ =
(
hy
′−y
)∆

= h1 = h.

So logg h = [(x− x′) · (y′ − y)−1 mod q], which is easy to compute.

A final reason for working with prime-order groups is relevant in situations
when the decisional Diffie–Hellman problem should be hard. Fixing a group
G with generator g, the DDH problem boils down to distinguishing between
tuples of the form (h1, h2,DHg(h1, h2)) for uniform h1, h2, and tuples of the
form (h1, h2, y), for uniform h1, h2, y. A necessary condition for the DDH
problem to be hard is that DHg(h1, h2) by itself (i.e., even without h1, h2)
should be indistinguishable from a uniform group element. One can show
that DHg(h1, h2) is “close” to uniform (in a sense we do not define here) when
the group order q is prime, something that is not necessarily true otherwise.

9.3.3 Working in (Subgroups of) Z∗p
Groups of the form Z∗p, for p prime, give one class of cyclic groups in which

the discrete-logarithm problem is believed to be hard. Concretely, let G be an
algorithm that, on input 1n, chooses a uniform n-bit prime p, and outputs p
and the group order q = p− 1 along with a generator g of Z∗p. (Section 9.2.1
discusses efficient algorithms for choosing a random prime, and Appendix B.3

Number Theory and Cryptographic Hardness Assumptions 343

shows how to efficiently find a generator of Z∗p given the factorization of p− 1.)
The representation of Z∗p here is the trivial one where elements are represented
as integers between 1 and p− 1. It is conjectured that the discrete-logarithm
problem is hard relative to G of this sort.

The cyclic group Z∗p (for p > 3 prime), however, does not have prime order.
(The preference for groups of prime order was discussed in the previous sec-
tion.) More problematic, the decisional Diffie–Hellman problem is, in general,
not hard in such groups (see Exercise 15.16), and they are therefore unaccept-
able for the cryptographic applications based on the DDH assumption that
we will explore in later chapters.

These issues can be addressed by using a prime-order subgroup of Z∗p. Let
p = rq + 1 where both p and q are prime; r is called the cofactor. We prove
that Z∗p has a subgroup G of order q given by the set of rth residues modulo p,
i.e., the set of elements {[hr mod p] | h ∈ Z∗p} that are equal to the rth power
of some h ∈ Z∗p.

THEOREM 9.66 Let p = rq + 1 with p, q prime. Then

G def
=
{

[hr mod p] | h ∈ Z∗p
}

is a subgroup of Z∗p of order q.

PROOF The proof that G is a subgroup is straightforward and is omitted.
We prove that G has order q by showing that the function fr : Z∗p → G
defined by fr(g) = [gr mod p] is an r-to-1 function. (Since |Z∗p| = p − 1, this
shows that |G| = (p − 1)/r = q.) To see this, let g be a generator of Z∗p
so that g0, . . . , gp−2 are all the elements of Z∗p. By Proposition 9.54 we have(
gi
)r

=
(
gj
)r

if and only if ir = jr mod (p−1) or, equivalently, p−1 | (i−j)r.
Since p−1 = rq, this is equivalent to q | (i−j). For any fixed j ∈ {0, . . . , p−2},
this means that the set of values i ∈ {0, . . . , p− 2} for which

(
gi
)r

=
(
gj
)r

is
exactly the set of r distinct values

{j, j + q, j + 2q, . . . , j + (r − 1)q} ,

all reduced modulo p − 1. (Note that j + rq = j mod (p − 1).) This proves
that fr is an r-to-1 function.

Besides showing existence of an appropriate subgroup, the proof of the
theorem also implies that it is easy to generate a uniform element of G and to
test whether a given element of Z∗p lies in G. Specifically, choosing a uniform
element of G can be done by choosing a uniform h ∈ Z∗p and computing
[hr mod p]. Determining whether a given h ∈ Z∗p is also in the subgroup G
can be done by checking whether hq

?
= 1 mod p. To see that this works, let

344 Introduction to Modern Cryptography

h = gi for g a generator of Z∗p and i ∈ {0, . . . , p− 2}. Then

hq = 1 mod p ⇐⇒ giq = 1 mod p

⇐⇒ iq = 0 mod (p− 1)⇐⇒ rq | iq ⇐⇒ r | i,

using Proposition 9.54. So h = gi = gcr = (gc)r for some c, and h ∈ G.
Algorithm 9.67 encapsulates the above discussion. In the algorithm, we let

n denote the length of q (the order of the group), and let ` denote the length
of p (the modulus being used). The relationship between these parameters is
discussed below.

ALGORITHM 9.67
A group-generation algorithm G

Input: Security parameter 1n, parameter ` = `(n)
Output: Cyclic group G, its (prime) order q, and a generator g

choose `-bit prime p and n-bit prime q such that q | (p− 1)
// we omit the details of how this is done

until g 6= 1 do:
choose uniform h ∈ Z∗p
set g := [h(p−1)/q mod p]

return p, q, g // G is the order-q subgroup of Z∗p generated by g

Choosing `. Let n = ‖q‖ and ` = ‖p‖. Two types of algorithms are
known for computing discrete logarithms in order-q subgroups of Z∗p (see Sec-

tion 10.2): those that run in time O(
√
q) = O(2n/2) and those that run in

time 2O((log p)1/3·(log log p)2/3) = 2O(`1/3·(log `)2/3). Fixing some desired security
parameter n, the value of ` should be chosen so as to balance these times. (If
` is any smaller, security is reduced; if ` is any larger, operations in G will be
less efficient without any gain in security.) See also Section 10.4.

In practice, standardized values (e.g., recommended by NIST) for p, q, and a
generator g are used, and there is no need to generate parameters of one’s own.

Example 9.68
Consider the group Z∗11 of order 10. Let us try to find a generator of this
group. Consider trying 2:

Powers of 2: 20 21 22 23 24 25 26 27 28 29

Values: 1 2 4 8 5 10 9 7 3 6

(All values above are computed modulo 11.) We got lucky the first time—2
is a generator! Let’s try 3:

Powers of 3: 30 31 32 33 34 35 36 37 38 39

Values: 1 3 9 5 4 1 3 9 5 4

Number Theory and Cryptographic Hardness Assumptions 345

We see that 3 is not a generator of the entire group. Rather, it generates a
subgroup G = {1, 3, 4, 5, 9} of order 5. Now, let’s see what happens with 10:

Powers of 10: 100 101 102 103 104 105 106 107 108 109

Values: 1 10 1 10 1 10 1 10 1 10

In this case we generate a subgroup of order 2.
For cryptographic purposes we want to work in a prime-order group. Since

11 = 2 · 5 + 1 we can apply Theorem 9.66 with q = 5 and r = 2, or with q = 2
and r = 5. In the first case, the theorem tells us that the squares of all the
elements of Z∗11 should give a subgroup of order 5. This can be easily verified:

Element: 1 2 3 4 5 6 7 8 9 10
Square: 1 4 9 5 3 3 5 9 4 1

We have seen above that 3 is a generator of this subgroup. (In fact, since
the subgroup has prime order, every element of the subgroup besides 1 is a
generator of the subgroup.) Taking q = 2 and r = 5, Theorem 9.66 tells us
that taking 5th powers will give a subgroup of order 2. One can check that
this gives the order-2 subgroup generated by 10. ♦

Subgroups of finite fields. The discrete-logarithm problem is also believed
to be hard in the multiplicative group of a finite field of large characteristic
when the polynomial representation is used. (Appendix A.5 provides a brief
background on finite fields.) Recall that for any prime p and integer k ≥ 1
there is a (unique) field Fpk of order pk; the multiplicative group F∗pk of that

field is a cyclic group of order pk − 1 (cf. Theorem A.21). If q is a large prime
factor of pk − 1, then Theorem 9.66 shows that F∗pk has a cyclic subgroup of

order q. (The only property of Z∗p we used in the proof of that theorem was
that Z∗p is cyclic.) This offers another choice of prime-order groups in which
the discrete-logarithm and Diffie–Hellman problems are believed to be hard.
Our treatment of Z∗p in this section corresponds to the special case k = 1.
(Appropriate choice of parameters for cryptographic applications when k > 1
is outside the scope of this book.)

9.3.4 Elliptic Curves

The groups we have concentrated on thus far have all been based directly
on modular arithmetic. Another class of groups important for cryptography
is given by groups consisting of points on elliptic curves. Such groups are es-
pecially interesting from a cryptographic perspective since, in contrast to Z∗p
or the multiplicative group of a finite field, there are currently no known
sub-exponential time algorithms for solving the discrete-logarithm problem in
appropriately chosen elliptic-curve groups. (See Section 10.4 for further dis-
cussion.) For cryptosystems based on the discrete-logarithm or Diffie–Hellman

346 Introduction to Modern Cryptography

assumptions, this means that implementations based on elliptic-curve groups
can be much more efficient—in terms of both computation and, especially,
communication—than implementations based on prime-order subgroups of Z∗p
at any given level of security. In this section we provide a brief introduction
to elliptic-curve cryptography. A deeper understanding of the issues discussed
here requires more sophisticated mathematics than we are willing to assume
on the part of the reader. Those interested in further exploring this topic are
advised to consult the references at the end of this chapter.

Throughout this section, let p ≥ 5 be a prime.2 For our purposes, an elliptic
curve is defined by a cubic equation (modulo p) in two variables x and y; the
points on the curve are the solutions to the equation. For example, consider
an equation E in the variables x and y of the form

y2 = x3 +Ax+B mod p, (9.2)

where A,B ∈ Zp satisfy 4A3 + 27B2 6= 0 mod p. (This condition ensures that
the equation x3 +Ax+B = 0 mod p has no repeated roots.) Equation (9.2) is
called the Weierstrass representation of an elliptic curve, and any elliptic curve
can be written in this form by applying an invertible affine transformation to
the variables x and y. Let E(Zp) denote the set of pairs (x, y) ∈ Zp × Zp
satisfying the above equation along with a special value O whose purpose we
will discuss shortly; that is,

E(Zp)
def
=
{

(x, y) | x, y ∈ Zp and y2 = x3 +Ax+B mod p
}
∪ {O}.

The elements E(Zp) are called the points on the elliptic curve E defined by
Equation (9.2), and O is called the point at infinity.

Example 9.69
An element y ∈ Z∗p is a quadratic residue modulo p if there is an x ∈ Z∗p such
that x2 = y mod p ; in that case, we say x is a square root of y. If y is not a
quadratic residue then we say it is a quadratic non-residue. For p > 2 prime,
exactly half the elements in Z∗p are quadratic residues, and every quadratic
residue has exactly two square roots. (See Section 15.4.1.)

Let f(x)
def
= x3 + 3x + 3 and consider the curve E : y2 = f(x) mod 7.

Each value of x for which f(x) is a quadratic residue modulo 7 yields two
points on the curve; values x where f(x) is not a quadratic residue have no
corresponding point on the curve; values of x for which f(x) = 0 mod 7 give
one point on the curve. This allows us to determine the points on the curve:

� f(0) = 3 mod 7, a quadratic non-residue modulo 7.

2The theory can be adapted to deal with p ∈ {2, 3} but this introduces additional compli-
cations. Elliptic curves can, in fact, be defined over arbitrary fields (cf. Section A.5), and
our discussion largely carries over to fields of characteristic not equal to 2 or 3.

Number Theory and Cryptographic Hardness Assumptions 347

� f(1) = 0 mod 7, so we obtain the point (1, 0) ∈ E(Z7).

� f(2) = 3 mod 7, a quadratic non-residue modulo 7.

� f(3) = 4 mod 7, a quadratic residue modulo 7 with square roots 2 and 5.
This yields the points (3, 2), (3, 5) ∈ E(Z7).

� f(4) = 2 mod 7, a quadratic residue modulo 7 with square roots 3 and 4.
This yields the points (4, 3), (4, 4) ∈ E(Z7).

� f(5) = 3 mod 7, a quadratic non-residue modulo 7.

� f(6) = 6 mod 7, a quadratic non-residue modulo 7.

Including the point at infinity O, there are 6 points in E(Z7). ♦

A useful way to think about E(Zp) is to look at the graph of Equation (9.2)
over the reals (i.e., the equation y2 = x3+Ax+B without reduction modulo p)
as in Figure 9.2. This figure does not correspond exactly to E(Zp) because,
for example, E(Zp) has a finite number of points (Zp is, after all, a finite
set) while there are an infinite number of solutions to the same equation if
we allow x and y to range over all real numbers. Nevertheless, the picture
provides useful intuition. In such a figure, one can think of the “point at
infinity” O as sitting at the top of the y-axis and lying on every vertical line.

It can be shown that every line intersecting E(Zp) at two points must also
intersect it at a third point, where (1) a point P is counted twice if the line
is tangent to the curve at P , and (2) the point at infinity is also counted
when the line is vertical. This fact is used to define a binary operation, called
“addition” and denoted by +, on points of E(Zp) in the following way:

� The point O is defined to be an (additive) identity; that is, for all
P ∈ E(Zp) we define P +O = O + P = P .

� For two points P1, P2 6= O on E, we evaluate their sum P1 + P2 by
drawing the line through P1, P2 (if P1 = P2 then draw the line tangent
to the curve at P1) and finding the third point of intersection P3 of this
line with E(Zp); the third point of intersection may be P3 = O if the

line is vertical. If P3 = (x, y) 6= O then we define P1 + P2
def
= (x,−y).

(Graphically, this corresponds to reflecting P3 in the x-axis.) If P3 = O
then P1 + P2

def
= O.

If P = (x, y) 6= O is a point of E(Zp), then −P def
= (x,−y) (which is

clearly also a point of E(Zp)) is the unique inverse of P . Indeed, the line
through (x, y) and (x,−y) is vertical, and so the addition rule implies that
P + (−P) = O. (If y = 0 then P = (x, y) = (x,−y) = −P but then the
tangent line at P will be vertical and so P + (−P) = O here as well.) Of
course, −O = O.

348 Introduction to Modern Cryptography

P
1

P
2

P
3

-P
3 = P

1 + P
2

y
2
 = x

3
 - x + 1

FIGURE 9.2: An elliptic curve over the reals.

It is straightforward, but tedious, to work out the addition law concretely
for an elliptic curve in Weierstrass form. Let P1 = (x1, y1) and P2 = (x2, y2)
be two points in E(Zp), with P1, P2 6= O and E as in Equation (9.2). To keep
matters simple, suppose x1 6= x2 (dealing with the case x1 = x2 is even more
tedious). The slope of the line through these points is

s
def
=

[
y2 − y1

x2 − x1
mod p

]
;

our assumption that x1 6= x2 means that the inverse of (x2 − x1) modulo p
exists. The line passing through P1 and P2 has the equation

y = s · (x− x1) + y1 mod p . (9.3)

To find the third point of intersection of this line with E, substitute the above
into the equation for E to obtain(

s · (x− x1) + y1

)2

= x3 +Ax+B mod p.

The values of x that satisfy this equation are x1, x2, and

x3
def
= [s2 − x1 − x2 mod p].

The first two solutions correspond to the original points P1 and P2, while
the third is the x-coordinate of the third point of intersection P3. Plugging
x3 into Equation (9.3) we find that the y-coordinate corresponding to x3 is
y3 = [s · (x3 − x1) + y1 mod p]. To obtain the desired answer P1 +P2, we flip
the sign of the y-coordinate to obtain:

(x1, y1) + (x2, y2) =
(
[s2 − x1 − x2 mod p], [s · (x1 − x3)− y1 mod p]

)
.

Number Theory and Cryptographic Hardness Assumptions 349

We summarize and extend this in the following proposition.

PROPOSITION 9.70 Let p ≥ 5 be prime and let E be the elliptic curve
given by y2 = x3+Ax+B mod p where 4A3+27B2 6= 0 mod p. Let P1, P2 6= O
be points on E, with P1 = (x1, y1) and P2 = (x2, y2).

1. If x1 6= x2, then P1 + P2 = (x3, y3) with

x3 = [s2 − x1 − x2 mod p] and y3 = [s · (x1 − x3)− y1 mod p],

where s =
[
y2−y1
x2−x1

mod p
]
.

2. If x1 = x2 but y1 6= y2 then P1 = −P2 and so P1 + P2 = O.

3. If P1 = P2 and y1 6= 0 then P1 + P2 = 2P1 = (x3, y3) with

x3 = [s2 − x1 − x2 mod p] and y3 = [s · (x1 − x3)− y1 mod p],

where s =
[

3x2
1+A
2y1

mod p
]
.

4. If P1 = P2 and y1 = 0 then P1 + P2 = 2P1 = O.

Somewhat amazingly, the set of points E(Zp) under the addition rule de-
fined above forms an abelian group, called the elliptic-curve group of E(Zp).
Commutativity follows from the way addition is defined, O acts as the iden-
tity, and we have already seen that each point in E(Zp) has an inverse in
E(Zp). The difficult property to verify is associativity, which the disbelieving
reader can check through tedious calculation. (A more illuminating proof that
does not involve explicit calculation relies on algebraic geometry.)

Example 9.71
Consider the curve from Example 9.69. We show associativity for three spe-
cific points. Let P1 = (1, 0), P2 = P3 = (4, 3). When computing P1 + P2 we
get s = [(3− 0) · (4− 1)−1 mod 7] = 1 and [12 − 1− 4 mod 7] = 3. Thus,

Q
def
= P1 + P2 = (3, [1 · (1− 3)− 0 mod 7]) = (3, 5);

note that this is indeed a point on E(Z7). If we then compute Q+ P3 we get
s = [(3− 5) · (4− 3)−1 mod 7] = 5 and [52 − 3− 4 mod 7] = 4. Thus,

(P1 + P2) + P3 = Q+ P3 = (4, [5 · (3− 4)− 5 mod 7]) = (4, 4).

If we compute P2 +P3 = 2P2 we obtain s = [(3 ·42 +3) · (2 ·3)−1 mod 7] = 5
and [52 − 2 · 4 mod 7] = 3. Thus,

Q′
def
= P2 + P3 = (3, [5 · (4− 3)− 3 mod 7]) = (3, 2).

350 Introduction to Modern Cryptography

If we then compute the value P1 + Q′ we find s = [2 · (3 − 1)−1 mod 7] = 1
and [12 − 1− 3 mod 7] = 4. So

P1 + (P2 + P3) = P1 +Q′ = (4, [1 · (1− 4)− 0 mod 7]) = (4, 4),

and P1 + (P2 + P3) = (P1 + P2) + P3. ♦

Recall that when a group is written additively, “exponentiation” corre-
sponds to repeated addition. Thus, if we fix some point P in an elliptic-curve
group, the discrete-logarithm problem becomes (informally) the problem of
computing the integer x from xP , while the decisional Diffie–Hellman prob-
lem becomes (informally) the problem of distinguishing tuples of the form
(aP, bP, abP) from those of the form (aP, bP, cP). These problems are be-
lieved to be hard in elliptic-curve groups (or subgroups thereof) of large prime
order, subject to a few technical conditions we will mention below.

Montgomery representation. The Weierstrass representation is not the
only way to define an elliptic curve, and other representations are often used
for reasons of efficiency and/or implementation-level security (e.g., better re-
sistance to side-channel attacks). The Montgomery representation involves
equations of the form

By2 = x3 +Ax2 + x mod p,

where B 6= 0 mod p and A 6= ±2 mod p. Once again, given an equation E of
the above form we let E(Zp) denote the set of points (with coordinates in Zp)
satisfying the equation plus the point at infinity O; it is possible to define
addition of these points in a way analogous to before. (Note that the addition
law will not take the same form as in Proposition 9.70. Instead, addition is
defined geometrically as before, and then the corresponding equations must
be derived.) In contrast to the Weierstrass representation, not every curve
can be expressed in Montgomery representation; in particular, the order of
any elliptic-curve group written in Montgomery form is a multiple of 4.

(Twisted) Edwards representation. The twisted Edwards representation
of an elliptic curve involves an equation E of the form

ax2 + y2 = 1 + dx2y2 mod p,

with a, d 6= 0 mod p and a 6= d mod p; the special case where a = 1 is called
the Edwards representation. The twisted Edwards representation can express
the same set of elliptic curves as the Montgomery representation.

E(Zp) again denotes the elliptic-curve group containing the points satisfying
equation E; interestingly, here there is no need for a “special” point at infinity
since one can show that the point (0, 1) on the curve is the identity. A nice
feature of the twisted Edwards representation is that when a is a quadratic

Number Theory and Cryptographic Hardness Assumptions 351

residue modulo p, but d is a quadratic non-residue, the addition law is simple:
the sum of P1 = (x1, y1) and P2 = (x2, y2) is

(x3, y3) =

(
x1y2 + x2y1

1 + dx1x2y1y2
,
y1y2 − ax1x2

1− dx1x2y1y2

)
.

Here addition is computed using a single equation, rather than having to
consider various subcases as in Proposition 9.70. This can greatly simplify
the process of writing code for elliptic-curve operations.

Choosing an elliptic-curve group. For cryptographic purposes, we need
an elliptic-curve group of large order. Thus, the first question we must address
is: how large are elliptic-curve groups? Consider the Weierstrass representa-
tion. (Recall that any elliptic curve can be expressed in that way.) As noted
in Example 9.69, the equation y2 = f(x) mod p has two solutions whenever
f(x) is a quadratic residue, and one solution when f(x) = 0. Since half the
elements in Z∗p are quadratic residues, we thus heuristically expect to find
2 · (p − 1)/2 + 1 + 1 = p + 1 points (including the point at infinity) on the
curve. The Hasse bound says that this heuristic estimate is accurate, in the
sense that every elliptic-curve group has “almost” this many points.

THEOREM 9.72 (Hasse bound) Let p be prime, and let E be an
elliptic curve over Zp. Then p+ 1− 2

√
p ≤ |E(Zp)| ≤ p+ 1 + 2

√
p.

In other words, we have |E(Zp)| = p + 1 − t for |t| ≤ 2
√
p. The value

t = p + 1 − |E(Zp)| is called the trace of the elliptic curve E. Efficient
algorithms for computing the order (or, equivalently, the trace) of a given
elliptic-curve group E(Zp) are known, but are beyond the scope of this book.

The Hasse bound implies that it is always easy to find a point on a given
elliptic curve y2 = f(x) mod p : simply choose uniform x ∈ Zp, check whether
f(x) is 0 or a quadratic residue, and—if so—let y be a square root of f(x).
(Algorithms for deciding quadratic residuosity and computing square roots
modulo a prime are discussed in Chapter 15.) Since points on the elliptic
curve are plentiful, we will not have to try very many values of x before
finding a point.

For cryptographic purposes, we want to work in an elliptic-curve (sub)group
of prime order. If |E(Zp)| is prime, we can simply work in the group E(Zp).
Otherwise, if |E(Zp)| has a large prime factor then we can work in an appro-
priate subgroup of E(Zp). Concretely, say |E(Zp)| = rq with q prime and
r < q (so, in particular, gcd(r, q) = 1); r is called the cofactor. Then it is
possible to show that

G def
= {rP | P ∈ E(Zp) } ⊂ E(Zp)

is a subgroup of E(Zp) of order q. (Note the parallel with Theorem 9.66,
although here the larger group E(Zp) may not be cyclic.)

352 Introduction to Modern Cryptography

Finally, we also want an elliptic-curve group in which the discrete-logarithm
problem is as hard as possible, namely, for which the best-known algorithm for
computing discrete logarithms in that group is an exponential-time “generic”
algorithm. (See Section 10.2 for further discussion.) Several classes of ellip-
tic curves are cryptographically weak and should be avoided. These include
curves over Zp whose order is equal to p (as discrete logarithms can be com-
puted in polynomial time in that case), as well as curves whose order divides
pk − 1 for “small” k (since in that case the discrete-logarithm problem in
E(Zp) can be reduced to a discrete-logarithm problem in the field Fpk , which
can in turn be solved by non-generic algorithms in sub-exponential time).

In practice, standardized curves recommended by NIST or other interna-
tional standards organizations are used (see below); generating a curve of
one’s own for cryptographic purposes is not recommended.

Practical Considerations

We conclude this section with a brief discussion of some efficiency optimiza-
tions when using elliptic curves, and other practical aspects.

Point compression. A useful observation is that the number of bits needed
to represent a point on an elliptic curve can be reduced almost by half. We
illustrate the idea for curves using the Weierstrass representation. For any
x ∈ Zp there are at most two points on the curve with x as their x-coordinate:
namely, (x,±y) for some y. (It is possible that y = 0 in which case these are
the same point.) Thus, we can specify any point P = (x, y) on the curve
by its x-coordinate and a bit b that distinguishes between the (at most) two
possibilities for the value of its y-coordinate. One convenient way to do this
is to set b = 0 if y is even and b = 1 if y is odd. Given x and b we can recover
P by computing the two square roots y1, y2 of the equation y2 = f(x) mod p ;
since y1 = −y2 mod p and p is odd, either y1 = y2 = 0 or exactly one of y1, y2

will be even and the other will be odd.

Projective coordinates. Representing elliptic-curve points as we have been
doing until now—in which a point P on an elliptic curve is described by a
pair of elements (x, y)—is called using affine coordinates. There are alternate
ways to represent points using projective coordinates that can offer efficiency
improvements. While these alternate representations can be motivated math-
ematically, we treat them simply as useful computational aids. We continue
to assume the Weierstrass representation for the elliptic curve.

Points in projective coordinates are represented using three elements of Zp.
Specifically, a point P = (x, y) 6= O in affine coordinates is represented us-
ing (standard) projective coordinates by any tuple (X,Y, Z) ∈ Z3

p for which
X/Z = x mod p and Y/Z = y mod p. (An interesting feature of using pro-
jective coordinates is that each point now has multiple representations.) The
point at infinity O is represented by any tuple (0, Y, 0) with Y 6= 0, and these
are the only points (X,Y, Z) with Z = 0. We can easily translate between

Number Theory and Cryptographic Hardness Assumptions 353

coordinate systems: (x, y) 6= O in affine coordinates becomes (x, y, 1) in pro-
jective coordinates, and (X,Y, Z) (with Z 6= 0) in projective coordinates is
mapped to ([X/Z mod p], [Y/Z mod p]) in affine coordinates.

The advantage of using projective coordinates is that we can add points
without computing inverses modulo p. (Adding points in affine coordinates
requires computing inverses; see Proposition 9.70. Although computing in-
verses modulo p can be done in polynomial time, it is more expensive than
addition or multiplication modulo p.) This is done by exploiting the fact that
points have multiple representations. To see this, let us work out the addition
law for two points P1 = (X1, Y1, Z1) and P2 = (X2, Y2, Z2) with P1, P2 6= O
(so Z1, Z2 6= 0) and P1 6= ±P2 (so X1/Z1 6= X2/Z2 mod p). (If either P1 or P2

is equal to O, addition is trivial. The case of P1 = ±P2 can be handled as well,
but we omit details here.) We can express P1 and P2 as (X1/Z1, Y1/Z1) and
(X2/Z2, Y2/Z2), respectively, in affine coordinates, so (using Proposition 9.70)

P3
def
= P1 + P2 =

(
s2 −X1/Z1 −X2/Z2,

s · (X1/Z1 − s2 +X1/Z1 +X2/Z2)− Y1/Z1, 1
)
,

where

s = (Y2/Z2 − Y1/Z1)(X2/Z2 −X1/Z1)−1 = (Y2Z1 − Y1Z2)(X2Z1 −X1Z2)−1

and all computations are done modulo p. Note we use projective coordinates
(X3, Y3, Z3) to represent P3, setting Z3 = 1 above. But using projective coor-
dinates means we are not limited to Z3 = 1. Multiplying each coordinate by
Z1Z2(X2Z1 −X1Z2)3 6= 0 mod p, we find that P3 can also be represented as

P3 =
(
vw, u(v2X1Z2 − w)− v3Y1Z2, Z1Z2v

3
)

(9.4)

where

u = Y2Z1 − Y1Z2, v = X2Z1 −X1Z2,

w = u2Z1Z2 − v3 − 2v2X1Z2. (9.5)

The key observation is that the computations in Equations (9.4) and (9.5)
can be carried out without having to perform any modular inversions.

Several other coordinate systems have also been developed, with the goal
of minimizing the cost of elliptic-curve operations. Further details are beyond
the scope of the book.

When points have multiple representations, some subtleties can arise. (Note
that, until now, we have explicitly assumed that group elements have unique
representations as bit-strings. That is no longer true when working in pro-
jective coordinates.) Specifically, a point expressed in projective coordinates
may reveal information about how that point was computed, which may in
turn leak some secret information. To address this, affine coordinates should

354 Introduction to Modern Cryptography

be used for transmitting and storing points, with projective coordinates used
only as an intermediate representation during the course of a computation.

Popular elliptic curves. As noted earlier, in practice people typically do
not generate their own elliptic curves, but instead use standardized curves
that have been carefully selected to ensure both good security and efficient
implementation. Some popular choices include:

� The P-256 curve (also known as secp256r1) is an elliptic curve over Zp
for the 256-bit prime p = 2256 − 2224 + 2192 + 296 − 1. The prime was
chosen to have this form because it allows for efficient implementation
of arithmetic modulo p. The curve has the equation y2 = x3 − 3x +
B mod p where B is a specified constant; A = −3 was chosen to enable
optimization of elliptic-curve operations. This curve has prime order
(so cannot be represented using Montgomery or twisted Edwards form)
that, by the Hasse bound, is of the same magnitude as p.

P-384 (secp384r1) and P-521 (secp521r1) are analogous curves defined
modulo 384- and 521-bit primes, respectively.

� Curve25519 is an elliptic curve that can be represented in Montgomery
form; it can also be represented in twisted Edwards form, where it is
known as Ed25519. This curve is defined over Zp for the 255-bit prime
p = 2255 − 19, where again the prime was chosen to have this form
because it allows for efficient implementation of arithmetic modulo p.
This elliptic-curve group does not have prime order, but cryptographic
operations can be carried out in a subgroup of large prime order.

� The secp256k1 curve is a prime-order curve defined over Zp where p =
2256−232−29−28−27−26−24−1. This is a Koblitz curve with equation
y2 = x3 + 7 mod p; a Koblitz curve has certain algebraic properties that
allow for efficient implementation. This curve is most notable for being
used by Bitcoin.

9.4 *Cryptographic Applications

We have spent a fair bit of time discussing number theory and group theory,
and introducing computational hardness assumptions that are widely believed
to hold. Applications of these assumptions will occupy us for the rest of the
book, but we provide some brief examples here.

Number Theory and Cryptographic Hardness Assumptions 355

9.4.1 One-Way Functions and Permutations

One-way functions are the minimal cryptographic primitive, and they are
both necessary and sufficient for private-key encryption and message authen-
tication codes. A more complete discussion of the role of one-way functions in
cryptography appears in Chapter 8; here we only provide a definition of one-
way functions and demonstrate that their existence follows from the number-
theoretic hardness assumptions we have seen in this chapter.

Informally, a function f is one-way if it is easy to compute but hard to in-
vert. The following experiment and definition, a restatement of Definition 8.1,
formalizes this.

The inverting experiment InvertA,f (n):

1. Choose uniform x ∈ {0, 1}n and compute y := f(x).

2. A is given 1n and y as input, and outputs x′.

3. The output of the experiment is 1 if and only if f(x′) = y.

DEFINITION 9.73 A function f : {0, 1}∗ → {0, 1}∗ is one-way if the
following two conditions hold:

1. (Easy to compute:) There is a polynomial-time algorithm that on
input x outputs f(x).

2. (Hard to invert:) For all ppt algorithms A there is a negligible func-
tion negl such that Pr[InvertA,f (n) = 1] ≤ negl(n).

We now show formally that the factoring assumption implies the existence
of a one-way function. Let Gen be a polynomial-time algorithm that, on
input 1n, outputs (N, p, q) where N = pq and p and q are n-bit primes except
with probability negligible in n. (We use Gen rather than GenModulus here
purely for notational convenience.) Since Gen runs in polynomial time, there
is a polynomial upper bound on the number of random bits the algorithm
uses. For simplicity, and in order to get the main ideas across, we assume Gen
always uses at most n random bits on input 1n. In Algorithm 9.74 we define
a function fGen that uses its input as the random bits for running Gen. Thus,
fGen is a deterministic function (as required).

If the factoring problem is hard relative to Gen then fGen is a one-way
function. Certainly fGen is easy to compute. As for the hardness of inverting
this function, note that the following distributions are identical:

1. The modulus N output by fGen(x), when x ∈ {0, 1}n is chosen uniformly.

2. The modulus N output by (the randomized algorithm) Gen(1n).

If moduli N generated according to the second distribution are hard to factor,
then the same holds for moduli N generated according to the first distribution.

356 Introduction to Modern Cryptography

ALGORITHM 9.74
Algorithm computing fGen

Input: String x of length n
Output: Integer N

compute (N, p, q) := Gen(1n; x)
// i.e., run Gen(1n) using x as the random tape
return N

Moreover, given any preimage x′ of N with respect to fGen (i.e., an x′ for which
fGen(x

′) = N ; note that we do not require x′ = x), it is easy to recover a factor
of N by running Gen(1n;x′) to obtain (N, p, q) and outputting the factors p
and q. Thus, finding a preimage of N with respect to fGen is as hard as
factoring N . One can easily turn this into a formal proof.

One-Way Permutations

We can also use number-theoretic assumptions to construct a family of one-
way permutations. We begin with a restatement of Definitions 8.2 and 8.3,
specialized to the case of permutations:

DEFINITION 9.75 A triple Π = (Gen,Samp, f) of probabilistic polynomial-
time algorithms is a family of permutations if the following hold:

1. The parameter-generation algorithm Gen, on input 1n, outputs parameters
I with |I| ≥ n. Each value of I defines a set DI that constitutes the
domain and range of a permutation (i.e., bijection) fI : DI → DI .

2. The sampling algorithm Samp, on input I, outputs a uniformly distributed
element of DI .

3. The deterministic evaluation algorithm f , on input I and x ∈ DI , outputs
an element y ∈ DI . We write this as y := fI(x).

Given a family of functions Π, consider the following experiment for any
algorithm A and parameter n:

The inverting experiment InvertA,Π(n):

1. Gen(1n) is run to obtain I, and then Samp(I) is run to choose
a uniform x ∈ DI . Finally, y := fI(x) is computed.

2. A is given I and y as input, and outputs x′.

3. The output of the experiment is 1 if and only if fI(x
′) = y.

DEFINITION 9.76 The family of permutations Π = (Gen, Samp, f) is
one-way if for all probabilistic polynomial-time algorithms A there exists a

Number Theory and Cryptographic Hardness Assumptions 357

CONSTRUCTION 9.77

Let GenRSA be as before. Define a family of permutations as follows:

� Gen: on input 1n, run GenRSA(1n) to obtain (N, e, d) and output
I = 〈N, e〉. Set DI = Z∗N .

� Samp: on input I = 〈N, e〉, choose a uniform element of Z∗N .

� f : on input I = 〈N, e〉 and x ∈ Z∗N , output [xe mod N].

A family of permutations based on the RSA problem.

negligible function negl such that

Pr[InvertA,Π(n) = 1] ≤ negl(n).

Given GenRSA as in Section 9.2.4, Construction 9.77 defines a family of
permutations. It is immediate that if the RSA problem is hard relative to
GenRSA then this family is one-way. It can similarly be shown that hardness
of the discrete-logarithm problem in Z∗p, with p prime, implies the existence
of a one-way family of permutations; see Section 8.1.2.

9.4.2 Collision-Resistant Hash Functions

Collision-resistant hash functions were introduced in Section 6.1. Although
we have discussed constructions of collision-resistant hash functions used in
practice in Section 7.3, we have not yet seen constructions that can be rig-
orously based on simpler assumptions. We show here a construction based
on the discrete-logarithm assumption in prime-order groups. (A construction
based on the RSA problem is described in Exercise 9.27.) Although these con-
structions are less efficient than the hash functions used in practice, they are
important since they illustrate the feasibility of achieving collision resistance
based on standard and well-studied number-theoretic assumptions.

Let G be a polynomial-time algorithm that, on input 1n, outputs a (descrip-
tion of a) cyclic group G, its order q (with ‖q‖ = n), and a generator g. Here
we also require that q is prime except possibly with negligible probability. We
define a fixed-length hash function (Gen, H) by choosing a uniform h ∈ G as
part of the key s, and defining Hs(x1, x2) = gx1hx2 ; see Construction 9.78.

Note that Gen and H can be computed in polynomial time. Before contin-
uing with an analysis of the construction, we make some technical remarks:

� For a given s = 〈G, q, g, h〉 with n = ‖q‖, the function Hs is described
as taking elements of Zq × Zq as input. However, Hs can be viewed
as taking bit-strings of length 2 · (n − 1) as input if we parse an input
x ∈ {0, 1}2(n−1) as two strings x1, x2, each of length n − 1, and then
view x1, x2 as elements of Zq in the natural way.

� The output of Hs is similarly specified as being an element of G, but
we can view this as a bit-string if we fix some representation of G. To

358 Introduction to Modern Cryptography

CONSTRUCTION 9.78

Let G be as described in the text. Define a fixed-length hash function
(Gen, H) as follows:

� Gen: on input 1n, run G(1n) to obtain (G, q, g) and then select a
uniform h ∈ G. Output s := 〈G, q, g, h〉 as the key.

� H: given a key s = 〈G, q, g, h〉 and input (x1, x2) ∈ Zq×Zq, output
Hs(x1, x2) := gx1hx2 ∈ G.

A fixed-length hash function.

satisfy the requirements of Definition 6.2 (which requires the output
length to be fixed as a function of n) we can pad the output as needed.

� Given the above, the construction only compresses its input when ele-
ments of G can be represented using fewer than 2n − 2 bits. A gener-
alization of Construction 9.78 can be used to obtain compression from
any G for which the discrete-logarithm problem is hard, regardless of the
number of bits required to represent group elements; see Exercise 9.28.

THEOREM 9.79 Say G outputs prime-order groups, and the discrete-
logarithm problem is hard relative to G. Then Construction 9.78 is a fixed-
length collision-resistant hash function (subject to the discussion regarding
compression, above).

PROOF Let Π = (Gen, H) be as in Construction 9.78, and let A be a
probabilistic polynomial-time algorithm with

ε(n)
def
= Pr[Hash-collA,Π(n) = 1]

(cf. Definition 6.2). We show how A can be used by an algorithm A′ to solve
the discrete-logarithm problem with success probability ε(n):

Algorithm A′:
The algorithm is given G, q, g, h as input.

1. Let s := 〈G, q, g, h〉. Run A(s) and obtain output x and x′.

2. If x 6= x′ and Hs(x) = Hs(x′) then parse x as (x1, x2)
and parse x′ as (x′1, x

′
2), where x1, x2, x

′
1, x
′
2 ∈ Zq. Use

Lemma 9.65 to compute logg h.

Clearly, A′ runs in polynomial time. Furthermore, the input s given toA when
run as a subroutine by A′ is distributed exactly as in experiment Hash-collA,Π
for the same value of the security parameter n. (The input to A′ is generated
by running G(1n) to obtain G, q, g and then choosing uniform h ∈ G. This
is exactly how s is generated by Gen(1n).) So, with probability exactly ε(n)

Number Theory and Cryptographic Hardness Assumptions 359

there is a collision; i.e., x 6= x′ and Hs(x) = Hs(x′). Lemma 9.65 implies
that whenever there is a collision, A′ returns the correct answer logg h.

In summary, A′ correctly solves the discrete-logarithm problem with prob-
ability exactly ε(n). Since, by assumption, the discrete-logarithm problem is
hard relative to G, we conclude that ε(n) is negligible.

References and Additional Reading

The book by Childs [51] has excellent coverage of the group theory discussed
in this chapter (and more), in greater depth but at a similar level of exposition.
Shoup [183] gives a more advanced, yet still accessible, treatment of much
of this material also, with special focus on algorithmic aspects. Relatively
gentle introductions to abstract algebra and group theory that go well beyond
what we have space for here are available in the books by Fraleigh [74] and
Herstein [97]; the interested reader will have no trouble finding more-advanced
algebra texts if they are so inclined.

The first efficient primality test was by Solovay and Strassen [190]. The
Miller–Rabin test is due to Miller [143] and Rabin [167]. A deterministic
primality test was discovered by Agrawal et al. [5]. See Dietzfelbinger [64] for
a comprehensive survey of this area.

The RSA problem was publicly introduced by Rivest, Shamir, and Adle-
man [171], although it was revealed in 1997 that Ellis, Cocks, and Williamson,
three members of the British intelligence agency GCHQ, had explored similar
ideas—without fully recognizing their importance—several years earlier, in a
classified setting.

The discrete-logarithm and Diffie–Hellman problems were first considered,
at least implicitly, by Diffie and Hellman [65] in the group Z∗p. Current practi-
cal guidance for that setting can be found in various standards [15, 150, 151].
Most treatments of elliptic curves require advanced mathematical background;
the book by Silverman and Tate [185] is perhaps an exception. As with many
books on the subject written for mathematicians, however, that book has little
coverage of elliptic curves over finite fields, which is the case most relevant to
cryptography. The text by Washington [202], although a bit more advanced,
deals heavily (but not exclusively) with the finite-field case. Implementa-
tion issues related to elliptic-curve cryptography are covered by Hankerson et
al. [91]. Recommended elliptic curves are given by NIST [50].

The collision-resistant hash function based on the discrete-logarithm prob-
lem is due to Chaum et al. [49], and an earlier construction based on the
hardness of factoring is given by Goldwasser et al. [88] (see also Exercise 9.27).

360 Introduction to Modern Cryptography

Exercises

9.1 Let G be an abelian group. Prove that there is a unique identity in G,
and that every element g ∈ G has a unique inverse.

9.2 Show that Proposition 9.36 does not necessarily hold when G is infinite.

Hint: Consider the set {1} ∪ {2, 4, 6, 8, . . .} ⊂ R under multiplication.

9.3 Let G be a finite group, and g ∈ G. Show that 〈g〉 is a subgroup of G.
Is the set {g0, g1, . . .} necessarily a subgroup of G when G is infinite?

9.4 This question concerns the Euler phi function.

(a) Let p be prime and e ≥ 1 an integer. Show that φ(pe) = pe−1(p−1).

(b) Let p, q be relatively prime. Show that φ(pq) = φ(p) · φ(q). (You
may use the Chinese remainder theorem.)

(c) Prove Theorem 9.19.

9.5 Compute the final two (decimal) digits of 31000 (by hand).

Hint: The answer is [31000 mod 100].

9.6 Compute [1014,800,000,002 mod 35] (by hand).

9.7 Compute [4651 mod 55] (by hand) using the Chinese remainder theorem.

9.8 Prove that if G,H are groups, then G×H is a group.

9.9 Let p,N be integers with p |N . Prove that for any integer X,

[[X mod N] mod p] = [X mod p].

Show that, in contrast, [[X mod p] mod N] need not equal [X mod N].

9.10 This question concerns the group Z24.

(a) List the elements of this group.

(b) Is this group cyclic?

(c) Is 18 a generator of this group? What about 5?

9.11 This question concerns the group Z∗21.

(a) How many elements are in this group? List the elements.

(b) What is φ(21)?

(c) Compute [11−1 mod 21].

(d) Compute
[
22403 mod 21

]
(by hand).

Number Theory and Cryptographic Hardness Assumptions 361

9.12 This question concerns the group Z∗23.

(a) What is the order of this group?

(b) Compute
[
346 mod 23

]
(by hand).

(c) Is this group cyclic? Is 2 a generator? What about 5?

9.13 This question concerns the group Z∗55.

(a) Compute φ(55).

(b) Is exponentiating to the 3rd power a permutation of Z∗55?

(c) Compute [21/3 mod 55] (i.e., the 3rd root of 2 modulo 55).

(d) Is exponentiating to the 5th power a permutation of Z∗55?

9.14 Corollary 9.21 shows that if N = pq for distinct primes p and q, and
ed = 1 mod φ(N), then for all x ∈ Z∗N we have (xe)

d
= x mod N . Show

that this holds for all x ∈ {0, . . . , N − 1}.
Hint: Use the Chinese remainder theorem.

9.15 Complete the details of the proof of the Chinese remainder theorem,
showing that Z∗N is isomorphic to Z∗p × Z∗q .

9.16 This exercise develops an efficient algorithm for testing whether an in-
teger is a perfect power.

(a) Show that if N = N̂e for some integers N̂ , e > 1 then e ≤ ‖N‖.
(b) Given N and e with 2 ≤ e ≤ ‖N‖ + 1, show how to determine in

poly(‖N‖) time whether there exists an integer N̂ with N̂e = N .

Hint: Use binary search.

(c) Given N , show how to test in poly(‖N‖) time whether N is a
perfect power.

9.17 Given N and a ∈ Z∗N , show how to test in polynomial time whether a
is a strong witness that N is composite.

9.18 Fix N, e with gcd(e, φ(N)) = 1, and assume there is an adversary A
running in time t for which

Pr [A ([xe mod N]) = x] = 0.01,

where the probability is taken over uniform choice of x ∈ Z∗N . Show
that it is possible to construct an adversary A′ for which

Pr [A′ ([xe mod N]) = x] = 0.99

for all x. The running time t′ of A′ should be polynomial in t and ‖N‖.

Hint: Use the fact that y1/e · r = (y · re)1/e mod N .

362 Introduction to Modern Cryptography

9.19 Formally define the CDH assumption. Prove that hardness of the CDH
problem relative to G implies hardness of the discrete-logarithm problem
relative to G, and that hardness of the DDH problem relative to G implies
hardness of the CDH problem relative to G.

9.20 This question concerns the cyclic group Z∗47, in which g = 5 is a gener-
ator. You may use a calculator.

(a) Let h1 = g4. What is the value of h1?

(b) Let h2 = g32. What is the value of h2?

(c) What is the value of DHg(h1, h2)?

9.21 Can the following problem be solved in polynomial time? Given a prime
p, an integer e ∈ Z∗p−1, and y := [ge mod p] (where g is a uniform value

in Z∗p), find g, i.e., compute y1/e mod p. If your answer is “yes,” give a
polynomial-time algorithm. If your answer is “no,” show a reduction to
one of the assumptions introduced in this chapter.

9.22 Determine the points on the elliptic curve E : y2 = x3 +2x+1 over Z11.
How many points are on this curve?

9.23 Prove the third statement in Proposition 9.70.

9.24 When using the twisted Edwards representation, show that the inverse
of a point (x, y) is the point (−x, y).

9.25 Consider the elliptic-curve group from Example 9.69. (See also Exam-
ple 9.71.) Compute (1, 0)+(4, 3)+(4, 3) in this group by first converting
to projective coordinates and then using Equations (9.4) and (9.5).

9.26 Fix N , an element y ∈ Z∗N , and e with gcd(e, φ(N)) = 1. Show that
given w ∈ Z∗N and an integer k with gcd(k, e) = 1 and we = yk mod N ,
it is possible to efficiently compute x such that xe = y mod N .

Hint: Apply Proposition 9.2 to k, e, and express y1 as a power of e.

9.27 Let GenRSA be as in Section 9.2.4. Prove that if the RSA problem is hard
relative to GenRSA then Construction 9.80 is a fixed-length collision-
resistant hash function.

CONSTRUCTION 9.80

Define (Gen, H) as follows:

� Gen: on input 1n, run GenRSA(1n) to obtain N, e, d, and select
y ← Z∗N . The key is s := 〈N, e, y〉.

� H: if s = 〈N, e, y〉, then Hs maps inputs in {0, 1}3n to outputs

in Z∗N . Let fs0 (x)
def
= [xe mod N] and fs1 (x)

def
= [y · xe mod N].

For a 3n-bit long string x = x1 · · ·x3n, define

Hs(x)
def
= fsx1

(
fsx2

(
· · ·
(

1
)
· · ·
))

.

Number Theory and Cryptographic Hardness Assumptions 363

9.28 Consider the following generalization of Construction 9.78:

CONSTRUCTION 9.81

Define a fixed-length hash function (Gen, H) as follows:

(a) Gen: on input 1n, run G(1n) to obtain (G, q, h1) and then select
h2, . . . , ht ← G. Output s := 〈G, q, (h1, . . . , ht)〉 as the key.

(b) H: given a key s = 〈G, q, (h1, . . . , ht)〉 and input (x1, . . . , xt)
with xi ∈ Zq, output Hs(x1, . . . , xt) :=

∏
i h

xi
i .

(a) Prove that if the discrete-logarithm problem is hard relative to G
and q is prime, then for any t = poly(n) this construction is a
fixed-length collision-resistant hash function.

(b) Discuss how this construction can be used to obtain compression
regardless of the number of bits needed to represent elements of G
(as long as it is polynomial in n).

http://taylorandfrancis.com

Chapter 10

*Algorithms for Factoring and
Computing Discrete Logarithms

In the last chapter, we introduced several number-theoretic problems—most
prominently, factoring the product of two large primes and computing dis-
crete logarithms in certain groups—that are widely believed to be hard. As
defined there, this means there are presumed to be no polynomial-time algo-
rithms for these problems. This asymptotic notion of hardness, however, tells
us little about how to set the security parameter—sometimes called the key
length, although the terms are not interchangeable—to achieve some desired,
concrete level of security in practice. A proper understanding of this issue is
extremely important for the real-world deployment of cryptosystems based on
these problems. Setting the security parameter too low means a cryptosystem
may be vulnerable to attacks more efficient than anticipated; being overly con-
servative and setting the security parameter too high will give good security,
but at the expense of efficiency for the honest users. The relative difficulty of
different number-theoretic problems can also play a role in determining which
problems to use as the basis for building cryptosystems in the first place.

The fundamental issue, of course, is that a brute-force search may not be
the best algorithm for solving a given problem; thus, using key length n does
not, in general, give security against attackers running for 2n time. This is in
contrast to the private-key setting where the best attacks on existing block
ciphers have roughly the complexity of brute-force search. As a consequence,
the key lengths used in the public-key setting tend to be significantly larger
than those used in the private-key setting.

To gain a better appreciation of this point, we explore in this chapter several
algorithms for factoring and computing discrete logarithms that do not run in
polynomial time, but nevertheless perform far better than brute-force search.
The goal is merely to give a taste of existing algorithms for these problems,
as well as to provide some basic guidance for setting parameters in practice.
Our focus is on the high-level ideas, and we consciously do not address many
important implementation-level details that would be critical to deal with if
these algorithms were to be used in practice. We also concentrate exclusively
on classical algorithms here, deferring a discussion about the effect of quantum
algorithms to Chapter 14.

The reader may also notice that we only describe algorithms for factoring
and computing discrete logarithms, and not algorithms for, say, solving the

365

366 Introduction to Modern Cryptography

RSA or decisional Diffie–Hellman problems. Our choice is justified by the
facts that the best known algorithms for solving RSA require factoring the
modulus, and (in the groups discussed in Sections 9.3.3 and 9.3.4) the best
known approaches for solving the decisional Diffie–Hellman problem require
computing discrete logarithms.

10.1 Algorithms for Factoring

Throughout this chapter, we assume that N = pq is a product of two
distinct primes with p < q. We will be most interested in the case when p
and q each has the same (known) length n, and so n = Θ(logN).

We will frequently use the Chinese remainder theorem along with the nota-
tion developed in Section 9.1.5. The Chinese remainder theorem states that

ZN ' Zp × Zq and Z∗N ' Z∗p × Z∗q ,

with isomorphism given by f(x)
def
= ([x mod p], [x mod q]). The fact that

f is an isomorphism means, in particular, that it gives a bijection between
elements x ∈ ZN and pairs (xp, xq) ∈ Zp × Zq. We write x ↔ (xp, xq) to
denote this bijection, with xp = [x mod p] and xq = [x mod q].

Recall from Section 9.2 that trial division—a trivial, brute-force factoring
method—finds a factor of a given number N in time O(N1/2 · polylog(N)).
(This is an exponential-time algorithm, since the size of the input is ‖N‖, the
length of the binary representation of N , and ‖N‖ = O(logN).1) We show
here three factoring algorithms with better performance:

� Pollard’s p−1 method is effective if p−1 has only “small” prime factors.

� Pollard’s rho method applies to arbitrary N . (As such, it is called a
general-purpose factoring algorithm.) Its running time for N of the
form discussed at the beginning of this section is O(N1/4 · polylog(N)).
Note this is still exponential in n, the length of N .

� The quadratic sieve algorithm is a general-purpose factoring algorithm
that runs in time sub-exponential in the length of N . We give a high-
level overview of how this algorithm works, but the details are somewhat
complex and beyond the scope of this book.

The fastest known general-purpose factoring algorithm is the general num-
ber field sieve. Heuristically, this algorithm factors its input N in expected

time 2O((logN)1/3·(log logN)2/3), which is sub-exponential in the length of N .

1Thus, a running time of NO(1) = 2O(‖N‖) is exponential, a running time of 2o(logN) =

2o(‖N‖) is sub-exponential, and a running time of (logN)O(1) = ‖N‖O(1) is polynomial.

Algorithms for Factoring and Computing Discrete Logarithms 367

10.1.1 Pollard’s p− 1 Algorithm

If N = pq and p−1 has only “small” prime factors, Pollard’s p−1 algorithm
can be used to efficiently factor N . The basic idea is simple. Let B be an
integer for which (p − 1) |B and (q − 1)6 |B; we defer to below the details of
how such a B is computed. Say B = γ · (p − 1) for some integer γ. Choose
a uniform x ∈ Z∗N and compute y := [xB − 1 mod N]. (Note that y can be
computed using the efficient exponentiation algorithm from Appendix B.2.3.)
Since 1↔ (1, 1), we have

y = [xB − 1 mod N] ↔ (xp, xq)
B − (1, 1)

= (xBp − 1 mod p, xBq − 1 mod q)

= ((xp−1
p)γ − 1 mod p, xBq − 1 mod q)

= (0, [xBq − 1 mod q]),

using Theorem 9.14 and the fact that the order of Z∗p is p−1. We show below

that, with high probability, xBq 6= 1 mod q. Assuming this is the case, we have
obtained an integer y ∈ Z∗N for which

y = 0 mod p but y 6= 0 mod q;

that is, p | y but q 6 | y. This, in turn, implies that gcd(y,N) = p. Thus, a
simple gcd computation (which can be done efficiently as described in Ap-
pendix B.1.2) yields a prime factor of N .

ALGORITHM 10.1
Pollard’s p− 1 algorithm for factoring

Input: Integer N
Output: A nontrivial factor of N

x← Z∗N
y := [xB − 1 mod N]

// B is as in the text
p := gcd(y,N)
if p 6∈ {1, N} return p

We now argue that the algorithm works with high probability. Because

(q − 1)6 |B, as long as xq
def
= [x mod q] is a generator of Z∗q we must have

xBq 6= 1 mod q. (This follows from Proposition 9.53.) It remains to analyze
the probability that xq is a generator. Here we rely on some results proved
in Appendix B.3.1. Since q is prime, Z∗q is a cyclic group of order q − 1 that
has exactly φ(q − 1) generators (cf. Theorem B.16). If x is chosen uniformly
from Z∗N , then xq is uniformly distributed in Z∗q . (This is a consequence
of the fact that the Chinese remainder theorem gives a bijection between

Z∗N and Z∗p × Z∗q .) Thus, the probability that xq is a generator is φ(q−1)
q−1 =

368 Introduction to Modern Cryptography

Ω(1/ log q) = Ω(1/n) (cf. Theorem B.15). Multiple values of x can be chosen
to boost the probability of success.

We are left with the problem of finding B such that (p−1) |B but (q−1)6 |B.

One possibility is to choose B =
∏k
i=1 p

bn/ log pic
i for some k, where pi denotes

the ith prime (i.e., p1 = 2, p2 = 3, p3 = 5, . . .) and n is the length of p. (Note

that p
bn/ log pic
i is the largest power of pi that can possibly divide p− 1.) If

p − 1 can be written as
∏k
i=1 p

ei
i with ei ≥ 0 (that is, if the largest prime

factor of p− 1 is less than pk), then it will hold that (p− 1) |B. In contrast,
if q − 1 has any prime factor larger than pk, then (q − 1)6 |B.

Choosing a larger value for k increases B and so increases the running time
of the algorithm (which performs a modular exponentiation to the power B).
A larger value of k also makes it more likely that (p− 1) |B, but at the same
time makes it less likely that (q − 1) 6 |B. It is, of course, possible to run the
algorithm repeatedly using multiple choices for k.

Pollard’s p − 1 algorithm is thwarted if both p − 1 and q − 1 have any
large prime factors. (More precisely, the algorithm still works but only for
B so large that the algorithm becomes impractical.) For this reason, when
generating a modulus N = pq for cryptographic applications, p and q are
sometimes chosen to be strong primes, namely, with (p− 1)/2 and (q − 1)/2
themselves prime. This ensures that both p− 1 and q − 1 have a large prime
factor, and so the resulting modulus will not be vulnerable to Algorithm 10.1.
Selecting p and q in this way is markedly less efficient than choosing p and
q as arbitrary primes. Moreover, if p and q are uniform n-bit primes, it is
unlikely that either p − 1 or q − 1 will have only small prime factors and so
unlikely that Algorithm 10.1 will apply. Finally, better factoring algorithms
are available anyway (as we will see below). For these reasons, the current
consensus is that the added computational cost of generating p and q as strong
primes does not yield any appreciable security gains.

10.1.2 Pollard’s Rho Algorithm

In contrast to Algorithm 10.1, which is only effective for certain moduli,
Pollard’s rho algorithm can be used to factor an arbitrary integer N = pq;
in that sense, it is a general-purpose factoring algorithm. Heuristically, the
algorithm factors N with constant probability in O

(
N1/4 · polylog(N)

)
time;

this is still exponential, but a vast improvement over trial division.
The core idea of the approach is to find distinct values x, x′ ∈ Z∗N that are

equivalent modulo p (i.e., for which x = x′ mod p); call such a pair good. Note
that for a good pair x, x′ it holds that gcd(x−x′, N) = p (since x 6= x′ mod N),
so computing the gcd gives a nontrivial factor of N .

How can we find a good pair? Say we choose values x(1), . . . , x(k) uni-
formly from Z∗N , where k = 2n/2 = O(

√
p). Viewing these in their Chinese-

remaindering representation as (x
(1)
p , x

(1)
q), . . . , (x

(k)
p , x

(k)
q), we have that each

x
(i)
p

def
= [x(i) mod p] is uniform in Z∗p. (This follows from bijectivity between

Algorithms for Factoring and Computing Discrete Logarithms 369

Z∗N and Z∗p×Z∗q .) Thus, using the birthday bound of Lemma A.15, we see that

with high probability there exist distinct i, j with x
(i)
p = x

(j)
p or, equivalently,

x(i) = x(j) mod p. Moreover, Lemma A.15 shows that x(i) 6= x(j) except
with negligible probability. Thus, with high probability we obtain a good pair
x(i), x(j) that can be used to find a nontrivial factor of N , as discussed earlier.

ALGORITHM 10.2
Pollard’s rho algorithm for factoring

Input: Integer N , a product of two n-bit primes
Output: A nontrivial factor of N

x← Z∗N , x′ := x
for i = 1 to 2n/2:
x := F (x)
x′ := F (F (x′))
p := gcd(x− x′, N)
if p 6∈ {1, N} return p and stop

We can generate k = O(
√
p) uniform elements of Z∗N in O(

√
p) = O(N1/4)

time. Testing all pairs of elements in order to identify a good pair, however,
would require

(
k
2

)
= O(k2) = O(p) = O

(
N1/2

)
time! (Note that since p is

unknown we cannot simply compute x
(1)
p , . . . , x

(k)
p explicitly and then sort the

x
(i)
p to find a good pair. Instead, for all distinct pairs i, j we must compute

gcd(x(i)−x(j), N) to see whether this gives a nontrivial factor of N .) Without
further optimizations, this will be no better than trial division.

Pollard’s idea was to use a technique we have seen in Section 6.4.2 in the
context of small-space birthday attacks. Specifically, we compute the sequence
x(1), x(2), . . . by letting each value be a function of the one before it, i.e., we
fix some function F : Z∗N → Z∗N , choose a uniform x(0) = x ∈ Z∗N , and then
set x(i) := F (x(i−1)) for i = 1, . . . , k. We require F to have the property that
if x = x′ mod p, then F (x) = F (x′) mod p ; this ensures that once equivalence
modulo p occurs, it persists. (A standard choice is F (x) = [x2+1 mod N], but
any polynomial modulo N will have this property.) If we heuristically model
F as a random function, then with high probability there is a good pair in
the first k elements of this sequence. Proceeding roughly as in Algorithm 6.9
from Section 6.4.2, we can detect a good pair (if there is one) using only O(k)
gcd computations; see Algorithm 10.2.

10.1.3 The Quadratic Sieve Algorithm

Pollard’s rho algorithm is better than trial division, but still runs in expo-
nential time. The quadratic sieve algorithm runs in sub-exponential time. It
was the fastest known factoring algorithm until the early 1990s and remains

370 Introduction to Modern Cryptography

the factoring algorithm of choice for numbers up to about 300 bits long. We
describe the general principles of the algorithm but caution the reader that
several important details are omitted.

An element z ∈ Z∗N is a quadratic residue modulo N if there is an x ∈ Z∗N
such that x2 = z mod N ; in this case, we say that x is a square root of z. The
following observations serve as our starting point:

� If N is a product of two distinct, odd primes, then every quadratic
residue modulo N has exactly four square roots. (See Section 15.4.2.)

� Given x, y with x2 = y2 mod N and x 6= ±y mod N , it is possible to
compute a nontrivial factor of N in polynomial time. This is by virtue
of the fact that x2 = y2 mod N implies

0 = x2 − y2 = (x− y)(x+ y) mod N,

and so N | (x− y)(x+ y). However, N 6 | (x− y) and N 6 | (x+ y) because
x 6= ±y mod N . So it must be the case that gcd(x − y,N) is equal to
one of the prime factors of N . (See also Lemma 15.35.)

The quadratic sieve algorithm tries to generate x, y with x2 = y2 mod N
and x 6= ±y mod N . A naive way of doing this—which forms the basis of an
older factoring algorithm due to Fermat—is to choose an x ∈ Z∗N , compute
q := [x2 mod N], and then check whether q is a square over the integers (i.e.,
without reduction modulo N). If so, then q = y2 for some integer y and so
x2 = y2 mod N . Unfortunately, the probability that [x2 mod N] is a square
is so low that this process must be repeated exponentially many times.

A significant improvement is obtained by generating a sequence of values
q1 := [x2

1 mod N], . . . and identifying a subset of those values whose prod-
uct is a square over the integers. In the quadratic sieve algorithm this is
accomplished using the following two steps:

Step 1. Fix some bound B. Say an integer is B-smooth if all its prime
factors are less than or equal to B. In the first phase of the algorithm, we
search for integers of the form qi = [x2

i mod N] that are B-smooth and factor
them. (Although factoring is hard, finding and factoring B-smooth numbers
is feasible when B is small enough.) These {xi} are chosen by successively
trying x =

√
N+1,

√
N+2, . . .; this ensures a nontrivial reduction modulo N

(since x >
√
N) and has the advantage that q

def
= [x2 mod N] = x2 − N is

“small” so that q is more likely to be B-smooth.

Let {p1, . . . , pk} be the set of prime numbers less than or equal to B. Once
we have found and factored the B-smooth {qi} as described above, we have a

Algorithms for Factoring and Computing Discrete Logarithms 371

set of equations of the form:

q1 = [x2
1 mod N] =

k∏
i=1

p
e1,i
i

... (10.1)

q` = [x2
` mod N] =

k∏
i=1

p
e`,i
i .

(Note that the above equations are over the integers.)

Step 2. We next want to find some subset of the {qi} whose product is a
square. If we multiply some subset S of the {qi}, we see that the result

z =
∏
j∈S

qj =

k∏
i=1

p
∑

j∈S ej,i
i

is a square if and only if the exponent of each prime pi is even. This suggests
that we care about the exponents {ej,i} in Equation (10.1) only modulo 2;
moreover, we can use linear algebra to find a subset of the {qi} whose “expo-
nent vectors” sum to the 0-vector modulo 2.

In more detail: if we reduce the exponents in Equation (10.1) modulo 2, we
obtain the 0/1-matrix Γ given byγ1,1 γ1,2 · · · γ1,k

...
...

. . .
...

γ`,1 γ`,2 · · · γ`,k

 def
=

 [e1,1 mod 2] [e1,2 mod 2] · · · [e1,k mod 2]
...

...
. . .

...
[e`,1 mod 2] [e`,2 mod 2] · · · [e`,k mod 2]

 .

If ` = k + 1, then Γ has more rows than columns and there must be some
nonempty subset S of the rows that sum to the 0-vector modulo 2. Such a
subset can be found efficiently using linear algebra. Then:

z
def
=
∏
j∈S

qj =

k∏
i=1

p
∑

j∈S ej,i
i =

(
k∏
i=1

p
(
∑

j∈S ej,i)/2
i

)2

,

using the fact that all the
{∑

j∈S ej,i

}
are even. Since

z =
∏
j∈S

qj =
∏
j∈S

x2
j =

∏
j∈S

xj

2

mod N,

we have obtained two square roots (modulo N) of z. Although there is no
guarantee that these square roots will enable factorization of N (for reasons

372 Introduction to Modern Cryptography

discussed at the beginning of this section), heuristically they do with constant
probability. By taking ` > k + 1 we can obtain multiple subsets S with the
desired property and try to factor N using each possibility.

Example 10.3
Take N = 377753. We have 6647 = [6202 mod N], and we can factor 6647
(over the integers, without any modular reduction) as[

6202 mod N
]

= 6647 = 172 · 23.

Similarly, [
6212 mod N

]
= 24 · 17 · 29[

6452 mod N
]

= 27 · 13 · 23[
6552 mod N

]
= 23 · 13 · 17 · 29.

Letting our subset S include all four of the above equations, we see that

6202 · 6212 · 6452 · 6552 = 214 · 132 · 174 · 232 · 292 mod N

⇒ [620 · 621 · 645 · 655 mod N]2 =
[
27 · 13 · 172 · 23 · 29 mod N

]2
mod N

⇒ 1271942 = 453352 mod N,

with 127194 6= ±45335 mod N . Computing gcd(127194 − 45335, 377753) =
751 yields a nontrivial factor of N . ♦

Running time. Choosing a larger value of B makes it more likely that a
uniform value q = [x2 mod N] is B-smooth; on the other hand, it means
we will have to work harder to identify and factor B-smooth numbers, and
we will have to find more of them (since we require ` > k, where k is the
number of primes less than or equal to B). It also means that the matrix Γ
will be larger, and so the linear-algebraic step will be slower. Choosing the
optimal value of B gives an algorithm that (heuristically, at least) factors N

in time 2O(
√

logN log logN). (In fact, the constant term in the exponent can
be determined quite precisely.) The important point for our purposes is that
this is sub-exponential in the length of N .

10.2 Algorithms for Computing Discrete Logarithms

Let G be a cyclic group of known order q. An instance of the discrete-
logarithm problem in G specifies a generator g ∈ G and an element h ∈ G;
the goal is to find x ∈ Zq such that gx = h. (See Section 9.3.2.) The solution

Algorithms for Factoring and Computing Discrete Logarithms 373

x is called the discrete logarithm of h with respect to g. A trivial brute-force
search for x can be done in time O(q), and so we are interested in algorithms
whose running time is better than this.

Algorithms for solving the discrete-logarithm problem fall into two cate-
gories: those that are generic and apply to any group G, and those that are
tailored to work for some specific class of groups. We begin in this section by
discussing three generic algorithms:

� When the group order q is not prime and a (partial or full) factorization
of q is known, the Pohlig–Hellman algorithm reduces the problem of
finding discrete logarithms in G to that of finding discrete logarithms
in subgroups of G. When the complete factorization of q is known, the
effect is to reduce the complexity of computing discrete logarithms in
a group of order q to the complexity of computing discrete logarithms
in a group of order q′, where q′ is the largest prime dividing q. This
explains the preference for using prime-order groups (cf. Section 9.3.2).

� The baby-step/giant-step method, due to Shanks, computes the discrete
logarithm in a group of order q using O(

√
q) group operations. It also

requires O(
√
q) memory.

� Pollard’s rho algorithm also computes discrete logarithms with O(
√
q)

group operations, but using constant memory. It can be viewed as
exploiting the connection between the discrete-logarithm problem and
collision-resistant hashing that we have seen in Section 9.4.2.

It can be shown that the time complexity of the latter two algorithms is
optimal as far as generic algorithms are concerned. Thus, to have any hope
of doing better we must look at algorithms for specific groups that exploit
the binary representation of elements in those groups, i.e., the way group
elements are encoded as bit-strings. This point bears some discussion. From
a mathematical point of view, any two cyclic groups of the same order are
isomorphic, meaning that the groups are identical up to a “renaming” of the
group elements. From a computational/algorithmic point of view, however,
this “renaming” can have a significant impact. For example, consider the
cyclic group Zq of integers {0, . . . , q−1} under addition modulo q. Computing
discrete logarithms in this group is trivial: Say we are given g, h ∈ Zq with
g a generator, and we want to find x such that x · g = h mod q. We must
have gcd(g, q) = 1 (cf. Theorem B.16) and so g has a multiplicative inverse
g−1 modulo q. Moreover, g−1 can be computed efficiently, as described in
Appendix B.2.2. But then x = h · g−1 mod q is the desired solution. Note
that, formally, x here denotes an integer and not a group element—after all,
the group operation is addition, not multiplication. Nevertheless, in solving
the discrete-logarithm problem in Zq we can make use of the fact that another
operation (namely, multiplication) can be defined on the elements of that
group. The main takeaway point is that the group representation matters.

374 Introduction to Modern Cryptography

Turning to groups with cryptographic significance, in Section 10.3 we focus
our attention on (subgroups of) Z∗p for p prime. (See Section 9.3.3.) As a
nontrivial example of an algorithm that is not generic, we give a high-level
overview of the index calculus algorithm for solving the discrete-logarithm
problem in such groups in sub-exponential time. Currently, the best known
algorithm for this class of groups is the general number field sieve,2 which

heuristically runs in time 2O((log p)1/3·(log log p)2/3). Sub-exponential algorithms
for computing discrete logarithms in multiplicative subgroups of arbitrary
finite fields are also known, but these are beyond our scope.

Importantly, no sub-exponential algorithms are known for computing dis-
crete logarithms in general elliptic-curve groups. This explains why smaller
parameters can be used (at the same level of security) when working in elliptic-
curve groups than when working in Z∗p, resulting in more-efficient cryptosys-
tems in the former case.

10.2.1 The Pohlig–Hellman Algorithm

The Pohlig–Hellman algorithm can be used to speed up the computation
of discrete logarithms in a group G when any nontrivial factors of the group
order q are known. Recall that the order of an element g, which we denote
here by ord(g), is the smallest positive integer i for which gi = 1. We will
need the following lemma:

LEMMA 10.4 Let ord(g) = q, and say p | q. Then ord(gp) = q/p.

PROOF Since (gp)q/p = gq = 1, the order of gp is at most q/p. Let i > 0
be such that (gp)i = 1. Then gpi = 1 and, since q is the order of g, we must
have pi ≥ q or equivalently i ≥ q/p. The order of gp is thus exactly q/p.

We will also use a generalization of the Chinese remainder theorem: if
q =

∏k
i=1 qi and gcd(qi, qj) = 1 for all i 6= j then

Zq ' Zq1× · · · × Zqk and Z∗q ' Z∗q1× · · · × Z∗qk .

(This can be proved by induction on k, using the basic Chinese remainder the-
orem for k = 2.) Moreover, by an extension of the algorithm in Section 9.1.5
it is possible to convert efficiently between the representation of an element
as an element of Zq and its representation as an element of Zq1× · · · × Zqk
when the factorization q =

∏k
i=1 qi is known.

We now describe the Pohlig–Hellman algorithm. We are given a generator g
and an element h and wish to find x such that gx = h. Say a factorization

2The algorithm is related to the general number field sieve for factoring.

Algorithms for Factoring and Computing Discrete Logarithms 375

q =
∏k
i=1 qi is known with the {qi} pairwise relatively prime. (This need not

be the complete prime factorization of q.) We know that(
gq/qi

)x
= (gx)

q/qi = hq/qi for i = 1, . . . , k. (10.2)

Letting gi
def
= gq/qi and hi

def
= hq/qi , we thus have k instances of a discrete-

logarithm problem in k smaller groups. Specifically, each problem gxi = hi is
in a subgroup of size ord(gi) = qi (by Lemma 10.4). We can solve each of the
k resulting instances using any algorithm for solving the discrete-logarithm
problem. Solving these instances gives a set of answers {xi}ki=1, with xi ∈ Zqi ,
for which gxi

i = hi = gxi . Proposition 9.54 implies that x = xi mod qi for
all i. By the generalized Chinese remainder theorem discussed earlier, the
constraints

x = x1 mod q1

...

x = xk mod qk

uniquely determine x modulo q, and so the desired solution x can be efficiently
reconstructed from the {xi}.

Example 10.5

Consider the problem of computing discrete logarithms in Z∗31, a group of
order q = 30 = 5 ·3 ·2. Say g = 3 and h = 26 = gx with x unknown. We have:

(g30/5)x = h30/5 ⇒ (36)x = 266 ⇒ 16x = 1

(g30/3)x = h30/3 ⇒ (310)x = 2610 ⇒ 25x = 5

(g30/2)x = h30/2 ⇒ (315)x = 2615 ⇒ 30x = 30.

(All the above equations are modulo 31.) We have ord(16) = 5, ord(25) = 3,
and ord(30) = 2. Solving each equation, we obtain

x = 0 mod 5, x = 2 mod 3, and x = 1 mod 2,

and so x = 5 mod 30. Indeed, 35 = 26 mod 31. ♦

If q has (known) prime factorization q =
∏k
i=1 p

ei
i then, by using the Pohlig–

Hellman algorithm, the time to compute discrete logarithms in a group of
order q is dominated by the computation of a discrete logarithm in a subgroup
of size maxi{peii }. This can be further reduced to computation of a discrete
logarithm in a subgroup of size maxi{pi}; see Exercise 10.5.

376 Introduction to Modern Cryptography

10.2.2 The Baby-Step/Giant-Step Algorithm

The baby-step/giant-step algorithm computes discrete logarithms in a group
of order q using O(

√
q) group operations. The idea is simple. Given a gener-

ator g ∈ G, we can imagine the powers of g as forming a cycle

1 = g0, g1, g2, . . . , gq−2, gq−1, gq = 1.

We know that h must lie somewhere in this cycle. Computing all the points
in this cycle to find h would take Ω(q) time. Instead, we “mark off” the

cycle at intervals of size t
def
= b√q c; more precisely, we compute and store the

bq/tc+ 1 = O(
√
q) elements

g0, gt, g2t, . . . , gbq/tc·t.

(These are the “giant steps.”) Note that the gap between any consecutive
“marks” (wrapping around at the end) is at most t. Furthermore, we know
that h = gx lies in one of these gaps. Thus, if we take “baby steps” and
compute the t elements

h · g1, . . . , h · gt,

each of which corresponds to a “shift” of h, we know that one of these values
will be equal to one of the marked points. Say we find h · gi = gk·t. We can
then easily compute logg h := [(kt− i) mod q]. Pseudocode for this algorithm
follows.

ALGORITHM 10.6
The baby-step/giant-step algorithm

Input: Elements g, h ∈ G; the order q of G
Output: logg h

t := b√q c
for i = 0 to bq/tc:

compute gi := gi·t

sort the pairs (i, gi) by their second component
for i = 1 to t:

compute hi := h · gi
if hi = gk for some k, return [(kt− i) mod q]

The algorithm requires O(
√
q) exponentiations/multiplications in G. (In

fact, after computing g1 = gt, each subsequent value gi can be computed using
a single multiplication as gi := gi−1 · g1. Similarly, each hi can be computed
as hi := hi−1 · g.) Sorting the O(

√
q) pairs {(i, gi)} takes time O(

√
q · log q),

and we can then use binary search to check if each hi is equal to some gk in
time O(log q). The overall algorithm thus runs in time O(

√
q · polylog(q)).

Algorithms for Factoring and Computing Discrete Logarithms 377

Example 10.7
We show an application of the algorithm in the cyclic group Z∗29 of order
q = 29− 1 = 28. Take g = 2 and h = 17. We set t = 5 and compute:

20 = 1, 25 = 3, 210 = 9, 215 = 27, 220 = 23, 225 = 11.

(It should be understood that all operations are in Z∗29.) Then compute:

17 · 21 = 5, 17 · 22 = 10, 17 · 23 = 20, 17 · 24 = 11,

and notice that 17 · 24 = 11 = 225. We thus have log2 17 = 25− 4 = 21. ♦

10.2.3 Discrete Logarithms from Collisions

A drawback of the baby-step/giant-step algorithm is that it uses a large
amount of memory, as it requires storage of O(

√
q) points. We can obtain an

algorithm that uses constant memory—and has the same asymptotic running
time—by exploiting the connection between the discrete-logarithm problem
and collision-resistant hashing shown in Section 9.4.2, and recalling the small-
space birthday attack for finding collisions from Section 6.4.2.

We describe the high-level idea. Fix a generator g ∈ G and an element h. If
we define the hash function Hg,h : Zq×Zq → G by Hg,h(x1, x2) = gx1hx2 , then
finding a collision inHg,h implies the ability to compute logg h (cf. Lemma 9.65
and Theorem 9.79). We have thus reduced the problem of computing logg h
to that of finding a collision in a hash function, something we know how to do
in time O(

√
|G|) = O(

√
q) using a birthday attack! Moreover, a small-space

birthday attack will give a collision in the same time and constant space.
It only remains to address a few technical details. One is that the small-

space birthday attack described in Section 6.4.2 assumes that the range of
the hash function is a subset of its domain; that is not the case here, and in
fact (depending on the representation being used for elements of G) it could
even be that Hg,h is not compressing. A second issue is that the analysis in
Section 6.4.2 treated the hash function as a random function, whereas Hg,h

has a significant amount of algebraic structure.
Pollard’s rho algorithm provides one way to deal with these issues. We

describe a different algorithm that can be viewed as a more direct implemen-
tation of the above ideas. (In practice, Pollard’s algorithm would be more
efficient, although both algorithms use only O(

√
q) group operations.) Let

F : G → Zq × Zq denote a cryptographic hash function obtained by, e.g., a

suitable modification of SHA-2. Define H : G → G by H(k)
def
= Hg,h(F (k)).

We can use Algorithm 6.9, with natural modifications, to find a collision in H
using an expected O(

√
|G|) = O(

√
q) evaluations of H (and constant mem-

ory). With overwhelming probability, this yields a collision in Hg,h. You are
asked to flesh out the details in Exercise 10.7.

378 Introduction to Modern Cryptography

It is interesting to observe here a certain duality: the proof that hardness
of the discrete-logarithm implies a collision-resistant hash function leads to a
better algorithm for solving the discrete-logarithm problem! A little reflection
should convince us that this is not surprising: a proof by reduction demon-
strates that an attack on some construction (in this case, finding collisions
in the hash function) directly yields an attack on the underlying assumption
(here, the hardness of the discrete-logarithm problem), which is exactly the
property exploited by the above algorithm.

10.3 Index Calculus

We conclude with a brief look at the (non-generic) index calculus algorithm
for computing discrete logarithms in the cyclic group Z∗p (for p prime). In
contrast to the preceding (generic) algorithms, this approach has running
time sub-exponential in the size of the group. The algorithm bears some
resemblance to the quadratic sieve algorithm introduced in Section 10.1.3,
and we assume readers are familiar with the discussion there. As in that case,
we discuss the main ideas of the index calculus method but leave a detailed
analysis outside the scope of our treatment. Also, some simplifications are
introduced to clarify the presentation.

As in the quadratic sieve algorithm, the index calculus method uses a two-
step process. Importantly, the first step requires knowledge only of the modu-
lus p and the base g and so it can be run as a preprocessing step before h—the
value whose discrete logarithm we wish to compute—is known. For the same
reason, it suffices to run the first step only once in order to solve multiple in-
stances of the discrete-logarithm problem (as long as all those instances share
the same p and g).

Step 1. Fix some bound B, and let {p1, . . . , pk} be the set of prime num-
bers less than or equal to B. In this step, we find ` ≥ k distinct values

x1, . . . , x` ∈ Zp−1 for which gi
def
= [gxi mod p] is B-smooth. This is done by

simply choosing uniform {xi} until suitable values are found.

Factoring the resulting B-smooth numbers, we have the ` equations:

gx1 =
k∏
i=1

p
e1,i
i mod p

...

gx` =
k∏
i=1

p
e`,i
i mod p .

Algorithms for Factoring and Computing Discrete Logarithms 379

Taking discrete logarithms, we can transform these into the linear equations

x1 =

k∑
i=1

e1,i · logg pi mod (p− 1)

... (10.3)

x` =
k∑
i=1

e`,i · logg pi mod (p− 1).

Note that the {xi} and the {ei,j} are known, while the {logg pi} are unknown.

Step 2. Now we are given an element h and want to compute logg h. Here,
we find a value x ∈ Zp−1 for which [gx· h mod p] is B-smooth. (Once again,
this is done simply by choosing x uniformly.) Say

gx· h =

k∏
i=1

peii mod p

⇒ x+ logg h =
k∑
i=1

ei · logg pi mod (p− 1),

where x and the {ei} are known. Combined with Equation (10.3), we have
`+ 1 ≥ k + 1 linear equations in the k + 1 unknowns {logg pi}ki=1 and logg h.
Using linear-algebraic3 methods (and assuming the system of equations is not
under-defined), we can solve for each of the unknowns and in particular obtain
the desired solution logg h.

Example 10.8
Let p = 101, g = 3, and h = 87. We have [310 mod 101] = 65 = 5 · 13.
Similarly, [312 mod 101] = 80 = 24 · 5 and [314 mod 101] = 13. We thus have
the linear equations

10 = log3 5 + log3 13 mod 100

12 = 4 · log3 2 + log3 5 mod 100

14 = log3 13 mod 100.

We also have 35 · 87 = 32 = 25 mod 101, or

5 + log3 87 = 5 · log3 2 mod 100. (10.4)

Adding the second and third equations and subtracting the first, we derive
4 · log3 2 = 16 mod 100. This doesn’t determine log3 2 uniquely (since 4 is not

3Technically, things are slightly more complicated here since the linear equations are all
modulo p−1, which is not prime. Nevertheless, there exist techniques for dealing with this.

380 Introduction to Modern Cryptography

invertible modulo 100), but it does tell us that log3 2 = 4, 29, 54, or 79 (cf.
Exercise 10.3). Trying all possibilities gives log3 2 = 29. Plugging this into
Equation (10.4) gives log3 87 = 40. ♦

Running time. Choosing a larger value of B makes it more likely that a uni-
form value in Z∗p is B-smooth; however, it means we will have to work harder
to identify and factor B-smooth numbers, and we will have to find more of
them. Because the system of equations will be larger, solving the system will
take longer. Choosing the optimal value of B gives an algorithm that (heuris-

tically, at least) computes discrete logarithms in Z∗p in time 2O(
√

log p log log p).
The important point for our purposes is that this is sub-exponential in the
length of p.

10.4 Recommended Key Lengths

Understanding the best available algorithms for solving various crypto-
graphic problems is essential for determining the appropriate key length for
achieving a desired level of security. Figure 10.1 summarizes the key lengths
currently recommended by the US National Institute of Standards and Tech-
nology4 (NIST) [14]. The “effective key length” is a value n such that the
best known algorithm for solving a problem takes time roughly 2n, i.e., the
computational difficulty of solving a problem is approximately equivalent to
that of performing a brute-force search against a symmetric-key scheme with
an n-bit key, or the time to find collisions in a hash function with a 2n-bit
output length. NIST deems a 112-bit effective key length acceptable for se-
curity until the year 2030, but recommends 128-bit or higher key lengths for
applications where security is required beyond then.

Given what we have learned in this chapter, it is instructive to look more
closely at some of the numbers in the table. One thing to notice is that elliptic-
curve groups can be used to realize any given level of security with smaller
parameters than for RSA or subgroups of Z∗p. This is simply because no sub-
exponential algorithms are known for solving the discrete-logarithm problem
in elliptic-curve groups (when chosen appropriately). Achieving n-bit security,
however, requires an elliptic-curve group whose order q is 2n-bits long. This
is a consequence of the generic algorithms we have seen in this chapter, which
solve the discrete-logarithm problem (in any group) in time O(

√
q).

Turning to the case of Z∗p we see that here, too, a 2n-bit value of q is needed
for n-bit security (for the same reason). The length of p, however, must be

4Other groups have made their own recommendations; see http://keylength.com.

http://keylength.com

Algorithms for Factoring and Computing Discrete Logarithms 381

RSA Discrete Logarithm

Effective
Key Length Modulus N

Order-q

Subgroup of Z∗p
Elliptic-Curve
Group Order q

112 2048 p: 2048, q: 224 224
128 3072 p: 3072, q: 256 256
192 7680 p: 7680, q: 384 384
256 15360 p: 15360, q: 512 512

FIGURE 10.1: All values are in bits, e.g., for a 112-bit effective key
length in the RSA setting, a 2048-bit modulus N should be used.

significantly larger, because non-generic algorithms like the index calculus
method or the number field sieve can be used to compute discrete logarithms
in Z∗p in time sub-exponential in the length of p. That is, p and q are chosen
such that the running time of the number field sieve, which depends on the
length of p, and the running time of a generic algorithm, which depends on
the length of q, are approximately equal and both around 2n. The practical
ramifications of this are that, for any desired security level, elliptic-curve
cryptosystems can use significantly smaller parameters (and thus give better
efficiency for honest users) than cryptosystems based on subgroups of Z∗p.

References and Additional Reading

Pollard’s p−1 algorithm was published in 1974 [160], and his rho method for
factoring was described the following year [161]. The quadratic sieve algorithm
is due to Pomerance [163], based on earlier ideas of Dixon [67].

The Pohlig–Hellman algorithm was published in 1978 [159]. The baby-
step/giant-step algorithm is due to Shanks [176]. Pollard’s paper introducing
the rho algorithm for computing discrete logarithms [162] also includes his
famous “kangaroo” algorithm for the same problem. A nice feature of the
kangaroo method is that it is more flexible; in particular, it can be used
to compute discrete logarithms known to lie in a given interval [a, b] using
O(
√
b− a) steps. (Although the baby-step/giant-step algorithm can also be

adapted for that case—see Exercise 10.6—the kangaroo algorithm stores only
a constant number of group elements.) Lower bounds on the running time of
generic algorithms for computing discrete logarithms, which asymptotically
match the running times of the algorithms described in this chapter, were
given by Nechaev [152] and Shoup [179].

The index calculus algorithm as we have described it is by Adleman [4]. The
texts by Wagstaff [201], Shoup [183], Crandall and Pomerance [59], Joux [105],

382 Introduction to Modern Cryptography

and Galbraith [76] provide further information on algorithms for factoring
and computing discrete logarithms in finite fields, including descriptions of
the (general) number field sieve. The current state-of-the-art for factoring
and computing discrete logarithms in Z∗p for large p is surveyed in a recent
article by Boudot et al. [45].

Recently, improved algorithms for solving the discrete-logarithm problem
in finite fields of small characteristic [12] or even any fixed characteristic [116]
have been announced. It seems prudent to avoid using such groups for cryp-
tographic applications.

Lenstra and Verheul [126] provide a comprehensive discussion, somewhat
dated but still relevant, of how known algorithms for factoring and computing
discrete logarithms affect the choice of cryptographic parameters in practice.

Exercises

10.1 In order to speed up the key-generation algorithm for RSA, it has been
suggested to generate a large prime number by generating many small
random primes, multiplying them together, and adding one (of course,
then checking that the result is prime). What do you think of the
security implications of this method?

10.2 In an execution of Algorithm 10.2, define x(i) def
= F (i)(x). Show that if,

in a given execution, there exist i, j ≤ 2n/2 such that x(i) 6= x(j) but
x(i) = x(j) mod p, then that execution of the algorithm outputs p with
overwhelming probability. (The analysis is a little different from the
analysis of Algorithm 6.9, since the algorithms—and their goals—are
slightly different.)

10.3 (a) Show that if ab = c mod N and gcd(b,N) = d, then:

i. d | c;
ii. a · (b/d) = (c/d) mod (N/d); and

iii. gcd(b/d,N/d) = 1.

(b) Describe how to use the above to compute logg h in ZN even when
g is not a generator of ZN (but h ∈ 〈g〉).

10.4 Here we consider how to solve the discrete-logarithm problem in a cyclic
group G of order q = pe using O(e

√
p) group operations. We are given as

input a generator g and an element h, and want to compute x = logg h.

(a) Show how to compute [x mod p] using O(
√
p) group operations.

Algorithms for Factoring and Computing Discrete Logarithms 383

Hint: Solve the equation(
gp

e−1
)x0

= hp
e−1

and use the same ideas as in the Pohlig–Hellman algorithm.

(b) Say x = x0 + x1 · p+ · · ·+ xe−1 · pe−1 with 0 ≤ xi < p. (i.e., write
x in base p.) In the previous step we determined x0. Show how to

compute a value h1 such that (gp)x1+x2·p+···+xe−1·pe−2

= h1.

(c) Show a recursive algorithm computing the discrete logarithm x in
the claimed running time.

10.5 Let q have prime factorization q =
∏k
i=1 p

ei
i . Using the result from the

previous problem, show a modification of the Pohlig–Hellman algorithm
that solves the discrete-logarithm problem in a group of order q using

O
(∑k

i=1 ei
√
pi

)
group operations.

10.6 Let G be a cyclic group of order q, with generator g. Let h ∈ G be given,
where it is known that h = gx for x ∈ [a, b] (and a, b are known). Show
how to modify the baby-step/giant-step algorithm to compute logg h

using O(
√
b− a) group operations.

10.7 Based on the ideas described in Section 10.2.3, give pseudocode for a
generic algorithm that computes discrete logarithms in a group of order q
using O(

√
q) group operations and O(1) memory. Also give a heuristic

analysis of the probability with which your algorithm succeeds.

http://taylorandfrancis.com

Chapter 11

Key Management and the
Public-Key Revolution

11.1 Key Distribution and Key Management

In previous chapters we have seen how private-key cryptography can be
used to ensure secrecy and integrity for two parties communicating over an
insecure channel, if we are willing to assume those two parties hold a shared,
secret key. The question we have deferred since Chapter 1, however, is:

How can the parties share a secret key in the first place?

Clearly, the key cannot simply be sent over the insecure communication chan-
nel because an eavesdropping adversary would then be able to observe the
key and it would no longer be secret. Some other mechanism must be used.

In some situations, the parties may have access to a secure channel that they
can use to reliably share a secret key. One common example is when the two
parties are physically co-located at some point in time, during which they can
share a key. Alternatively, the parties might be able to use a trusted courier
service as a secure channel. We stress that even if the parties have access to
a secure channel at some point, this does not make private-key cryptography
useless: in the first example, the parties have a secure channel at one point in
time but not later; in the second example, utilizing the secure channel might
be slower and more costly than communicating over an insecure channel.

The above approaches have been used to share keys in government, diplo-
matic, and military settings. As an example, the “red phone” connecting
Moscow and Washington in the 1960s was encrypted using a one-time pad,
with keys shared by couriers who flew from one country to the other carrying
briefcases full of print-outs. Such approaches can also be used in corporations,
e.g., to set up a shared key between a central database and a new employee
on his/her first day of work. (We return to this example in the next section.)

Relying on a secure channel to distribute keys, however, does not work well
in many other situations. For example, consider a large, multinational corpo-
ration in which every pair of employees might need the ability to communicate
securely, with their communication protected from other employees as well.
It will be inconvenient, to say the least, for each pair of employees to meet so

385

386 Introduction to Modern Cryptography

they can securely share a key; for employees working in different cities, this
may even be impossible. Even if the current set of employees could somehow
share keys with each other, it would be impractical for them to share keys
with new employees who join after this initial sharing is done.

Even assuming these N employees are somehow able to securely share keys
with each other, another significant drawback is that each employee would
have to manage and store N − 1 secret keys (one for each other employee in
the company). In fact, this may significantly under-count the number of keys
stored by each user, because employees may also need keys to communicate
securely with remote resources such as databases, servers, printers, and so on.
The proliferation of so many secret keys is a significant logistical problem.
Moreover, all these keys must be stored securely. The more keys there are,
the harder it is to protect them, and the higher the chance of some keys
being stolen by an attacker. Computer systems are often infected by viruses,
worms, and other forms of malicious software that can steal secret keys and
send them quietly over the network to an attacker. Thus, storing keys on
employees’ personal computers is not always a safe solution.

To be clear, potential compromise of secret keys is always a concern, irre-
spective of the number of keys each party holds. When only a few keys need
to be stored, however, there are good solutions available for dealing with this
threat. A typical solution today is to store keys on secure hardware such as a
smartcard. A smartcard can carry out cryptographic computations using the
stored secret keys, ensuring that these keys never make their way onto users’
personal computers. If designed properly, the smartcard can be much more
resilient to attack than a personal computer—for example, it typically cannot
be infected by malware—and so offers a good means of protecting users’ secret
keys. Unfortunately, smartcards are typically quite limited in memory, and
so cannot store hundreds (or thousands) of keys; they may also be somewhat
expensive and difficult to replace if lost.

The concerns outlined above can all be addressed—in principle, even if not
in practice—in “closed” organizations consisting of a well-defined population
of users, all of whom are willing to follow the same policies for distributing and
storing keys. They break down, however, in “open systems” where users have
transient interactions, cannot arrange a physical meeting, and may not even
be aware of each other’s existence until the time they first want to communi-
cate. This is, in fact, a more common situation than one might initially realize:
consider sending credit-card information to an Internet merchant from whom
you have never previously purchased anything, or sending email to someone
whom you have never met in person. In such cases, private-key cryptogra-
phy alone simply does not provide a solution, and we must look further for
adequate solutions.

To summarize, there are at least three distinct problems related to the use
of private-key cryptography. The first is that of key distribution, the second
is that of storing and managing large numbers of secret keys, and the third is
the inapplicability of private-key cryptography to open systems.

Key Management and the Public-Key Revolution 387

11.2 A Partial Solution: Key-Distribution Centers

One way to address some of the concerns from the previous section is to
use a key-distribution center (KDC) to establish shared keys. Consider again
the case of a large corporation where all pairs of employees must be able to
communicate securely. In such a setting, we can leverage the fact that all
employees may trust some entity—say, the system administrator—at least
with respect to the security of work-related information. This trusted entity
can then act as a KDC and help all the employees share pairwise keys.

When a new employee joins, the KDC can share a key with that employee
(in person, in a secure location) as part of that employee’s first day of work.
At the same time, the KDC could also distribute shared keys between that
employee and all existing employees. That is, when the ith employee joins, the
KDC could (in addition to sharing a key between itself and this new employee)
generate i−1 keys k1, . . . , ki−1, give these keys to the new employee, and then
send key kj to the jth existing employee by encrypting it using the key that
employee already shares with the KDC. Following this, the new employee
shares a key with every other employee (as well as with the KDC).

A better approach, which avoids requiring employees to store and manage
multiple keys, is to utilize the KDC in an online fashion to generate keys “on
demand” whenever two employees wish to communicate securely. As before,
the KDC will share a (different) key with each employee, something that can
be done securely on each employee’s first day of work. Say the KDC shares
key kA with employee Alice, and kB with employee Bob. At some later time,
when Alice wishes to communicate securely with Bob, she can simply send the
message ‘‘I, Alice, want to talk to Bob’’ to the KDC. (If desired, this
message can be authenticated using the key shared by Alice and the KDC.)
The KDC then chooses a new, random key—called a session key—and sends
this key k to Alice encrypted using kA, and to Bob encrypted using kB .
(This protocol is too simplistic to be used in practice; see further discussion
below.) Once Alice and Bob both recover this session key, they can use it to
communicate securely. When they are done with their conversation, they can
(and should) erase the session key because they can always contact the KDC
again if they wish to communicate at some later time.

Consider the advantages of this approach:

1. Each employee needs to store only one long-term secret key (namely,
the one they share with the KDC). Employees still need to manage and
store session keys, but these are short-term keys that are erased once a
communication session concludes.

The KDC needs to store many long-term keys. However, the KDC can
be kept in a secure location and be given the highest possible protection
against network attacks.

388 Introduction to Modern Cryptography

2. When an employee joins the organization, all that must be done is to
set up a key between this employee and the KDC. No other employees
need to update the set of keys they hold.

Thus, KDCs can alleviate two of the problems we have seen with regard to
private-key cryptography: they can simplify key distribution (since only one
new key must be shared when an employee joins, and it is reasonable to assume
a secure channel between the KDC and that employee on their first day of
work), and can reduce the complexity of key storage (since each employee only
needs to store a single key). KDCs go a long way toward making private-key
cryptography practical in large organizations where there is a single entity
who is trusted by everyone.

There are, however, some drawbacks to relying on KDCs:

1. A successful attack on the KDC will result in a complete break of the
system: an attacker can compromise all keys and subsequently eavesdrop
on all network traffic. This makes the KDC a high-value target. Note
that even if the KDC is well-protected against external attacks, there
is always the possibility of an insider attack by an employee who has
access to the KDC (for example, the IT manager).

2. The KDC is a single point of failure: if the KDC is down, secure com-
munication is temporarily impossible. If employees are constantly con-
tacting the KDC and asking for session keys to be established, the load
on the KDC can be very high, thereby increasing the chances that it
may fail or be slow to respond.

A simple solution to the second problem is to replicate the KDC. This works
(and is done in practice), but also means that there are now more points of
attack on the system. Adding more KDCs also makes it more difficult to add
new employees, since updates must be securely propagated to every KDC.

Protocols for key distribution using a KDC. There are a number of pro-
tocols in the literature for secure key distribution using a KDC. We mention
in particular the Needham–Schroeder protocol, which forms the core of Ker-
beros, an important and widely used service for performing authentication and
supporting secure communication. (Kerberos is used in many universities and
corporations, and is the default mechanism for supporting secure networked
authentication and communication in Windows and many UNIX systems.)
We only highlight one feature of this protocol. When Alice contacts the KDC
and asks to communicate with Bob, the KDC does not send the encrypted
session key to both Alice and Bob as we have described earlier. Instead, the
KDC sends to Alice the session key encrypted under Alice’s key in addition
to the session key encrypted under Bob’s key. Alice then forwards the sec-
ond ciphertext to Bob as in Figure 11.1. The second ciphertext is sometimes
called a ticket, and can be viewed as a credential that allows Alice to talk
to Bob (and allows Bob to be assured that he is talking to Alice). Indeed,

Key Management and the Public-Key Revolution 389

Alice

KDC

Bob

Enc
k
B
(k)Let�s talk,

I

w

a
n
t

t
o

t
a
l
k

t
o

B

o
b

E
n
c k A

(k
)

E
n
c k B

(k
)

FIGURE 11.1: A general template for key-distribution protocols.

although we have not stressed this point in our discussion, a KDC-based ap-
proach can provide a useful means of performing authentication as well. Note
also that Alice and Bob need not both be users; Alice might be a user and
Bob a resource such as a remote server, a database, or a printer.

The protocol was designed in this way to reduce the load on the KDC.
In the protocol as described, the KDC does not need to initiate a second
connection to Bob, and need not worry whether Bob is on-line when Alice
initiates the protocol. Moreover, if Alice retains the ticket (and her copy of
the session key), then she can re-initiate secure communication with Bob by
simply re-sending the ticket to Bob, without the involvement of the KDC at
all. (In practice, tickets expire and eventually need to be renewed. But a
session could be re-established within some acceptable time period.)

We conclude by noting that in practice the key that Alice shares with
the KDC might be a short, easy-to-memorize password. In this case, many
additional security problems arise that must be dealt with. We have also
been implicitly assuming an attacker who only passively eavesdrops, rather
than one who might actively try to interfere with the protocol. We refer
the interested reader to the references at the end of this chapter for more
information about how such issues can be addressed.

11.3 Key Exchange and the Diffie–Hellman Protocol

KDCs and protocols like Kerberos are used in practice. But these ap-
proaches to the key-distribution problem still require, at some point, a private
and authenticated channel that can be used to share keys. (In particular, we
assumed the existence of such a channel between the KDC and an employee
on his or her first day.) Thus, they still cannot solve the problem of key dis-

390 Introduction to Modern Cryptography

tribution in open systems like the Internet, where there may be no private
channel available between two users who wish to communicate.

To achieve private communication without ever communicating over a pri-
vate channel, a radically different approach is needed. In 1976, Whitfield
Diffie and Martin Hellman published a paper with the innocent-looking title
“New Directions in Cryptography.” In that work they observed that there is
often asymmetry in the world; in particular, there are certain actions that can
be easily performed but not easily reversed. For example, padlocks can be
locked without a key (i.e., easily), but cannot be reopened. More strikingly, it
is easy to shatter a glass vase but extremely difficult to put it back together.
Algorithmically (and more relevant for our purposes), it is easy to multiply
two large primes but difficult to recover those primes from their product.
(This is exactly the factoring problem discussed in previous chapters.) Diffie
and Hellman realized that such phenomena could be used to derive interac-
tive protocols for secure key exchange that allow two parties to share a secret
key, via communication over a public channel, by having the parties perform
operations that an eavesdropper cannot reverse.

The existence of secure key-exchange protocols is quite amazing. It means
that you and a friend could agree on a secret by simply shouting across a room
(and performing some local computation); the secret would be unknown to
anyone else, even if they had listened to everything that was said. Indeed,
until 1976 it was generally believed that secure communication could not be
done without first sharing some secret information using a private channel.

The influence of Diffie and Hellman’s paper was enormous. In addition to
introducing a fundamentally new way of looking at cryptography, it was one
of the first steps toward moving cryptography out of the private domain and
into the public one. We quote the first two paragraphs of their paper:

We stand today on the brink of a revolution in cryptography. The
development of cheap digital hardware has freed it from the design
limitations of mechanical computing and brought the cost of high
grade cryptographic devices down to where they can be used in such
commercial applications as remote cash dispensers and computer
terminals.

In turn, such applications create a need for new types of crypto-
graphic systems which minimize the necessity of secure key distri-
bution channels. . . . At the same time, theoretical developments in
information theory and computer science show promise of provid-
ing provably secure cryptosystems, changing this ancient art into
a science.

Diffie and Hellman were not exaggerating, and the revolution they spoke of
was due in great part to their work.

In this section we present the Diffie–Hellman key-exchange protocol. We
prove its security against eavesdropping adversaries or, equivalently, under

Key Management and the Public-Key Revolution 391

the assumption that the parties communicate over a public but authenticated
channel (so an attacker cannot interfere with their communication). Secu-
rity against an eavesdropping adversary is a relatively weak guarantee, and
in practice key-exchange protocols must satisfy stronger notions of security
that are beyond our present scope. (Moreover, we are interested here in the
setting where the communicating parties have no prior shared information,
in which case there is nothing that can be done to prevent an adversary from
impersonating one of the parties. We return to this point later.)

The setting and definition of security. We consider a setting with two
parties—traditionally called Alice and Bob—who run a probabilistic protocol
Π in order to generate a shared, secret key; Π can be viewed as the set of
instructions for Alice and Bob in the protocol. Alice and Bob begin by holding
the security parameter 1n; they then run Π using (independent) random bits.
At the end of the protocol, Alice and Bob output keys kA, kB ∈ {0, 1}n,
respectively. The basic correctness requirement is that kA = kB . Since we
will only deal with protocols that satisfy this requirement, we will speak simply
of the key k = kA = kB generated in some honest execution of Π. (Since Π is
randomized the key will, in general, be different every time Π is run.)

We now turn to defining security. Intuitively, a key-exchange protocol is
secure if the key output by Alice and Bob is completely hidden from an eaves-
dropping adversary. This is formally defined by requiring that an adversary
who has eavesdropped on an execution of the protocol should be unable to
distinguish the key k generated by that execution (and now shared by Alice
and Bob) from a uniform key of length n. This is much stronger than simply
requiring that the adversary be unable to guess k exactly, and this stronger no-
tion is necessary if the parties will subsequently use k for some cryptographic
application (e.g., as a key for a private-key encryption scheme).

Formalizing the above, let Π be a key-exchange protocol, A an adversary,
and n the security parameter. We have the following experiment:

The key-exchange experiment KEeav
A,Π(n):

1. Two parties holding 1n execute protocol Π. This results in a
transcript trans containing all the messages sent by the par-
ties, and a key k output by each of the parties.

2. A uniform bit b ∈ {0, 1} is chosen. If b = 0 set k̂ := k, and

if b = 1 then choose uniform k̂ ∈ {0, 1}n.

3. A is given trans and k̂, and outputs a bit b′.

4. The output of the experiment is defined to be 1 if b′ = b, and
0 otherwise. (In case KEeav

A,Π(n) = 1, we say that A succeeds.)

A is given trans to capture the fact that A eavesdrops on the entire execution
of the protocol and thus sees all messages exchanged by the parties. In the real
world, A would not be given any key; in the experiment the adversary is given

392 Introduction to Modern Cryptography

k̂ only as a means of defining what it means for A to “break” the security of Π.
That is, the adversary succeeds in “breaking” Π if it can correctly determine
whether the key k̂ is the real key corresponding to the given execution of the
protocol, or whether k̂ is a uniform key that is independent of the transcript.

As expected, we say Π is secure if the adversary succeeds with probability
that is at most negligibly greater than 1/2. That is:

DEFINITION 11.1 A key-exchange protocol Π is secure in the presence
of an eavesdropper if for all probabilistic polynomial-time adversaries A there
is a negligible function negl such that

Pr
[
KEeav
A,Π(n) = 1

]
≤ 1

2
+ negl(n).

The aim of a key-exchange protocol is almost always to generate a shared
key k that will be used by the parties for some further cryptographic purpose,
e.g., to encrypt and authenticate their subsequent communication using, say,
an authenticated encryption scheme. Intuitively, using a shared key generated
by a secure key-exchange protocol should be “as good as” using a key shared
over a private channel. It is possible to prove this formally; see Exercise 11.1.

The Diffie–Hellman key-exchange protocol. We now describe the key-
exchange protocol that appeared in the original paper by Diffie and Hellman
(although they were less formal than we will be here). Let G be a probabilis-
tic polynomial-time algorithm that, on input 1n, outputs a description of a
cyclic group G, its order q (with ‖q‖ = n), and a generator g ∈ G. (See Sec-
tion 9.3.2.) The Diffie–Hellman key-exchange protocol is described formally
as Construction 11.2 and illustrated in Figure 11.2.

CONSTRUCTION 11.2

� Common input: The security parameter 1n

� The protocol:

1. Alice runs G(1n) to obtain (G, q, g).

2. Alice chooses a uniform x ∈ Zq, and computes hA := gx.

3. Alice sends (G, q, g, hA) to Bob.

4. Bob receives (G, q, g, hA). He chooses a uniform y ∈ Zq, and
computes hB := gy. Bob sends hB to Alice and outputs the
key kB := hyA.

5. Alice receives hB and outputs the key kA := hxB .

The Diffie–Hellman key-exchange protocol.

Key Management and the Public-Key Revolution 393

Alice Bob

x

hA
:= g

x

h
B

kA h
x

B

q

, q, g, h
A

:=:= kB h
y

A

hB
:= g

y

y q

FIGURE 11.2: The Diffie–Hellman key-exchange protocol.

In our description, we have assumed that Alice generates (G, q, g) and sends
these parameters to Bob as part of her first message. In practice, these param-
eters are standardized and known to both parties before the protocol begins.
In that case Alice need only send hA, and Bob need not wait to receive Alice’s
message before computing and sending hB .

It is not hard to see that the protocol is correct: Bob computes the key

kB = hyA = (gx)y = gxy

and Alice computes the key

kA = hxB = (gy)x = gxy,

and so kA = kB . (The observant reader will note that the shared key is a
group element, not a bit-string. We will return to this point later.)

Diffie and Hellman did not prove security of their protocol; indeed, the
appropriate notions (both the definitional framework as well as the idea of
formulating precise assumptions) were not yet in place. Let us see what
sort of assumption will be needed in order for the protocol to be secure. A
first observation, made by Diffie and Hellman, is that a minimal require-
ment for security here is that the discrete-logarithm problem be hard relative
to G. If not, then an adversary given the transcript (which, in particular,
includes hA) can compute the secret value of one of the parties (i.e., x) and
then easily compute the shared key using that value. So, hardness of the
discrete-logarithm problem is necessary for the protocol to be secure. It is
not, however, sufficient, as it is possible that there are other ways of comput-
ing the key kA = kB without explicitly computing x or y. The computational
Diffie–Hellman assumption—which would only guarantee that the key gxy is
hard to compute in its entirety from the transcript—does not suffice either.

394 Introduction to Modern Cryptography

What is required by Definition 11.1 is that the shared key gxy should be in-
distinguishable from uniform for any adversary given g, gx, and gy. This is
exactly the decisional Diffie–Hellman assumption introduced in Section 9.3.2.

As we will see, a proof of security for the protocol follows almost immedi-
ately from the decisional Diffie–Hellman assumption. This should not be sur-
prising, as the Diffie–Hellman assumptions were introduced—well after Diffie
and Hellman published their paper—as a way of abstracting the properties
underlying the (conjectured) security of the Diffie–Hellman protocol. Given
this, it is fair to ask whether anything is gained by defining and proving secu-
rity here. By this point in the book, hopefully you are convinced the answer is
yes. Precisely defining security for key-exchange protocols forces us to think
about exactly what security properties we want; specifying a precise assump-
tion (namely, the decisional Diffie–Hellman assumption) means we can study
that assumption independently of any particular application and—once we
are convinced of its plausibility—construct other protocols based on it; fi-
nally, proving security shows that the assumption does, indeed, suffice for the
protocol to meet our desired notion of security.

In our proof of security, we use a modified version of Definition 11.1 in which
it is required that the shared key be indistinguishable from a uniform element
of G rather than from a uniform n-bit string. This discrepancy will need
to be addressed before the protocol can be used in practice—after all, group
elements are not typically useful as cryptographic keys, and the representation
of a uniform group element will not, in general, be a uniform bit-string—and
we briefly discuss one standard way to do so following the proof. For now, we

let K̂E
eav

A,Π(n) denote a modified experiment where if b = 1 then k̂ is chosen
uniformly from G rather than uniformly from {0, 1}n.

THEOREM 11.3 If the decisional Diffie–Hellman problem is hard rela-
tive to G, then the Diffie–Hellman key-exchange protocol Π is secure in the

presence of an eavesdropper (with respect to the modified experiment K̂E
eav

A,Π).

PROOF Let A be a ppt adversary. Since Pr[b = 0] = Pr[b = 1] = 1/2, we
have

Pr
[
K̂E

eav

A,Π(n) = 1
]

=
1

2
· Pr

[
K̂E

eav

A,Π(n) = 1 | b = 0
]

+
1

2
· Pr

[
K̂E

eav

A,Π(n) = 1 | b = 1
]
.

In experiment K̂E
eav

A,Π(n) the adversary A receives (G, q, g, hA, hB , k̂), where

(G, q, g, hA, hB) represents the transcript of the protocol execution, and k̂
is either the actual key computed by the parties (if b = 0) or a uniform
group element (if b = 1). Distinguishing between these two cases is exactly

Key Management and the Public-Key Revolution 395

equivalent to solving the decisional Diffie–Hellman problem. That is

Pr
[
K̂E

eav

A,Π(n) = 1
]

=
1

2
· Pr

[
K̂E

eav

A,Π(n) = 1 | b = 0
]

+
1

2
· Pr

[
K̂E

eav

A,Π(n) = 1 | b = 1
]

=
1

2
· Pr[A(G, q, g, gx, gy, gxy) = 0] +

1

2
· Pr[A(G, q, g, gx, gy, gz) = 1]

=
1

2
·
(

1− Pr[A(G, q, g, gx, gy, gxy) = 1]
)

+
1

2
· Pr[A(G, q, g, gx, gy, gz) = 1]

=
1

2
+

1

2
·
(

Pr[A(G, q, g, gx, gy, gz) = 1]− Pr[A(G, q, g, gx, gy, gxy) = 1]
)

≤ 1

2
+

1

2
·
∣∣∣Pr[A(G, q, g, gx, gy, gz) = 1]− Pr[A(G, q, g, gx, gy, gxy) = 1]

∣∣∣ ,
where the probabilities are all taken over (G, q, g) output by G(1n), and uni-
form choice of x, y, z ∈ Zq. (Note that since g is a generator, gz is a uniform
element of G when z is uniformly distributed in Zq.) If the decisional Diffie–
Hellman assumption is hard relative to G, that exactly means that there is a
negligible function negl for which∣∣Pr[A(G, q, g, gx, gy, gz) = 1]− Pr[A(G, q, g, gx, gy, gxy) = 1]

∣∣ ≤ negl(n).

We conclude that

Pr
[
K̂E

eav

A,Π(n) = 1
]
≤ 1

2
+

1

2
· negl(n),

completing the proof.

Uniform group elements vs. uniform bit-strings. The previous theorem
shows that the key output by Alice and Bob in the Diffie–Hellman protocol is
indistinguishable (for a polynomial-time eavesdropper) from a uniform group
element. In order to use the key for subsequent cryptographic applications—as
well as to meet Definition 11.1—the key output by the parties should instead
be indistinguishable from a uniform bit-string of the appropriate length. The
Diffie–Hellman protocol can be modified to achieve this by having the parties
apply an appropriate key-derivation function (cf. Section 6.6.4) to the shared
group element gxy they each compute.

Active adversaries. So far we have considered only an eavesdropping ad-
versary. Although eavesdropping attacks are by far the most common (as
they are the easiest to carry out), they are by no means the only possible at-
tack. Active attacks, in which the adversary sends messages of its own to one
or both of the parties, are also a concern, and any protocol used in practice
must be resilient to such attacks as well. When considering active attacks,
it is useful to distinguish, informally, between impersonation attacks where

396 Introduction to Modern Cryptography

the adversary impersonates one party while interacting with the other party,
and man-in-the-middle attacks where both honest parties are executing the
protocol and the adversary is intercepting and modifying messages being sent
from one party to the other. We will not formally define security against
either class of attacks, as such definitions are rather involved and cannot be
achieved without the parties sharing some information in advance. Never-
theless, it is worth remarking that the Diffie–Hellman protocol is completely
insecure against a man-in-the-middle attack. In fact, a man-in-the-middle
adversary can act in such a way that Alice and Bob terminate the protocol
with different keys kA and kB that are both known to the adversary, yet nei-
ther Alice nor Bob can detect that any attack was carried out. We leave the
details of this attack as an exercise.

Diffie–Hellman key exchange in practice. The Diffie–Hellman protocol
in its basic form is typically not used in practice due to its insecurity against
man-in-the-middle attacks, as discussed above. This does not detract in any
way from its importance. The Diffie–Hellman protocol served as the first
demonstration that asymmetric techniques (and number-theoretic problems)
could be used to alleviate the problems of key distribution in cryptography.
Furthermore, the Diffie–Hellman protocol is at the core of standardized key-
exchange protocols that are resilient to man-in-the-middle attacks and are in
wide use today. One notable example is TLS; see Section 13.7.

11.4 The Public-Key Revolution

In addition to key exchange, Diffie and Hellman also introduced in their
ground-breaking work the notion of public-key (or asymmetric) cryptography.
In the public-key setting (in contrast to the private-key setting we have stud-
ied until now), a party who wishes to communicate securely generates a pair
of keys: a public key that is widely disseminated, and a private key that it
keeps secret. (The fact that there are now two different keys is what makes the
scheme asymmetric.) Having generated these keys, a party can use them to
ensure secrecy for messages it receives using a public-key encryption scheme,
or integrity for messages it sends using a digital signature scheme. (See Fig-
ure 11.3.) We provide a brief taste of these primitives here, and discuss them
in extensive detail in Chapters 12 and 13, respectively.

In a public-key encryption scheme, the public key generated by some party
serves as an encryption key ; anyone who knows that public key can use it
to encrypt messages and generate corresponding ciphertexts. The private key
serves as a decryption key and is used by the party who knows it to recover the
original message from any ciphertext generated using the matching public key.
Furthermore—and it is amazing that something like this exists!—the secrecy
of encrypted messages is preserved even against an adversary who knows the
public key (but not the private key). In other words, the (public) encryption

Key Management and the Public-Key Revolution 397

Private-Key Setting Public-Key Setting

Secrecy Private-key encryption Public-key encryption

Integrity Message authentication codes Digital signature schemes

FIGURE 11.3: Cryptographic primitives in the private-key and the
public-key settings.

key is of no use for an attacker trying to decrypt ciphertexts encrypted using
that key. To allow for secret communication, then, a receiver can simply
send her public key to a potential sender (without having to worry about an
eavesdropper who observes it), or publicize her public key on her webpage or in
some central database. A public-key encryption scheme thus enables private
communication without relying on a private channel for key distribution.1

A digital signature scheme is a public-key analogue of a message authenti-
cation code (MAC). Here, the private key serves as an “authentication key”
(called a signing key) that enables the party who knows this key to generate
“authentication tags” (aka signatures) for messages it sends. The public key
acts as a verification key, allowing anyone who knows it to verify signatures
issued by the sender. As with MACs, a digital signature scheme can be used
to prevent undetected tampering of a message; here, however, security holds
even against an adversary who knows the public key. The fact that verifi-
cation is public (i.e., can be done by anyone who knows the public key of
the sender) has far-reaching ramifications, as it makes it possible to take a
document signed by Alice and present it to a third party (say, a judge) for
verification. This property is called non-repudiation and has extensive appli-
cations in e-commerce (e.g., for signing legal documents). Digital signatures
are also used for the secure distribution of public keys as part of a public-key
infrastructure, as discussed in more detail in Section 13.6.

In their paper, Diffie and Hellman set forth the notion of public-key cryp-
tography but did not give any candidate constructions, A year later, Ron
Rivest, Adi Shamir, and Len Adleman proposed the RSA problem and pre-
sented the first public-key encryption and digital signature schemes based on
the hardness of that problem. Variants of their schemes are now among the
most widely used cryptosystems today. In 1985, Taher El Gamal presented
an encryption scheme that is essentially a slight twist on the Diffie–Hellman
key-exchange protocol, variants of which are now also widely used. Thus, al-
though Diffie and Hellman did not succeed in constructing a (non-interactive)
public-key encryption scheme, they came very close.

We conclude by summarizing how public-key cryptography addresses the
limitations of the private-key setting discussed in Section 11.1:

1For now, however, we do assume an authenticated channel that allows the sender to obtain
a legitimate copy of the receiver’s public key. In Section 13.6 we show how public-key
cryptography can be used to solve that problem as well.

398 Introduction to Modern Cryptography

1. Public-key cryptography allows key distribution to be done over public
(but authenticated) channels. This can simplify the distribution and
updating of shared, secret keys.

2. Public-key cryptography reduces the need for users to store many secret
keys. Consider again the setting of a large corporation where each pair of
employees needs the ability to communicate securely. Using public-key
cryptography, it suffices for each employee to store just a single private
key (their own) and the public keys of all other employees. Importantly,
these latter keys do not need to be kept secret; they could even be stored
in some central (public) repository.

3. Finally, public-key cryptography is (more) suitable for open environ-
ments where parties who have never previously interacted want the abil-
ity to communicate securely. As one commonplace example, a company
can post its public key on-line; a user making a purchase can obtain
the company’s public key, as needed, when they need to encrypt their
credit-card information to send to that company.

The invention of public-key encryption was a revolution in cryptography.
It is no coincidence that until the late 1970s and early 1980s, encryption and
cryptography in general belonged to the domain of intelligence and military
organizations, and only with the advent of public-key techniques did the use
of cryptography become widespread.

Why study private-key cryptography? It should be apparent that public-
key cryptography is strictly stronger than private-key cryptography; in partic-
ular, any public-key encryption scheme could be used as a private-key encryp-
tion scheme. (The communicating users can simply share both the public key
and the private key. If secrecy for encrypted messages holds even when the
eavesdropper knows the public key, then it clearly holds when the public key is
kept secret!) So why did we bother studying private-key cryptography at all?
The answer is simple: private-key cryptography is much more efficient than
public-key cryptography, and should be used in settings where it is appropri-
ate. That is, in cases where it is possible for communicating parties to share
a key, private-key cryptography should be used. This includes small-scale,
closed systems of users as well as applications like disk encryption. Moroever,
as we will see in Sections 12.3 and 13.7, private-key encryption is used in the
public-key setting to obtain better efficiency.

References and Additional Reading

We have only briefly discussed the problems of key distribution and key
management. For more information, we recommend looking at textbooks on
network security, such as the one by Kaufman et al. [113].

Key Management and the Public-Key Revolution 399

We have not made any attempt to capture the full history of the devel-
opment of public-key cryptography. Others besides Diffie and Hellman were
working on similar ideas in the 1970s. One researcher in particular doing
similar and independent work was Ralph Merkle, considered by many to be a
co-inventor of public-key cryptography (although he published after Diffie and
Hellman). We also mention Michael Rabin, who developed constructions of
signature schemes and public-key encryption schemes based on the hardness of
factoring about one year after the work of Rivest, Shamir, and Adleman [171].
We highly recommend reading the original paper by Diffie and Hellman [65],
and refer the reader to the book by Levy [129] for more on the political and
historical aspects of the public-key revolution.

Interestingly, aspects of public-key cryptography were discovered in the in-
telligence community before being published in the open scientific literature.
In the early 1970s, James Ellis, Clifford Cocks, and Malcolm Williamson of
the British intelligence agency GCHQ invented the notion of public-key cryp-
tography, a variant of RSA encryption, and a variant of the Diffie–Hellman
key-exchange protocol. Their work was not declassified until 1997. Although
the underlying mathematics of public-key cryptography may have been dis-
covered before 1976, it is fair to say that the widespread ramifications of this
new technology were not appreciated until Diffie and Hellman came along.

Exercises

11.1 Let Π be a key-exchange protocol, and (Enc,Dec) be a private-key en-
cryption scheme. Consider the following interactive protocol Π′ for en-
crypting a message: first, the sender and receiver run Π to generate a
shared key k. Next, the sender computes c ← Enck(m) and sends c to
the other party, who decrypts and recovers m using k.

(a) Formulate a definition of indistinguishable encryptions in the pres-
ence of an eavesdropper (cf. Definition 3.8) appropriate for this
interactive setting.

(b) Prove that if Π is secure in the presence of an eavesdropper and
(Enc,Dec) has indistinguishable encryptions in the presence of an
eavesdropper, then Π′ satisfies your definition.

11.2 Show that, for either of the groups considered in Sections 9.3.3 or 9.3.4,
a uniform group element (expressed using the natural representation) is
easily distinguishable from a uniform bit-string of the same length.

11.3 Describe a man-in-the-middle attack on the Diffie–Hellman protocol
where the adversary shares a key kA with Alice and a (different) key kB
with Bob, and Alice and Bob cannot detect that anything is wrong.

400 Introduction to Modern Cryptography

11.4 Consider the following key-exchange protocol:

(a) Alice chooses uniform k, r ∈ {0, 1}n, and sends s := k ⊕ r to Bob.

(b) Bob chooses uniform t ∈ {0, 1}n, and sends u := s⊕ t to Alice.

(c) Alice computes w := u⊕ r and sends w to Bob.

(d) Alice outputs k and Bob outputs w ⊕ t.

Show that Alice and Bob output the same key. Analyze the security of
this protocol against a passive eavesdropper.

Chapter 12

Public-Key Encryption

12.1 Public-Key Encryption – An Overview

The introduction of public-key encryption marked a revolution in cryptogra-
phy. Until that time, cryptographers had relied exclusively on shared, secret
keys to achieve private communication. Public-key techniques, in contrast,
enable parties to communicate privately without having agreed on any secret
information in advance. As we have already noted, it is quite amazing and
counterintuitive that this is possible: it means that two people on opposite
sides of a room who can only communicate by shouting to each other, and
have no initial shared secret, can talk in such a way that no one else in the
room learns anything about what they are saying!

In the setting of private-key encryption, two parties agree on a secret key
that can be used, by either party, for both encryption and decryption. Public-
key encryption is asymmetric in both these respects. One party (the receiver)
generates a pair of keys (pk, sk), called the public key and the private key,
respectively. The public key is used by a sender to encrypt a message; the
receiver uses the private key to decrypt the resulting ciphertext.

Since the goal is to avoid the need for two parties to meet in advance to
agree on any information, how does the sender learn pk? At an abstract
level, there are two ways this can occur. Say Alice is the receiver, and Bob
is the sender. In the first approach, when Alice learns that Bob wants to
communicate with her, she can at that point generate (pk, sk) (assuming she
hasn’t done so already) and then send pk to Bob in the clear ; Bob can then
use pk to encrypt his message. We emphasize that the channel between Alice
and Bob may be public, but is assumed to be authenticated, meaning that
the adversary cannot modify the public key sent by Alice to Bob (and, in
particular, cannot replace pk with its own public key). In Section 13.6 we
discuss how public keys can be distributed over unauthenticated channels.

An alternative approach is for Alice to generate her keys (pk, sk) in advance,
independently of any particular sender. (In fact, at the time of key generation
Alice need not be aware that Bob wants to talk to her, or even that Bob exists.)
Alice can widely disseminate her public key pk by, say, publishing it on her
webpage, putting it on her business cards, or placing it in a public directory.
Now, anyone who wishes to communicate privately with Alice can look up

401

402 Introduction to Modern Cryptography

her public key and proceed as above. Multiple senders can communicate
multiple times with Alice using the same public key pk for encrypting all
their communication.

Note that pk is inherently public—and can thus be learned easily by an
attacker—in either of the above scenarios. In the first case, an adversary
eavesdropping on the communication between Alice and Bob obtains pk di-
rectly; in the second case, an adversary could just as well look up Alice’s public
key on its own. We see that the security of public-key encryption cannot rely
on secrecy of pk, but must instead rely on secrecy of sk. It is therefore crucial
that Alice not reveal her private key to anyone, including the sender Bob.

Comparison to Private-Key Encryption

Perhaps the most obvious difference between private- and public-key en-
cryption is that the former assumes complete secrecy of all cryptographic keys,
whereas the latter requires secrecy only for the private key sk. Although this
may seem like a minor distinction, the ramifications are huge: in the private-
key setting the communicating parties must somehow be able to share the
secret key without allowing any third party to learn it, whereas in the public-
key setting the public key can be sent from one party to the other over a
public channel without compromising security. For parties shouting across a
room or, more realistically, communicating over a public WiFi network or the
Internet, public-key encryption is the only option.

Another important distinction is that private-key encryption schemes use
the same key for both encryption and decryption, whereas public-key encryp-
tion schemes use different keys for each operation. That is, public-key en-
cryption is inherently asymmetric. This asymmetry in the public-key setting
means that the roles of sender and receiver are not interchangeable as they
are in the private-key setting: a single key-pair allows communication in one
direction only. (Bidirectional communication can be achieved in a number of
ways; the point is that a single invocation of a public-key encryption scheme
forces a distinction between one user who acts as a receiver and other users
who act as senders.) In addition, a single instance of a public-key encryption
scheme enables multiple senders to communicate privately with a single re-
ceiver, in contrast to the private-key case where a secret key shared between
two parties enables private communication between those two parties only.

Summarizing and elaborating the preceding discussion, we see that public-
key encryption has the following advantages relative to private-key encryption:

� Public-key encryption addresses (to some extent) the key-distribution
problem, since communicating parties do not need to secretly share a
key in advance of their communication. Two parties can communicate
secretly even if all communication between them is monitored.

� When a single receiver is communicating with N senders (e.g., an on-line
merchant processing credit-card orders from multiple purchasers), it is

Public-Key Encryption 403

much more convenient for the receiver to store a single private key sk
rather than to share, store, and manage N different secret keys (i.e., one
for each sender).

� When using public-key encryption the number and identities of potential
senders need not be known at the time of key generation. This allows
enormous flexibility in “open systems.”

The fact that public-key encryption schemes allow anyone to act as a sender
can be a drawback when a receiver only wants to receive messages from one
specific individual. In that case, an authenticated (private-key) encryption
scheme would be a better choice than public-key encryption.

The main disadvantage of public-key encryption is that it is roughly 2–3
orders of magnitude slower than private-key encryption. (It is difficult to
give an exact comparison since the relative efficiency depends on the exact
schemes under consideration as well as various implementation details.) It
can be a challenge to implement public-key encryption in severely resource-
constrained devices like smartcards or radio-frequency identification (RFID)
tags. Even when a desktop computer is performing cryptographic operations,
carrying out thousands of such operations per second (as in the case of a
website processing credit-card transactions) may be prohibitive. Thus, when
private-key encryption is an option (i.e., if two parties can securely share a
key in advance), it should be used.

As we will see in Section 12.3, private-key encryption is used in the public-
key setting to improve the efficiency of (public-key) encryption for long mes-
sages. A thorough understanding of private-key encryption is therefore crucial
for appreciating how public-key encryption is implemented in practice.

Secure Distribution of Public Keys

In our entire discussion thus far, we have implicitly assumed that the ad-
versary is passive; that is, the adversary only eavesdrops on communication
between the sender and receiver but does not actively interfere with the com-
munication. Equivalently, we assume the communication channel between
the sender and receiver is authenticated, at least for the initial sharing of the
public key. If the adversary has the ability to tamper with all communication
between the honest parties, and the honest parties share no keys in advance,
then privacy simply cannot be achieved. For example, if a receiver Alice sends
her public key pk to Bob but the adversary replaces it with a key pk′ of its
own (for which it knows the matching private key sk′), then even though Bob
encrypts his message using pk′ the adversary will easily be able to recover the
message (using sk′). A similar attack works if an adversary is able to change
the value of Alice’s public key that is stored in some public directory, or if
the adversary can tamper with the public key as it is transmitted from the
public directory to Bob. If Alice and Bob do not share any information in
advance, and are not willing to rely on some mutually trusted third party,

404 Introduction to Modern Cryptography

there is nothing Alice or Bob can do to prevent active attacks of this sort, or
even to tell that such an attack is taking place.1

Importantly, our treatment of public-key encryption in this chapter assumes
that senders are able to obtain a legitimate copy of the receiver’s public key.
(This will be implicit in the security definitions we provide.) That is, we
assume secure key distribution. This assumption is made not because active
attacks of the type discussed above are of no concern—in fact, they repre-
sent a serious threat that must be dealt with in any real-world system that
uses public-key encryption. Rather, this assumption is made because there
exist other mechanisms for preventing active attacks (see, for example, Sec-
tion 13.6), and it is therefore convenient (and useful) to decouple the study of
secure public-key encryption from the study of secure public-key distribution.

12.2 Definitions

We begin by defining the syntax of public-key encryption. The definition
is very similar to Definition 3.7, with the exception that instead of working
with just one key, we now have distinct encryption and decryption keys.

DEFINITION 12.1 A public-key encryption scheme is a triple of proba-
bilistic polynomial-time algorithms (Gen,Enc,Dec) such that:

1. The key-generation algorithm Gen takes as input the security parameter
1n and outputs a pair of keys (pk, sk). We refer to the first of these
as the public key and the second as the private key. We assume for
convenience that pk and sk each has length at least n, and that n can
be determined from pk, sk.

The public key pk defines a message space Mpk.

2. The encryption algorithm Enc takes as input a public key pk and message
m ∈Mpk, and outputs a ciphertext c; we denote this by c← Encpk(m).
(Looking ahead, Enc will need to be probabilistic in order to achieve
meaningful security.)

3. The deterministic decryption algorithm Dec takes as input a private key
sk and a ciphertext c, and outputs a message m or a special symbol ⊥
denoting failure. We write this as m := Decsk(c).

It is required that, except with negligible probability over the randomness of
Gen and Enc, we have Decsk(Encpk(m)) = m for any message m ∈Mpk.

1In our “shouting-across-a-room” scenario, Alice and Bob can detect when an adversary in-
terferes with the communication. But this is only because: (1) the adversary cannot prevent
Alice’s messages from reaching Bob, and (2) Alice and Bob “share” in advance information
(e.g., the sound of their voices) that allows them to “authenticate” their communication.

Public-Key Encryption 405

The important difference from the private-key setting is that the key-
generation algorithm Gen now outputs two keys instead of one. The public
key pk is used for encryption, while the private key sk is used for decryption.
Reiterating our earlier discussion, pk is assumed to be widely distributed so
that anyone can encrypt messages for the party who generated this key, but
sk must be kept private by the receiver in order for security to possibly hold.

We allow for a negligible probability of decryption error and, indeed, some of
the schemes we present will have a negligible error probability (e.g., if a prime
needs to be chosen, but with negligible probability a composite is obtained
instead). Despite this, we will generally ignore the issue from here on.

For practical usage of public-key encryption, we will want the message space
to be bit-strings of some length (and, in particular, to be independent of
the public key). When we describe encryption schemes with some message
space Mpk, we will in such cases also specify how to encode bit-strings as
elements of M (unless it is obvious). This encoding must be both efficiently
computable and efficiently reversible, so the receiver can recover the bit-string
that was encrypted.

12.2.1 Security against Chosen-Plaintext Attacks

We initiate our treatment of security by introducing the “natural” coun-
terpart of Definition 3.8 in the public-key setting. Since extensive motivation
for this definition (as well as the others we will see) has already been given in
Chapter 3, the discussion here will be relatively brief and will focus primarily
on the differences between the private-key and the public-key settings.

Given a public-key encryption scheme Π = (Gen,Enc,Dec) and an adversary
A, consider the following experiment:

The eavesdropping indistinguishability experiment PubKeav
A,Π(n):

1. Gen(1n) is run to obtain keys (pk, sk).

2. Adversary A is given pk, and outputs a pair of equal-length
messages m0,m1 ∈Mpk.

3. A uniform bit b ∈ {0, 1} is chosen, and then a ciphertext
c← Encpk(mb) is computed and given to A. We call c the
challenge ciphertext.

4. A outputs a bit b′. The output of the experiment is 1 if b′ = b,
and 0 otherwise. If b′ = b we say that A succeeds.

DEFINITION 12.2 A public-key encryption scheme Π = (Gen,Enc,Dec)
has indistinguishable encryptions in the presence of an eavesdropper if for all
probabilistic polynomial-time adversaries A there is a negligible function negl
such that

Pr[PubKeav
A,Π(n) = 1] ≤ 1

2
+ negl(n).

406 Introduction to Modern Cryptography

The main difference between the above definition and Definition 3.8 is that
here A is given the public key pk. Furthermore, we allow A to choose its
messages m0 and m1 based on this public key. This is essential when defining
security of public-key encryption since, as discussed previously, it makes sense
to assume that the adversary knows the public key of the recipient.

The seemingly “minor” modification of giving the adversary A the public
key pk has a tremendous impact: it effectively gives A access to an encryp-
tion oracle for free. (The concept of an encryption oracle is explained in
Section 3.4.2.) This is true because the adversary, given pk, can encrypt
any message m on its own by simply computing Encpk(m). (As always, A
is assumed to know the algorithm Enc.) The upshot is that Definition 12.2
is equivalent to CPA-security (i.e., security against chosen-plaintext attacks),
where this is defined in a manner analogous to Definition 3.21 with the only
difference being that the attacker is given the public key in the corresponding
experiment. We thus have:

PROPOSITION 12.3 If a public-key encryption scheme has indistin-
guishable encryptions in the presence of an eavesdropper, it is CPA-secure.

This is in contrast to the private-key setting, where there exist schemes
that have indistinguishable encryptions in the presence of an eavesdropper but
are insecure under a chosen-plaintext attack (see Proposition 3.19). Further
differences from the private-key setting that follow almost immediately as
consequences of the above are discussed next.

Impossibility of perfectly secret public-key encryption. Perfectly se-
cret public-key encryption could be defined analogously to Definition 2.3 by
conditioning on the entire view of an eavesdropper (i.e., including the public
key). Equivalently, it could be defined by extending Definition 12.2 to require
that for all adversaries A (not only efficient ones), we have:

Pr[PubKeav
A,Π(n) = 1] =

1

2
.

In contrast to the private-key setting, however, perfectly secret public-key
encryption is impossible, regardless of how long the keys are or how small the
message space is. In fact, an unbounded adversary given pk and a ciphertext c
computed via c ← Encpk(m) can determine m with probability 1 (assuming
errorless encryption). A proof of this is left as Exercise 12.1.

Insecurity of deterministic public-key encryption. As noted in the
context of private-key encryption, no deterministic encryption scheme can be
CPA-secure. The same is true here:

THEOREM 12.4 No deterministic public-key encryption scheme is CPA-
secure.

Public-Key Encryption 407

Because Theorem 12.4 is so important, it merits more discussion. The
theorem is not an “artefact” of our security definition, or an indication that
our definition is too strong. Deterministic public-key encryption schemes are
vulnerable to practical attacks in realistic scenarios and should not be used.
The reason is that a deterministic scheme not only allows the adversary to
determine when the same message is sent twice (as in the private-key setting),
but also allows the adversary to recover the message if the set of possible
messages is small. For example, consider a professor encrypting students’
grades. Here, an eavesdropper knows that each student’s grade is one of
{A,B,C,D, F}. If the professor uses a deterministic public-key encryption
scheme, an eavesdropper can determine any student’s grade by encrypting all
possible grades and comparing the results to the corresponding ciphertext.

Although Theorem 12.4 seems deceptively simple, for a long time many real-
world systems were designed using deterministic public-key encryption. When
public-key encryption was introduced, it is fair to say that the importance
of probabilistic encryption was not yet fully realized. The seminal work of
Goldwasser and Micali, in which (something equivalent to) Definition 12.2
was proposed and Theorem 12.4 was stated, marked a turning point in the
field of cryptography. The importance of pinning down one’s intuition in a
formal definition and looking at things the right way for the first time—even
if seemingly simple in retrospect—should not be underestimated.

12.2.2 Multiple Encryptions

As in Chapter 3, it is important to understand the effect of using the same
key (in this case, the same public key) for encrypting multiple messages. We
could formulate security in such a setting by having an adversary output
two lists of plaintexts, as in Definition 3.18. For the reasons discussed in
Section 3.4.3, however, we choose instead to use a definition in which the
attacker is given access to a “left-or-right” oracle LRpk,b that, on input a pair
of equal-length messages m0,m1, computes the ciphertext c← Encpk(mb) and
returns c. The attacker is allowed to query this oracle as many times as it
likes, and the definition therefore models security when multiple (unknown)
messages are encrypted using the same public key.

Formally, consider the following experiment defined for an adversary A and
a public-key encryption scheme Π = (Gen,Enc,Dec):

The LR-oracle experiment PubKLR-cpa
A,Π (n):

1. Gen(1n) is run to obtain keys (pk, sk).

2. A uniform bit b ∈ {0, 1} is chosen.

3. The adversary A is given input pk and oracle access to LRpk,b(·, ·).
4. The adversary A outputs a bit b′.

5. The output of the experiment is defined to be 1 if b′ = b, and
0 otherwise. If PubKLR-cpa

A,Π (n) = 1, we say that A succeeds.

408 Introduction to Modern Cryptography

DEFINITION 12.5 A public-key encryption scheme Π = (Gen,Enc,Dec)
has indistinguishable multiple encryptions if for all probabilistic polynomial-time
adversaries A there exists a negligible function negl such that:

Pr[PubKLR-cpa
A,Π (n) = 1] ≤ 1

2
+ negl(n).

We will show that any CPA-secure scheme automatically has indistinguish-
able multiple encryptions; that is, in the public-key setting, security for en-
cryption of a single message implies security for encryption of multiple mes-
sages. This means if we can prove security of some scheme with respect to
Definition 12.2, which is simpler and easier to work with, we may then con-
clude that the scheme satisfies Definition 12.5, a seemingly stronger definition
that more accurately models real-world usage of public-key encryption. A
proof of the following theorem is given below.

THEOREM 12.6 If public-key encryption scheme Π is CPA-secure, then
it also has indistinguishable multiple encryptions.

An analogous result in the private-key setting was stated, but not proved,
as Theorem 3.23.

Encrypting arbitrary-length messages. An immediate consequence of
Theorem 12.6 is that a CPA-secure public-key encryption scheme for fixed-
length messages implies a public-key encryption scheme for arbitrary-length
messages satisfying the same notion of security. We illustrate this in the
extreme case when the original scheme encrypts only 1-bit messages. Say
Π = (Gen,Enc,Dec) is an encryption scheme for single-bit messages. We can
construct a new scheme Π′ = (Gen,Enc′,Dec′) that has message space {0, 1}∗
by defining Enc′ as follows:

Enc′pk(m) = Encpk(m1), . . . ,Encpk(m`), (12.1)

where m = m1 · · ·m`. (The decryption algorithm Dec′ is constructed in the
obvious way.) We have:

CLAIM 12.7 Let Π and Π′ be as above. If Π is CPA-secure, then so is Π′.

The claim follows since we can view encryption of the message m using Π′

as encryption of ` messages (m1, . . . ,m`) using scheme Π.

A note on terminology. We have introduced three definitions of secu-
rity for public-key encryption schemes—indistinguishable encryptions in the
presence of an eavesdropper, CPA-security, and indistinguishable multiple
encryptions—that are all equivalent. Following the usual convention in the
cryptographic literature, we will simply use the term “CPA-security” to refer
to schemes meeting these notions of security.

Public-Key Encryption 409

*Proof of Theorem 12.6

The proof of Theorem 12.6 is rather involved. We therefore provide some
intuition before turning to the details. For this intuitive discussion we assume
for simplicity that A makes only two calls to the LR oracle in experiment
PubKLR-cpa

A,Π (n). (In the full proof, the number of calls can be arbitrary.)
Fix an arbitrary ppt adversary A and a CPA-secure public-key encryption

scheme Π, and consider an experiment PubKLR-cpa2
A,Π (n) where A can make

only two queries to the LR oracle. Denote the queries made by A to the
oracle by (m1,0,m1,1) and (m2,0,m2,1); note that the second pair of messages
may depend on the first ciphertext obtained by A from the oracle. In the
experiment, A receives either a pair of ciphertexts (Encpk(m1,0),Encpk(m2,0))
(if b = 0), or a pair of ciphertexts (Encpk(m1,1),Encpk(m2,1)) (if b = 1). We
write A(pk,Encpk(m1,0),Encpk(m2,0)) to denote the output of A in the first
case, and analogously for the second.

Let ~C0 denote the distribution of ciphertext pairs in the first case, and ~C1

the distribution of ciphertext pairs in the second case. To show that Defini-
tion 12.5 holds (for PubKLR-cpa2

A,Π), we need to prove that A cannot distinguish

between being given a pair of ciphertexts distributed according to ~C0, or a
pair of ciphertexts distributed according to ~C1. That is, we need to prove
that there is a negligible function negl such that∣∣Pr[A (pk,Encpk(m1,0),Encpk(m2,0)) = 1]

−Pr[A (pk,Encpk(m1,1),Encpk(m2,1)) = 1]
∣∣ ≤ negl(n). (12.2)

(This is equivalent to Definition 12.5 for the same reason that Definition 3.9
is equivalent to Definition 3.8.) To prove this, we will show that

1. CPA-security of Π implies that A cannot distinguish between the case
when it is given a pair of ciphertexts distributed according to ~C0, or
a pair of ciphertexts (Encpk(m1,0),Encpk(m2,1)), which corresponds to
encrypting the first message in A’s first oracle query and the second
message in A’s second oracle query. (Although this cannot occur in

PubKLR-cpa2
A,Π (n), we can still ask what A’s behavior would be if given

such a ciphertext pair.) Let ~C01 denote the distribution of ciphertext
pairs in this latter case.

2. Similarly, CPA-security of Π implies that A cannot distinguish between
the case when it is given a pair of ciphertexts distributed according to
~C01, or a pair of ciphertexts distributed according to ~C1.

The above says that A cannot distinguish between distributions ~C0 and ~C01,
nor between distributions ~C01 and ~C1. We conclude (using simple algebra)

that A cannot distinguish between distributions ~C0 and ~C1.
The crux of the proof, then, is showing that A cannot distinguish between

being given a pair of ciphertexts distributed according to ~C0, or a pair of

410 Introduction to Modern Cryptography

ciphertexts distributed according to ~C01. (The other case follows similarly.)
That is, we want to show that there is a negligible function negl for which∣∣Pr[A (pk,Encpk(m1,0),Encpk(m2,0)) = 1]

− Pr[A (pk,Encpk(m1,0),Encpk(m2,1)) = 1]
∣∣ ≤ negl(n). (12.3)

Note that the only difference between the input of the adversary A in each
case is in the second element. Intuitively, indistinguishability follows from
the single-message case since A can generate Encpk(m1,0) by itself. Formally,
consider the following ppt adversary A′ running in experiment PubKeav

A′,Π(n):

Adversary A′:

1. On input pk, adversary A′ runs A(pk) as a subroutine.

2. When A makes its first query (m1,0,m1,1) to the LR oracle,
A′ computes c1 ← Encpk(m1,0) and returns c1 to A as the
response from the oracle.

3. When A makes its second query (m2,0,m2,1) to the LR or-
acle, A′ outputs (m2,0,m2,1) and receives back a challenge
ciphertext c2. This is returned to A as the response from the
LR oracle.

4. A′ outputs the bit b′ output by A.

Looking at experiment PubKeav
A′,Π(n), we see that when b = 0 then the chal-

lenge ciphertext c2 is computed as Encpk(m2,0). Thus,

Pr[A′ (Encpk(m2,0)) = 1] = Pr[A (Encpk(m1,0),Encpk(m2,0)) = 1]. (12.4)

(We suppress explicit mention of pk to save space.) In contrast, when b = 1
in experiment PubKeav

A′,Π(n), then c2 is computed as Encpk(m2,1) and so

Pr[A′ (Encpk(m2,1)) = 1] = Pr[A (Encpk(m1,0),Encpk(m2,1)) = 1]. (12.5)

CPA-security of Π implies that there is a negligible function negl such that

|Pr[A′(Encpk(m2,0)) = 1]− Pr[A′(Encpk(m2,1)) = 1]| ≤ negl(n).

This, together with Equations (12.4) and (12.5), yields Equation (12.3).
In almost exactly the same way, we can prove that:∣∣Pr[A (pk,Encpk(m1,0),Encpk(m2,1)) = 1]

− Pr[A (pk,Encpk(m1,1),Encpk(m2,1)) = 1]
∣∣ ≤ negl(n). (12.6)

Equation (12.2) follows by combining Equations (12.3) and (12.6).
The main complication that arises in the general case is that the number

of queries to the LR oracle is no longer fixed but may instead be an arbitrary

Public-Key Encryption 411

polynomial of n. In the formal proof this is handled using a hybrid argument.
(Hybrid arguments were used also in Chapter 8.)

PROOF (of Theorem 12.6) Let Π be a CPA-secure public-key encryp-

tion scheme and A an arbitrary ppt adversary in experiment PubKLR-cpa
A,Π (n).

Let t = t(n) be a polynomial upper bound on the number of queries made byA
to the LR oracle, and assume without loss of generality that A always queries
the oracle exactly this many times. For a given public key pk and 0 ≤ i ≤ t,
let LRipk denote the oracle that on input (m0,m1) returns Encpk(m0) for the
first i queries it receives, and returns Encpk(m1) for the next t − i queries it
receives. (That is, for the first i queries the first message in the input pair
is encrypted, and for the remaining queries the second message in the input
pair is encrypted.) We stress that each encryption is computed using uniform,
independent randomness. Using this notation, we have

Pr
[
PubKLR-cpa

A,Π (n) = 1
]

=
1

2
· Pr[ALRt

pk(pk) = 0] +
1

2
· Pr[ALR0

pk(pk) = 1]

because oracle LRtpk is equivalent to LRpk,0, and oracle LR0
pk is equivalent to

LRpk,1. To prove that Π satisfies Definition 12.5, we will show that for any
ppt A there is a negligible function negl′ such that∣∣∣Pr[ALRt

pk(pk) = 1]− Pr[ALR0
pk(pk) = 1]

∣∣∣ ≤ negl′(n). (12.7)

(As before, this is equivalent to Definition 12.5 for the same reason that Def-
inition 3.9 is equivalent to Definition 3.8.)

Consider the following ppt adversary A′ that eavesdrops on the encryption
of a single message:

Adversary A′:

1. A′, given pk, chooses a uniform index i← {1, . . . , t}.
2. A′ runs A(pk), answering its jth oracle query (mj,0,mj,1) as

follows:

(a) For j < i, adversary A′ computes cj ← Encpk(mj,0) and
returns cj to A as the response from its oracle.

(b) For j = i, adversary A′ outputs (mj,0,mj,1) and receives
back a challenge ciphertext cj . This is returned to A as
the response from its oracle.

(c) For j > i, adversary A′ computes cj ← Encpk(mj,1) and
returns cj to A as the response from its oracle.

3. A′ outputs the bit b′ that is output by A.

Consider experiment PubKeav
A′,Π(n). Fixing some choice of i = i∗, note that

if ci∗ is an encryption of mi∗,0 then the interaction of A with its oracle is

412 Introduction to Modern Cryptography

identical to an interaction with oracle LRi
∗

pk. Thus,

Pr[A′ outputs 1 | b = 0] =

t∑
i∗=1

Pr[i = i∗] · Pr[A′ outputs 1 | b = 0 ∧ i = i∗]

=

t∑
i∗=1

1

t
· Pr

[
ALRi∗

pk(pk) = 1
]
.

On the other hand, if ci∗ is an encryption of mi∗,1 then the interaction of A
with its oracle is identical to an interaction with oracle LRi

∗−1
pk , and so

Pr[A′ outputs 1 | b = 1] =

t∑
i∗=1

Pr[i = i∗] · Pr[A′ outputs 1 | b = 1 ∧ i = i∗]

=

t∑
i∗=1

1

t
· Pr

[
ALRi∗−1

pk (pk) = 1
]

=

t−1∑
i∗=0

1

t
· Pr

[
ALRi∗

pk(pk) = 1
]
.

Since A′ runs in polynomial time, the assumption that Π is CPA-secure
means that there exists a negligible function negl such that∣∣Pr[A′ outputs 1 | b = 0]− Pr[A′ outputs 1 | b = 1]

∣∣ ≤ negl(n).

But this means that

negl(n) ≥

∣∣∣∣∣
t∑

i∗=1

1

t
· Pr

[
ALRi∗

pk(pk) = 1
]
−

t−1∑
i∗=0

1

t
· Pr

[
ALRi∗

pk(pk) = 1
]∣∣∣∣∣

=
1

t
·
∣∣∣Pr
[
ALRt

pk(pk) = 1
]
− Pr

[
ALR0

pk(pk) = 1
]∣∣∣ ,

since all but one of the terms in each summation cancel. We conclude that∣∣∣Pr
[
ALRt

pk(pk) = 1
]
− Pr

[
ALR0

pk(pk) = 1
]∣∣∣ ≤ t(n) · negl(n).

Because t is polynomial, the function t · negl(n) is negligible. Since A was
an arbitrary ppt adversary, this shows that Equation (12.7) holds and so
completes the proof that Π has indistinguishable multiple encryptions.

12.2.3 Security against Chosen-Ciphertext Attacks

Chosen-ciphertext attacks, in which an adversary is able to obtain the de-
cryption of arbitrary ciphertexts of its choice (with one technical restriction

Public-Key Encryption 413

described below), are a concern in the public-key setting just as they are in
the private-key setting. In fact, they are arguably more of a concern in the
public-key setting since in that context a receiver expects to receive cipher-
texts from multiple senders who are possibly unknown in advance, whereas a
receiver in the private-key setting intends to communicate only with a single,
known sender using any particular secret key.

Assume an eavesdropper A observes a ciphertext c sent by a sender S to a
receiver R. Broadly speaking, in the public-key setting there are two ways in
which A might carry out a chosen-ciphertext attack:

� Amight send a modified ciphertext c′ toR on behalf of S. (For example,
in the context of encrypted e-mail, A might construct an encrypted e-
mail c′ and forge the “From” field so that it appears the e-mail originated
from S.) In this case, although it is unlikely that A would be able to
obtain the entire decryption m′ of c′, it might be possible for A to infer
some information about m′ based on the subsequent behavior of R.
Based on this information, A might be able to learn something about
the original message m.

� A might send a modified ciphertext c′ to R in its own name. In this
case, Amight obtain the entire decryption m′ of c′ ifR responds directly
to A. Even if A learns nothing about m′, this modified message may
have a known relation to the original message m that can be exploited
by A; see the third scenario below for an example.

The second class of attacks is specific to the setting of public-key encryption,
and has no analogue in the private-key case.

It is not hard to identify a number of realistic scenarios illustrating the
above types of attacks:

Scenario 1. Say a user S logs in to her bank account by sending to her bank
an encryption of her password pw concatenated with a timestamp. Assume
further that there are two types of error messages the bank sends: it returns
“password incorrect” if the encrypted password does not match the stored
password of S, and “timestamp incorrect” if the password is correct but the
timestamp is not.

If an adversary obtains a ciphertext c sent by S to the bank, the adversary
can now mount a chosen-ciphertext attack by sending ciphertexts c′ to the
bank on behalf of S and observing the error messages that are sent in response.
(This is similar to the padding-oracle attack that we saw in Section 5.1.1.)
In some cases, this information may be enough to allow the adversary to
determine the user’s entire password.

Scenario 2. Say S sends an encrypted e-mail c to R, and this e-mail is
observed by A. If A sends, in its own name, an encrypted e-mail c′ to R, then
R might reply to this e-mail and quote the decrypted text m′ corresponding

414 Introduction to Modern Cryptography

to c′. In this case, R is essentially acting as a decryption oracle for A and
might potentially decrypt any ciphertext that A sends it.

Scenario 3. An issue that is closely related to that of chosen-ciphertext
security is potential malleability of ciphertexts. We do not provice a formal
definition but instead only give the intuitive idea. An encryption scheme
is malleable if it has the following property: given an encryption c of some
unknown message m, it is possible to come up with a ciphertext c′ that is
an encryption of a message m′ that is related in some known way to m. For
example, perhaps given an encryption of m, it is possible to construct an
encryption of m + 1. (Later we will see natural examples of CPA-secure
schemes that are malleable; see also Section 15.2.3.)

Now imagine that R is running an auction, where two parties S and A
submit their bids by encrypting them using the public key of R. If a malleable
encryption scheme is used, it may be possible for an adversary A to always
place the higher bid (without bidding the maximum) by carrying out the
following attack: wait until S sends a ciphertext c corresponding to its bid m
(that is unknown to A); then send a ciphertext c′ corresponding to the bid
m′ = m + 1. Note that m (and m′, for that matter) remain unknown to A
until R announces the results, and so the possibility of such an attack does
not contradict the fact that the encryption scheme is CPA-secure. Schemes
secure against chosen-ciphertext attacks, on the other hand, can be shown to
be non-malleable and so are not vulnerable to such attacks.

The definition. Security against chosen-ciphertext attacks is defined by
suitable modification of the analogous definition from the private-key setting
(Definition 5.1). Given a public-key encryption scheme Π and an adversary
A, consider the following experiment:

The CCA indistinguishability experiment PubKcca
A,Π(n):

1. Gen(1n) is run to obtain keys (pk, sk).

2. The adversary A is given pk and access to a decryption oracle
Decsk(·). It outputs a pair of messages m0,m1 ∈Mpk of the
same length.

3. A uniform bit b ∈ {0, 1} is chosen, and then a ciphertext
c← Encpk(mb) is computed and given to A.

4. A continues to interact with the decryption oracle, but may
not request a decryption of c itself. Finally, A outputs a bit b′.

5. The output of the experiment is defined to be 1 if b′ = b, and
0 otherwise.

DEFINITION 12.8 A public-key encryption scheme Π = (Gen,Enc,Dec)
has indistinguishable encryptions under a chosen-ciphertext attack (or is CCA-
secure) if for all probabilistic polynomial-time adversaries A there exists a

Public-Key Encryption 415

negligible function negl such that

Pr[PubKcca
A,Π(n) = 1] ≤ 1

2
+ negl(n).

The natural analogue of Theorem 12.6 holds for CCA-security as well. That
is, if a scheme has indistinguishable encryptions under a chosen-ciphertext
attack then it has indistinguishable multiple encryptions under a chosen-
ciphertext attack (defined appropriately). Interestingly, however, the ana-
logue of Claim 12.7 does not hold for CCA-security.

As in Definition 5.1, we must prevent the attacker from submitting the
challenge ciphertext c to the decryption oracle in order for the definition to
be achievable. But this restriction does not make the definition meaningless
and, in particular, for each of the three motivating scenarios given earlier one
can argue that setting c′ = c is of no benefit to the attacker:

� In the first scenario involving password-based login, the attacker learns
nothing about S’s password by replaying c since in this case it already
knows that the error message “timestamp incorrect” will be returned.

� In the second scenario involving encrypted email, sending c′ = c to the
receiver would likely make the receiver suspicious and so it would refuse
to respond at all.

� In the final scenario involving an auction, R could easily detect cheat-
ing if the adversary’s encrypted bid is identical to the other party’s en-
crypted bid. Even if R ignores such cheating, all the attacker achieves
by replaying c is to submit the same bid as the honest party.

An analogue of authenticated encryption? In the setting of private-key
encryption, we introduced the notion of authenticated encryption (cf. Sec-
tion 5.2) and noted that it was even stronger than CCA-security. This notion
cannot be translated directly to the context of public-key encryption, where a
single public key is used by many senders to communicate to one receiver (in
contrast to the private-key case where a given key is used by only two parties
to communicate). Nevertheless, an analogue of authenticated encryption can
be considered in the public-key setting; see Section 13.8.

12.3 Hybrid Encryption and the KEM/DEM Paradigm

Claim 12.7 shows that any CPA-secure public-key encryption scheme for `′-
bit messages can be used to obtain a CPA-secure public-key encryption scheme
for messages of arbitrary length. Encrypting an `-bit message using this

416 Introduction to Modern Cryptography

approach requires γ
def
= d`/`′e invocations of the original encryption scheme,

meaning that both the computation and the ciphertext length are increased
by a multiplicative factor of γ relative to the underlying scheme.

It is possible to do better by using private-key encryption in tandem with
public-key encryption. This improves efficiency because private-key encryp-
tion is significantly faster than public-key encryption, and improves band-
width because private-key schemes have lower ciphertext expansion. The
resulting combination is called hybrid encryption and is used extensively in
practice. The basic idea is to use public-key encryption to obtain a shared
key k, and then encrypt the message m using a private-key encryption scheme
and key k. The receiver uses its long-term (asymmetric) private key to de-
rive k, and then uses private-key decryption (with key k) to recover the original
message. We stress that although private-key encryption is used as a compo-
nent, this is a full-fledged public-key encryption scheme by virtue of the fact
that the sender and receiver do not share any secret key in advance.

k

pk

c

m

c�

Enc�Enc

FIGURE 12.1: Hybrid encryption. Enc denotes a public-key encryption
scheme, while Enc′ is a private-key encryption scheme.

In a direct implementation of this idea (see Figure 12.1), the sender would
share k by (1) choosing a uniform value k and then (2) encrypting k using a
public-key encryption scheme. A more direct approach is to use a public-key
primitive called a key-encapsulation mechanism (KEM) to accomplish both
of these “in one shot.” This is advantageous both from a conceptual point of
view and in terms of efficiency, as we will see later.

A KEM has three algorithms similar in spirit to those of a public-key en-
cryption scheme. As before, the key-generation algorithm Gen is used to
generate a pair of public and private keys. In place of encryption, we now
have an encapsulation algorithm Encaps that takes only a public key as input
(and no message), and outputs a ciphertext c along with a key k. A corre-
sponding decapsulation algorithm Decaps is run by the receiver to recover k
from the ciphertext c using the private key. Formally:

DEFINITION 12.9 A key-encapsulation mechanism (KEM) is a tuple of

Public-Key Encryption 417

probabilistic polynomial-time algorithms (Gen,Encaps,Decaps) such that:

1. The key-generation algorithm Gen takes as input the security parame-
ter 1n and outputs a public-/private-key pair (pk, sk). We assume pk
and sk each has length at least n, and that n can be determined from pk.

2. The encapsulation algorithm Encaps takes as input a public key pk (which
implicitly defines n). It outputs a ciphertext c and a key k ∈ {0, 1}`(n)

where ` is the key length. We write this as (c, k)← Encapspk(1n).

3. The deterministic decapsulation algorithm Decaps takes as input a private
key sk and a ciphertext c, and outputs a key k or a special symbol ⊥
denoting failure. We write this as k := Decapssk(c).

It is required that with all but negligible probability over the randomness of
Gen and Encaps, if Encapspk(1n) outputs (c, k) then Decapssk(c) outputs k.

In the definition we assume for simplicity that Encaps always outputs (a
ciphertext c and) a key of some fixed length `(n). One could also consider a
more general definition in which Encaps takes 1` as an additional input and
outputs a key of length `.

Any public-key encryption scheme trivially gives a KEM by choosing a ran-
dom key k and encrypting it. As we will see, however, dedicated constructions
of KEMs can be more efficient.

k
pk

c

m

c�

Enc�Encaps

FIGURE 12.2: Hybrid encryption using the KEM/DEM approach.

Using a KEM (with key length n), we can implement hybrid encryption as
in Figure 12.2. The sender runs Encapspk(1n) to obtain c along with a key k;
it then uses a private-key encryption scheme to encrypt its message m, using
k as the key. In this context, the private-key encryption scheme is called a
data-encapsulation mechanism (DEM) for obvious reasons. The ciphertext
sent to the receiver includes both c and the ciphertext c′ from the private-key
scheme. Construction 12.10 gives a formal specification.

What is the efficiency of the resulting hybrid encryption scheme Πhy? For
some fixed value of n, let α denote the cost of encapsulating an n-bit key

418 Introduction to Modern Cryptography

CONSTRUCTION 12.10

Let Π = (Gen,Encaps,Decaps) be a KEM with key length n, and let
Π′ = (Gen′,Enc′,Dec′) be a private-key encryption scheme. Construct a
public-key encryption scheme Πhy = (Genhy,Enchy,Dechy) as follows:

� Genhy: on input 1n run Gen(1n) and use the public and private
keys (pk, sk) that are output.

� Enchy: on input a public key pk and a message m ∈ {0, 1}∗ do:

1. Compute (c, k)← Encapspk(1n).

2. Compute c′ ← Enc′k(m).

3. Output the ciphertext 〈c, c′〉.

� Dechy: on input a private key sk and a ciphertext 〈c, c′〉 do:

1. Compute k := Decapssk(c).

2. Output the message m := Dec′k(c′).

Hybrid encryption using the KEM/DEM paradigm.

using Encaps, and let β denote the cost (per bit of plaintext) of encryption
using Enc′. Assume |m| > n, which is the interesting case. Then the cost, per
bit of plaintext, of encrypting a message m using Πhy is

α+ β · |m|
|m|

=
α

|m|
+ β, (12.8)

which approaches β for sufficiently long m. In the limit of very long messages,
then, the cost per bit incurred by the public-key encryption scheme Πhy is the
same as the cost per bit of the private-key scheme Π′. Hybrid encryption thus
allows us to achieve the functionality of public-key encryption at the efficiency
of private-key encryption, at least for sufficiently long messages.

A similar calculation can be used to measure the effect of hybrid encryption
on the ciphertext length. For some fixed value of n, let L denote the length
of the ciphertext output by Encaps, and say the private-key encryption of
a message m using Enc′ results in a ciphertext of length n + |m| (this can
be achieved using one of the modes of encryption discussed in Section 3.6;
actually, even ciphertext length |m| is possible since, as we will see, Π′ need
not be CPA-secure). Then the total length of a ciphertext in scheme Πhy is

L+ n+ |m|. (12.9)

In contrast, when using block-by-block encryption as in Equation (12.1), and
assuming that public-key encryption of an n-bit message using Enc results in a
ciphertext of length L, encryption of a message m would result in a ciphertext
of length L · d|m|/ne. The ciphertext length given by Equation (12.9) is a
significant improvement for sufficiently long m.

Public-Key Encryption 419

We can use some rough estimates to get a sense for what the above results
mean in practice. (We stress that these numbers are only meant to give
the reader a feel for the improvement; realistic values would depend on a
variety of factors.) A typical value for the length of the key k might be n =
128. Furthermore, a “base” public-key encryption scheme might yield 256-bit
ciphertexts when encrypting 128-bit messages; assume a KEM has ciphertexts
of the same length when encapsulating a 128-bit key. Letting α, as before,
denote the computational cost of public-key encryption/encapsulation of a
128-bit key, we see that block-by-block encryption as in Equation (12.1) would
encrypt a 1 MB (≈ 220-bit) message with computational cost α · d220/128e ≈
8200·α and the ciphertext would be 2 MB long. Compare this to the efficiency
of hybrid encryption. Letting β, as before, denote the per-bit computational
cost of private-key encryption, a reasonable approximation is β ≈ α/211.
Using Equation (12.8), we see that the overall computational cost for hybrid
encryption for a 1 Mb message is

α+ 220 · α
211
≈ 512 · α ,

and the ciphertext would be only slightly longer than 1 MB. Thus, hybrid
encryption improves the computational efficiency in this case by a factor of 16,
and the ciphertext length by a factor of 2.

It remains to analyze the security of Πhy. This, of course, depends on the
security of its underlying components Π and Π′. In the following sections we
define notions of CPA-security and CCA-security for KEMs, and show:

� If Π is a CPA-secure KEM and the private-key scheme Π′ is EAV-secure,
then Πhy is a CPA-secure public-key encryption scheme. Notice that it
suffices for Π′ to satisfy a weaker definition of security—which, recall,
does not imply CPA-security in the private-key setting—in order for the
hybrid scheme Πhy to be CPA-secure. Intuitively, the reason is that a
fresh, uniform key k is chosen each time a new message is encrypted.
Since each key k is used only once, security of Π′ for a single encryption
suffices for CPA-security of the hybrid scheme Πhy. This means that
basic private-key encryption using a pseudorandom generator (or stream
cipher), as in Construction 3.17, suffices.

� If Π is a CCA-secure KEM and Π′ is a CCA-secure private-key encryp-
tion scheme, then Πhy is a CCA-secure public-key encryption scheme.

12.3.1 CPA-Security

For simplicity, we assume in this and the next section a KEM with key
length n. We define a notion of CPA-security for KEMs by analogy with Def-
inition 12.2. As there, the adversary here eavesdrops on a single ciphertext c.
Definition 12.2 requires that the attacker is unable to distinguish whether c is
an encryption of some message m0 or some other message m1. With a KEM

420 Introduction to Modern Cryptography

there is no message, and we require instead that the encapsulated key k is
indistinguishable from a uniform key that is independent of the ciphertext c.

Let Π = (Gen,Encaps,Decaps) be a KEM and A an arbitrary adversary.

The CPA indistinguishability experiment KEMcpa
A,Π(n):

1. Gen(1n) is run to obtain keys (pk, sk). Then Encapspk(1n) is
run to generate (c, k) with k ∈ {0, 1}n.

2. A uniform bit b ∈ {0, 1} is chosen. If b = 0 set k̂ := k. If

b = 1 then choose a uniform k̂ ∈ {0, 1}n.

3. Give (pk, c, k̂) to A, who outputs a bit b′. The output of the
experiment is defined to be 1 if b′ = b, and 0 otherwise.

In the experiment, A is given the ciphertext c and either the actual key k
corresponding to c, or an independent, uniform key. The KEM is CPA-secure
if no efficient adversary can distinguish between these possibilities.

DEFINITION 12.11 A key-encapsulation mechanism Π is CPA-secure
if for all probabilistic polynomial-time adversaries A there exists a negligible
function negl such that

Pr[KEMcpa
A,Π(n) = 1] ≤ 1

2
+ negl(n).

In the remainder of this section we prove the following theorem:

THEOREM 12.12 If Π is a CPA-secure KEM and Π′ is an EAV-secure
private-key encryption scheme, then Πhy as in Construction 12.10 is a CPA-
secure public-key encryption scheme.

Before proving the theorem formally, we give some intuition. Let the no-

tation “X
c≡ Y ” mean that no polynomial-time adversary can distinguish

between two distributions X and Y . (This concept is treated more formally
in Section 8.8, although we do not rely on that section here.) For example, let

Encaps
(1)
pk (1n) (resp., Encaps

(2)
pk (1n)) denote the ciphertext (resp., key) output

by Encaps. The fact that Π is CPA-secure means that(
pk,Encapspk(1n)

) c≡
(
pk,Encaps

(1)
pk (1n), k′

)
,

where pk is generated by Gen(1n) and k′ is chosen independently and uni-
formly from {0, 1}n. Similarly, the fact that Π′ is EAV-secure means that

for any m0,m1 output by A we have Enc′k(m0)
c≡ Enc′k(m1) if k is chosen

uniformly at random.

Public-Key Encryption 421

(
pk,Encaps

(1)
pk (1n), Enc′k(m0)

)

?

6
(by security of Π)(
pk,Encaps

(1)
pk (1n), Enc′k′(m0)

)
-�

� -
(by “transitivity”)

(by security of Π′)

(
pk,Encaps

(1)
pk (1n), Enc′k′(m1)

)

(
pk,Encaps

(1)
pk (1n), Enc′k(m1)

)

?

6
(by security of Π)

FIGURE 12.3: High-level structure of the proof of Theorem 12.12 (the
arrows represent indistinguishability).

In order to prove CPA-security of Πhy we need to show that(
pk,Encaps

(1)
pk (1n),Enc′k(m0)

)
c≡
(
pk,Encaps

(1)
pk (1n),Enc′k(m1)

)
(12.10)

for m0,m1 output by a ppt adversary A, where k = Encaps
(2)
pk (1n). (Equa-

tion (12.10) shows that Πhy has indistinguishable encryptions in the presence
of an eavesdropper; by Proposition 12.3 this implies that Πhy is CPA-secure.)

The proof proceeds in three steps. (See Figure 12.3.) First we prove that(
pk,Encaps

(1)
pk (1n),Enc′k(m0)

)
c≡
(
pk,Encaps

(1)
pk (1n),Enc′k′(m0)

)
, (12.11)

where on the left k is output by Encaps
(2)
pk (1n), and on the right k′ is an inde-

pendent, uniform key. This follows via a fairly straightforward reduction, since

CPA-security of Π means exactly that Encaps
(2)
pk (1n) cannot be distinguished

from a uniform key k′ even given pk and Encaps
(1)
pk (1n).

Next, we prove that(
pk,Encaps

(1)
pk (1n),Enc′k′(m0)

)
c≡
(
pk,Encaps

(1)
pk (1n),Enc′k′(m1)

)
. (12.12)

Here the difference is between encrypting m0 or m1 using Π′ and a uniform,
independent key k′. Equation (12.12) follows since Π′ is EAV-secure.

Exactly as in the case of Equation (12.11), we can also show that(
pk,Encaps

(1)
pk (1n),Enc′k(m1)

)
c≡
(
pk,Encaps

(1)
pk (1n),Enc′k′(m1)

)
, (12.13)

(where, again, on the left k is output by Encaps
(2)
pk (1n)) using CPA-security

of Π. Equations (12.11)–(12.13) imply, by transitivity, the desired result of
Equation (12.10). (Transitivity will be implicit in the proof we give below.)

We now present the full proof.

422 Introduction to Modern Cryptography

PROOF (of Theorem 12.12) We prove that Πhy has indistinguishable
encryptions in the presence of an eavesdropper; by Proposition 12.3, this
implies it is CPA-secure.

Fix an arbitrary ppt adversaryAhy, and consider experiment PubKeav
Ahy,Πhy(n).

Our goal is to prove that there is a negligible function negl such that

Pr[PubKeav
Ahy,Πhy(n) = 1] ≤ 1

2
+ negl(n).

By definition of the experiment, we have

Pr[PubKeav
Ahy,Πhy(n) = 1] (12.14)

=
1

2
· Pr[Ahy(pk,Encaps

(1)
pk (1n),Enc′k(m0)) = 0]

+
1

2
· Pr[Ahy(pk,Encaps

(1)
pk (1n),Enc′k(m1)) = 1],

where in each case k equals Encaps
(2)
pk (1n). Consider the following ppt adver-

sary A1 attacking Π.

Adversary A1:

1. A1 is given (pk, c, k̂).

2. A1 runs Ahy(pk) to obtain two messages m0,m1. Then A1

computes c′ ← Enc′
k̂
(m0), gives ciphertext 〈c, c′〉 to Ahy, and

outputs the bit b′ that Ahy outputs.

Consider the behavior of A1 when attacking Π in experiment KEMcpa
A1,Π

(n).

When b = 0 in that experiment, then A1 is given (pk, c, k̂) where c and k̂ were
both output by Encapspk(1n). This means that Ahy is given a ciphertext of

the form 〈c, c′〉 = 〈c,Enc′k(m0)〉, where k is the key encapsulated by c. So,

Pr[A1 outputs 0 | b = 0] = Pr[Ahy(pk,Encaps
(1)
pk (1n),Enc′k(m0)) = 0].

On the other hand, when b = 1 in experiment KEMcpa
A1,Π

(n) then A1 is given

(pk, c, k̂) with k̂ uniform and independent of c. If we denote such a key by k′,
this means Ahy is given a ciphertext of the form 〈c,Enc′k′(m0)〉, and

Pr[A1 outputs 1 | b = 1] = Pr[Ahy(pk,Encaps
(1)
pk (1n),Enc′k′(m0)) = 1].

Since Π is a CPA-secure KEM, there is a negligible function negl1 such that

1

2
+ negl1(n) ≥ Pr[KEMcpa

A1,Π
(n) = 1] (12.15)

=
1

2
· Pr[A1 outputs 0 | b = 0] +

1

2
· Pr[A1 outputs 1 | b = 1]

=
1

2
· Pr[Ahy(pk,Encaps

(1)
pk (1n),Enc′k(m0)) = 0]

+
1

2
· Pr[Ahy(pk,Encaps

(1)
pk (1n),Enc′k′(m0)) = 1]

Public-Key Encryption 423

where k is equal to Encaps
(2)
pk (1n) and k′ is a uniform and independent key.

Next, consider the following ppt adversary A′ that eavesdrops on a message
encrypted using the private-key scheme Π′.

Adversary A′:

1. A′(1n) runs Gen(1n) on its own to generate keys (pk, sk). It

also computes c← Encaps
(1)
pk (1n).

2. A′ runs Ahy(pk) to obtain two messages m0,m1. These are
output by A′, and it is given in return a ciphertext c′.

3. A′ gives the ciphertext 〈c, c′〉 to Ahy, and outputs the bit b′

that Ahy outputs.

When b = 0 in experiment PrivKeav
A′,Π′(n), adversary A′ is given a cipher-

text c′ which is an encryption of m0 using a key k′ that is uniform and indepen-
dent of anything else. So Ahy is given a ciphertext of the form 〈c,Enc′k′(m0)〉
where k′ is uniform and independent of c, and

Pr[A′ outputs 0 | b = 0] = Pr[Ahy(pk,Encaps
(1)
pk (1n),Enc′k′(m0)) = 0].

On the other hand, when b = 1 in experiment PrivKeav
A′,Π′(n), then A′ is given

an encryption of m1 using a uniform, independent key k′. This means Ahy is
given a ciphertext of the form 〈c,Enc′k′(m1)〉 and so

Pr[A′ outputs 1 | b = 1] = Pr[Ahy(pk,Encaps
(1)
pk (1n),Enc′k′(m1)) = 1].

Since Π′ is EAV-secure, there is a negligible function negl′ such that

1

2
+ negl′(n) ≥ Pr[PrivKeav

A′,Π′(n) = 1] (12.16)

=
1

2
· Pr[A′ outputs 0 | b = 0] +

1

2
· Pr[A′ outputs 1 | b = 1]

=
1

2
· Pr[Ahy(pk,Encaps

(1)
pk (1n),Enc′k′(m0)) = 0]

+
1

2
· Pr[Ahy(pk,Encaps

(1)
pk (1n),Enc′k′(m1)) = 1].

Proceeding exactly as we did to prove Equation (12.15), one can show there
is a negligible function negl2 such that

1

2
+ negl2(n) ≥ Pr[KEMcpa

A2,Π
(n) = 1] (12.17)

=
1

2
· Pr[A2 outputs 0 | b = 0] +

1

2
· Pr[A2 outputs 1 | b = 1]

=
1

2
· Pr[Ahy(pk,Encaps

(1)
pk (1n),Enc′k(m1)) = 1]

+
1

2
· Pr[Ahy(pk,Encaps

(1)
pk (1n),Enc′k′(m1)) = 0].

424 Introduction to Modern Cryptography

Summing Equations (12.15)–(12.17) and using the fact that the sum of three
negligible functions is negligible, we see there exists a negligible function negl
such that

3

2
+ negl(n) ≥

1

2
·
(

Pr[Ahy(pk, c,Enc′k(m0)) = 0] + Pr[Ahy(pk, c,Enc′k′(m0)) = 1]

+ Pr[Ahy(pk, c,Enc′k′(m0)) = 0] + Pr[Ahy(pk, c,Enc′k′(m1)) = 1]

+ Pr[Ahy(pk, c,Enc′k(m1)) = 1] + Pr[Ahy(pk, c,Enc′k′(m1)) = 0]
)
,

where c = Encaps
(1)
pk (1n) in all the above. Note that

Pr[Ahy(pk, c,Enc′k′(m0)) = 1] + Pr[Ahy(pk, c,Enc′k′(m0)) = 0] = 1,

since the probabilities of complementary events always sum to 1. Similarly,

Pr[Ahy(pk, c,Enc′k′(m1)) = 1] + Pr[Ahy(pk, c,Enc′k′(m1)) = 0] = 1.

Therefore,

1

2
+ negl(n)

≥ 1

2
·
(

Pr[Ahy(pk, c,Enc′k(m0)) = 0] + Pr[Ahy(pk, c,Enc′k(m1)) = 1]
)

= Pr[PubKeav
Ahy,Πhy(n) = 1]

(using Equation (12.14) for the last equality), proving the theorem.

12.3.2 CCA-Security

If the private-key encryption scheme Π′ is not itself secure against chosen-
ciphertext attacks, then (regardless of the KEM used) neither is the resulting
hybrid encryption scheme Πhy. As a simple, illustrative example, say we take
Construction 3.17 as our private-key encryption scheme. Then, leaving the
KEM unspecified, encryption of a message m by Πhy is done by computing
(c, k)← Encapspk(1n) and then outputting the ciphertext

〈c,G(k)⊕m〉,

where G is a pseudorandom generator. Given a ciphertext 〈c, c′〉, an attacker
can simply flip the last bit of c′ to obtain a modified ciphertext that is a valid
encryption of m with its last bit flipped.

The natural way to fix this is to use a CCA-secure private-key encryption
scheme. But this is clearly not enough if the KEM is susceptible to chosen-
ciphertext attacks. Since we have not yet defined this notion, we do so now.

Public-Key Encryption 425

As in Definition 12.11, we require that an adversary given a ciphertext c
cannot distinguish the key k encapsulated by that ciphertext from a uniform
and independent key k′. Now, however, we additionally allow the attacker to
request decapsulation of ciphertexts of its choice (as long as they are different
from the challenge ciphertext).

Formally, let A be an adversary and let Π = (Gen,Encaps,Decaps) be a
KEM with key length n, and consider the following experiment:

The CCA indistinguishability experiment KEMcca
A,Π(n):

1. Gen(1n) is run to obtain keys (pk, sk). Then Encapspk(1n) is
run to generate (c, k) with k ∈ {0, 1}n.

2. Choose a uniform bit b ∈ {0, 1}. If b = 0 set k̂ := k. If b = 1

then choose a uniform k̂ ∈ {0, 1}n.

3. A is given (pk, c, k̂) and access to an oracle Decapssk(·), but
may not request decapsulation of c itself.

4. A outputs a bit b′. The output of the experiment is defined
to be 1 if b′ = b, and 0 otherwise.

DEFINITION 12.13 A key-encapsulation mechanism Π is CCA-secure if
for all probabilistic polynomial-time adversaries A there is a negligible function
negl such that

Pr[KEMcca
A,Π(n) = 1] ≤ 1

2
+ negl(n).

Using a CCA-secure KEM in combination with a CCA-secure private-key
encryption scheme results in a CCA-secure public-key encryption scheme.

THEOREM 12.14 If Π is a CCA-secure KEM and Π′ is a CCA-secure
private-key encryption scheme, then Πhy as in Construction 12.10 is a CCA-
secure public-key encryption scheme.

A proof is obtained by suitable modification of the proof of Theorem 12.12.

12.4 CDH/DDH-Based Encryption

So far we have discussed public-key encryption abstractly, but have not
yet seen any concrete examples of public-key encryption schemes (or KEMs).
Here we explore some constructions based on the Diffie–Hellman problems.
(The Diffie–Hellman problems are introduced in Section 9.3.2.)

426 Introduction to Modern Cryptography

12.4.1 El Gamal Encryption

In 1985, Taher El Gamal observed that the Diffie–Hellman key-exchange
protocol (cf. Section 11.3) could be adapted to give a public-key encryption
scheme. Recall that in the Diffie–Hellman protocol, Alice sends a message to
Bob and then Bob responds with a message to Alice; based on these messages,
Alice and Bob can derive a shared value k which is indistinguishable (to an
eavesdropper) from a uniform element of some group G. We could imagine
Bob using that shared value to encrypt a message m ∈ G by simply sending
k ·m to Alice; Alice can clearly recover m using her knowledge of k, and we
will argue below that an eavesdropper learns nothing about m.

In the El Gamal encryption scheme we simply change our perspective on
the above interaction. We view Alice’s initial message as her public key, and
Bob’s reply (both his initial response and k ·m) as a ciphertext. CPA-security
based on the decisional Diffie–Hellman (DDH) assumption follows fairly easily
from security of the Diffie–Hellman key-exchange protocol (Theorem 11.3).

In our formal treatment, we begin by stating and proving a simple lemma
that underlies the El Gamal encryption scheme. Let G be a finite group, and
let m ∈ G be an arbitrary element. The lemma states that multiplying m
by a uniform group element k yields a uniformly distributed group element c.
Importantly, the distribution of c is independent of m; this means that c
contains no information about m.

LEMMA 12.15 Let G be a finite group, and let m ∈ G be arbitrary. Then
choosing uniform k ∈ G and setting c := k·m results in a uniformly distributed
c ∈ G. Put differently, for any ĉ ∈ G, we have

Pr[k ·m = ĉ] = 1/|G|,

where the probability is taken over uniform choice of k ∈ G.

PROOF Let ĉ ∈ G be arbitrary. Then

Pr[k ·m = ĉ] = Pr[k = ĉ ·m−1].

Since k is uniform, the probability that k is equal to the fixed element ĉ ·m−1

is exactly 1/|G|.

The above lemma suggests a way to construct a perfectly secret private-key
encryption scheme with message space G. The sender and receiver share as
their secret key a uniform element k ∈ G. To encrypt the message m ∈ G,
the sender computes the ciphertext c := k ·m. The receiver can recover the
message from the ciphertext c by computing m := c/k. Perfect secrecy follows
immediately from the lemma above. In fact, we have already seen this scheme
in a different guise—the one-time pad encryption scheme is an instantiation

Public-Key Encryption 427

of this approach, with the underlying group G being the set {0, 1}` under the
operation of bit-wise XOR.

We can adapt the above ideas to the public-key setting by providing the
parties with a way to generate a shared, “random-looking” value k by inter-
acting over a public channel. This should sound familiar since it is exactly
what the Diffie–Hellman protocol achieves. We proceed with the details.

As in Section 9.3.2, let G be a polynomial-time algorithm that takes as in-
put 1n and (except possibly with negligible probability) outputs a description
of a cyclic group G, its order q (with ‖q‖ = n), and a generator g. The El
Gamal encryption scheme is described in Construction 12.16.

CONSTRUCTION 12.16

Let G be as in the text. Define a public-key encryption scheme as follows:

� Gen: on input 1n run G(1n) to obtain (G, q, g). Then choose a
uniform x ∈ Zq and compute h := gx. The public key is 〈G, q, g, h〉
and the private key is 〈G, q, g, x〉. The message space is G.

� Enc: on input a public key pk = 〈G, q, g, h〉 and a message m ∈ G,
choose a uniform y ∈ Zq and output the ciphertext

〈gy, hy ·m〉.

� Dec: on input a private key sk = 〈G, q, g, x〉 and a ciphertext
〈c1, c2〉, output

m̂ := c2/c
x
1 .

The El Gamal encryption scheme.

To see that decryption succeeds, let 〈c1, c2〉 = 〈gy, hy ·m〉 with h = gx. Then

m̂ =
c2
cx1

=
hy ·m
(gy)x

=
(gx)y ·m
gxy

=
gxy ·m
gxy

= m.

Example 12.17

Let q = 83 and p = 2q + 1 = 167, and let G denote the group of quadratic
residues (i.e., squares) modulo p. (Since p and q are prime, G is a subgroup
of Z∗p with order q. See Section 9.3.3.) Since the order of G is prime, any
element of G except 1 is a generator; take g = 22 = 4 mod 167. Say the
receiver chooses secret key 37 ∈ Z83 and so the public key is

pk = 〈p, q, g, h〉 = 〈167, 83, 4, [437 mod 167]〉 = 〈167, 83, 4, 76〉,

where we use p to represent G (it is assumed that the receiver knows that the
group is the set of quadratic residues modulo p).

428 Introduction to Modern Cryptography

Say a sender encrypts the message m = 65 ∈ G (note 65 = 302 mod 167
and so 65 is an element of G). If y = 71, the ciphertext is

〈[471 mod 167], [7671 · 65 mod 167]〉 = 〈132, 44〉.

To decrypt, the receiver first computes 124 = [13237 mod 167]; then, since
66 = [124−1 mod 167], the receiver recovers m = 65 = [44 · 66 mod 167]. ♦

We now prove security of the scheme. (The reader may want to compare
the proof of the following to the proofs of Theorems 3.16 and 11.3.)

THEOREM 12.18 If the DDH problem is hard relative to G, then the
El Gamal encryption scheme is CPA-secure.

PROOF Let Π denote the El Gamal encryption scheme. We prove that
Π has indistinguishable encryptions in the presence of an eavesdropper; by
Proposition 12.3, this implies it is CPA-secure.

Let A be a probabilistic polynomial-time adversary. We want to show that
there is a negligible function negl such that

Pr[PubKeav
A,Π(n) = 1] ≤ 1

2
+ negl(n).

Consider the modified “encryption scheme” Π̃ where Gen is the same as in Π,
but encryption of a message m with respect to the public key 〈G, q, g, h〉 is
done by choosing uniform y, z ∈ Zq and outputting the ciphertext

〈gy, gz ·m〉.

Although Π̃ is not actually an encryption scheme (as there is no way for the
receiver to decrypt), the experiment PubKeav

A,Π̃(n) is still well-defined since that

experiment depends only on the key-generation and encryption algorithms.
Lemma 12.15 and the discussion that immediately follows it imply that the

second component of the ciphertext in scheme Π̃ is a uniformly distributed
group element and, in particular, is independent of the message m being en-
crypted. (Remember that gz is a uniform element of G when z is chosen
uniformly from Zq.) The first component of the ciphertext is trivially inde-
pendent of m. Taken together, this means that the entire ciphertext contains
no information about m. It follows that

Pr[PubKeav
A,Π̃(n) = 1] =

1

2
.

Now consider the following ppt algorithm D that attempts to solve the
DDH problem relative to G. Recall that D receives (G, q, g, h1, h2, h3) where
h1 = gx, h2 = gy, and h3 is either gxy or gz (for uniform x, y, z); the goal of
D is to determine which is the case.

Public-Key Encryption 429

Algorithm D:
The algorithm is given (G, q, g, h1, h2, h3) as input.

� Set pk = 〈G, q, g, h1〉 and run A(pk) to obtain two messages
m0,m1 ∈ G.

� Choose a uniform bit b, and set c1 := h2 and c2 := h3 ·mb.

� Give the ciphertext 〈c1, c2〉 to A and obtain an output bit b′.
If b′ = b, output 1; otherwise, output 0.

Let us analyze the behavior of D. There are two cases to consider:

Case 1: Say the input to D is generated by running G(1n) to obtain (G, q, g),
then choosing uniform x, y, z ∈ Zq, and finally setting h1 := gx, h2 := gy, and
h3 := gz. Then D runs A on a public key constructed as

pk = 〈G, q, g, gx〉

and a ciphertext constructed as

〈c1, c2〉 = 〈gy, gz ·mb〉.

We see that in this case the view of A when run as a subroutine by D is dis-
tributed identically to A’s view in experiment PubKeav

A,Π̃(n). Since D outputs 1

exactly when the output b′ of A is equal to b, we have that

Pr[D(G, q, g, gx, gy, gz) = 1] = Pr[PubKeav
A,Π̃(n) = 1] =

1

2
.

Case 2: Say the input to D is generated by running G(1n) to obtain (G, q, g),
then choosing uniform x, y ∈ Zq, and finally setting h1 := gx, h2 := gy, and
h3 := gxy. Then D runs A on a public key constructed as

pk = 〈G, q, g, gx〉

and a ciphertext constructed as

〈c1, c2〉 = 〈gy, gxy ·mb〉 = 〈gy, (gx)y ·mb〉.

We see that in this case the view of A when run as a subroutine by D is dis-
tributed identically to A’s view in experiment PubKeav

A,Π(n). Since D outputs 1
exactly when the output b′ of A is equal to b, we have that

Pr[D(G, q, g, gx, gy, gxy) = 1] = Pr[PubKeav
A,Π(n) = 1] .

Under the assumption that the DDH problem is hard relative to G, there
is a negligible function negl such that

negl(n) ≥
∣∣∣Pr[D(G, q, g, gx, gy, gz) = 1]− Pr[D(G, q, g, gx, gy, gxy) = 1]

∣∣∣
=

∣∣∣∣12 − Pr[PubKeav
A,Π(n) = 1]

∣∣∣∣ .
This implies Pr[PubKeav

A,Π(n) = 1] ≤ 1
2 + negl(n), completing the proof.

430 Introduction to Modern Cryptography

El Gamal Implementation Issues

We briefly discuss some practical issues related to El Gamal encryption.

Sharing public parameters. Our description of the El Gamal encryption
scheme in Construction 12.16 requires the receiver to run G to generate G, q, g.
In practice, it is common for these parameters to be generated and fixed “once-
and-for-all,” and then shared by multiple receivers. (Of course, each receiver
must choose their own secret value x and publish their own public key h = gx.)
For example, NIST has published a set of recommended parameters suitable
for use in the El Gamal encryption scheme. Sharing parameters in this way
does not impact security (assuming the parameters were generated correctly
and honestly in the first place). Looking ahead, we remark that this is in
contrast to the case of RSA, where parameters cannot safely be shared (see
Section 12.5.1).

Choice of group. As discussed in Section 9.3.2, the group order q should
be prime. As far as specific groups are concerned, elliptic curves are one in-
creasingly popular choice; an alternative is to let G be a prime-order subgroup
of Z∗p, for p prime. We refer to Section 10.4 for a tabulation of recommended
key lengths for achieving different levels of security.

The message space. An inconvenient aspect of the El Gamal encryption
scheme is that the message space is a group G rather than bit-strings of
some specified length. For some choices of the group, it is possible to address
this by defining a reversible encoding of bit-strings as group elements. In
such cases, the sender can first encode their message m ∈ {0, 1}` as a group
element m̂ ∈ G and then apply El Gamal encryption to m̂. The receiver can
decrypt as in Construction 12.16 to obtain the encoded message m̂, and then
reverse the encoding to recover the original message m.

A simpler approach is to use (a variant of) El Gamal encryption as part of
a hybrid encryption scheme. For example, the sender could choose a uniform
group element m ∈ G, encrypt this using the El Gamal encryption scheme,
and then encrypt their actual message using a private-key encryption scheme
and key H(m), where H : G → {0, 1}n is an appropriate key-derivation
function (see the following section). In this case, it would be more efficient to
use the DDH-based KEM that we describe next.

12.4.2 DDH-Based Key Encapsulation

At the end of the previous section we noted that El Gamal encryption
can be used as part of a hybrid encryption scheme by simply encrypting a
uniform group element m and using a hash of that element as a key. But
this is wasteful! The proof of security for El Gamal encryption shows that cx1
(where c1 is the first component of the ciphertext, and x is the private key
of the receiver) is already indistinguishable from a uniform group element, so
the sender/receiver may as well use that to derive a key. Construction 12.19

Public-Key Encryption 431

illustrates the KEM that follows this approach. Note the resulting ciphertext
consists of just a single group element. In contrast, if we were to use El
Gamal encryption of a uniform group element, the ciphertext would contain
two group elements.

CONSTRUCTION 12.19

Let G be as in the previous section. Define a KEM as follows:

� Gen: on input 1n run G(1n) to obtain (G, q, g). choose a uniform
x ∈ Zq and set h := gx. Also specify a function H : G→ {0, 1}`(n)
for some function ` (see text). The public key is 〈G, q, g, h,H〉 and
the private key is 〈G, q, g, x〉.

� Encaps: on input a public key pk = 〈G, q, g, h,H〉, choose a uni-
form y ∈ Zq and output the ciphertext gy and the key H(hy).

� Decaps: on input a private key sk = 〈G, q, g, x〉 and a ciphertext
c ∈ G, output the key H(cx).

An “El Gamal-like” KEM.

The construction leaves the key-derivation function H unspecified, and
there are several options for instantiating it. (See Section 6.6.4 for more on key
derivation in general.) One possibility is to choose a function H : G→ {0, 1}`
that is (close to) regular, meaning that for each possible key k ∈ {0, 1}` the
number of group elements that map to k is approximately the same. (For-
mally, we need a negligible function negl such that

1

2
·
∑
k∈{0,1}`(n)

∣∣∣Pr[H(g) = k]− 2−`(n)
∣∣∣ ≤ negl(n),

where the probability is taken over uniform g ∈ G. This means the distribu-
tion of the key is statistically close to uniform.) Both the complexity of H,
as well as the achievable key length `, depend on the specific group G used.

A second possibility is to let H be a keyed function, where the (uniform)
key for H is included as part of the receiver’s public key. This works if H is
a strong extractor, as mentioned briefly in Section 6.6.4. Appropriate choice
of ` here (to ensure that the resulting key is statistically close to uniform) will
depend on the size of G.

In either of the above cases, a proof of CPA-security based on the decisional
Diffie–Hellman (DDH) assumption follows easily by adapting the proof of
security for the Diffie–Hellman key-exchange protocol (Theorem 11.3).

THEOREM 12.20 If the DDH problem is hard relative to G, and H is
chosen as described, then Construction 12.19 is a CPA-secure KEM.

If one is willing to model H as a random oracle, Construction 12.19 can
be proven CPA-secure based on the (weaker) computational Diffie–Hellman
(CDH) assumption. We discuss this in the following section.

432 Introduction to Modern Cryptography

12.4.3 *A CDH-Based KEM in the Random-Oracle Model

In this section, we show that if one is willing to model H as a random
oracle, then Construction 12.19 can be proven CPA-secure based on the CDH
assumption. (Readers may want to review Section 6.5 to remind themselves
of the random-oracle model.) Intuitively, the CDH assumption implies that
an attacker observing h = gx (from the public key) and the ciphertext c = gy

cannot compute DHg(h, c) = hy. In particular, then, an attacker cannot query
hy to the random oracle. But this means that the encapsulated key H(hy) is
completely random from the attacker’s point of view. This intuition is turned
into a formal proof below.

As indicated by the intuition above, the proof inherently relies on modeling
H as a random oracle.2 Specifically, the proof relies on the facts that (1) the
only way to learn H(hy) is to explicitly query hy to H, which would mean
that the attacker has solved a CDH instance (this is called “extractability” in
Section 6.5.1), and (2) if an attacker does not query hy to H, then the value
H(hy) is uniform from the attacker’s point of view. These properties only
hold—indeed, they only make sense—if H is modeled as a random oracle.

THEOREM 12.21 If the CDH problem is hard relative to G, and H is
modeled as a random oracle, then Construction 12.19 is CPA-secure.

PROOF Let Π denote Construction 12.19, and let A be a ppt adversary.
We want to show that there is a negligible function negl such that

Pr[KEMcpa
A,Π(n) = 1] ≤ 1

2
+ negl(n).

The above probability is also taken over uniform choice of the function H, to
which A is given oracle access.

Consider an execution of experiment KEMcpa
A,Π(n) in which the public key

is 〈G, q, g, h〉 and the ciphertext is c = gy, and let Query be the event that A
queries DHg(h, c) = hy to H. We have

Pr[KEMcpa
A,Π(n) = 1] = Pr[KEMcpa

A,Π(n) = 1 ∧ Query]

+ Pr[KEMcpa
A,Π(n) = 1 ∧ Query]

≤ Pr[KEMcpa
A,Π(n) = 1 ∧ Query] + Pr[Query]. (12.18)

If Pr[Query] = 0 then Pr[KEMcpa
A,Π(n) = 1 ∧ Query] = 0. Otherwise,

Pr[KEMcpa
A,Π(n) = 1 ∧ Query] = Pr[KEMcpa

A,Π(n) = 1 | Query] · Pr[Query]

≤ Pr[KEMcpa
A,Π(n) = 1 | Query].

2This is true as long as we wish to rely only on the CDH assumption. As noted earlier, a
proof without random oracles is possible if we rely on the stronger DDH assumption.

Public-Key Encryption 433

In experiment KEMcpa
A,Π(n), the adversary A is given the public key and the

ciphertext, plus either the encapsulated key k
def
= H(hy) or a uniform key. If

Query does not occur, then k is uniformly distributed from the perspective of
the adversary, and so there is no way A can distinguish between these two
possibilities. This means that

Pr[KEMcpa
A,Π(n) = 1 | Query] =

1

2
.

Returning to Equation (12.18), we thus have

Pr[KEMcpa
A,Π(n) = 1] ≤ 1

2
+ Pr[Query].

We next show that Pr[Query] is negligible, completing the proof.
Let t = t(n) be a (polynomial) upper bound on the number of queries that

A makes to the random oracle H. Define the following ppt algorithm A′ for
the CDH problem relative to G:

Algorithm A′:
The algorithm is given G, q, g, h, c as input.

� Set pk := 〈G, q, g, h〉 and choose a uniform k ∈ {0, 1}`.
� Run A(pk, c, k). When A makes a query to H, answer it by

choosing a fresh, uniform `-bit string.

� At the end of A’s execution, let y1, . . . , yt be the list of queries
that A has made to H. Choose a uniform index i ∈ {1, . . . , t}
and output yi.

We are interested in the probability with which A′ solves the CDH problem,
i.e., Pr[A′(G, q, g, h, c) = DHg(h, c)], where the probability is taken over G, q, g
output by G(1n), uniform h, c ∈ G, and the randomness of A′. To analyze
this probability, note first that event Query is still well-defined in the execu-
tion of A′, even though A′ cannot detect whether it occurs. Moreover, the
probability of event Query when A is run as a subroutine by A′ is identical
to the probability of Query in experiment KEMcpa

A,Π(n). This follows because
the view of A is identical in both cases until event Query occurs: in each
case, G, q, g are output by G(1n); in each case, h and c are uniform elements
of G and k is a uniform `-bit string, and in each case queries to H other
than H(DHg(h, c)) are answered with a uniform `-bit string. (In KEMcpa

A,Π(n),
the query H(DHg(h, c)) is answered with the actual encapsulated key, which
is equal to k with probability 1/2, whereas when A is run as a subroutine
by A′ the query H(DHg(h, c)) is answered with a uniform `-bit string that is
independent of k. But when this query is made, event Query occurs.)

Finally, observe that when Query occurs then DHg(h, c) ∈ {y1, . . . , yt} by
definition, and so A′ outputs the correct result DHg(h, c) with probability at

434 Introduction to Modern Cryptography

least 1/t. We therefore conclude that

Pr[A′(G, q, g, h, c) = DHg(h, c)] ≥ Pr[Query]/t,

or Pr[Query] ≤ t · Pr[A′(G, q, g, h, c) = DHg(h, c)]. Since the CDH problem is
hard relative to G and t is polynomial, this implies that Pr[Query] is negligible
and completes the proof.

In the next section we will see that Construction 12.19 can even be shown
to be secure against chosen-ciphertext attacks based on a stronger variant of
the CDH assumption (if we continue to model H as a random oracle).

12.4.4 *Chosen-Ciphertext Security and DHIES/ECIES

The El Gamal encryption scheme is vulnerable to chosen-ciphertext attacks.
This follows from the fact that it is malleable. Recall that an encryption
scheme is malleable, informally, if given a ciphertext c that is an encryption
of some unknown message m, it is possible to generate a modified ciphertext
c′ that is an encryption of a message m′ having some known relation to m.
In the case of El Gamal encryption, consider an adversary A who intercepts
a ciphertext c = 〈c1, c2〉 encrypted using the public key pk = 〈G, q, g, h〉, and
who then constructs the modified ciphertext c′ = 〈c1, c′2〉 where c′2 = c2 · α
for some α ∈ G. If c is an encryption of a message m ∈ G (which may be
unknown to A), we have c1 = gy and c2 = hy ·m for some y ∈ Zq. But then

c1 = gy and c′2 = hy · (α ·m),

and so c′ is a valid encryption of the message α ·m. In other words, A can
transform an encryption of the (unknown) message m into an encryption of
the (unknown) message α ·m. As discussed in Scenario 3 in Section 12.2.3,
this sort of attack can have serious consequences.

The KEM discussed in the previous section might also be malleable depend-
ing on the key-derivation function H being used. If H is modeled as a random
oracle, however, then such attacks no longer seem possible. In fact, one can
prove in this case that Construction 12.19 is CCA-secure (which, as we have
noted, implies non-malleability) based on the gap-CDH assumption. Recall
the CDH assumption is that given group elements gx and gy (for some gener-
ator g), it is infeasible to compute gxy. The gap-CDH assumption says that
this remains infeasible even given access to an oracle Oy such that Oy(U, V)
returns 1 exactly when V = Uy. Stated differently, the gap-CDH assumption
is that the CDH problem remains hard even given an oracle that solves the
DDH problem. (We do not give a formal definition since we do not use the
assumption in the rest of the book.) The gap-CDH assumption is believed to
hold for all cryptographic groups in which the DDH assumption holds.

A proof of the following is very similar to the proof of Theorem 12.38.

Public-Key Encryption 435

THEOREM 12.22 If the gap-CDH problem is hard relative to G, and H
is modeled as a random oracle, then Construction 12.19 is CCA-secure.

It is interesting to observe that the same construction (namely, Construc-
tion 12.19) can be analyzed under different assumptions and in different mod-
els, yielding different results. Assuming only that the DDH problem is hard
(and for H chosen appropriately), the scheme is CPA-secure. If we model H as
a random oracle (which imposes more stringent requirements on H), then we
obtain CPA-security under the weaker CDH assumption, and CCA-security
under the stronger gap-CDH assumption.

CONSTRUCTION 12.23

Let G be as in the text. Let ΠE = (Enc′,Dec′) be a private-key en-
cryption scheme, and let ΠM = (Mac,Vrfy) be a message authentication
code. Define a public-key encryption scheme as follows:

� Gen: On input 1n run G(1n) to obtain (G, q, g). Choose uniform
x ∈ Zq, set h := gx, and specify a function H : G→ {0, 1}2n. The
public key is 〈G, q, g, h,H〉 and the private key is 〈G, q, g, x,H〉.

� Enc: On input a public key pk = 〈G, q, g, h,H〉, choose a uniform
y ∈ Zq and set kE‖kM := H(hy). Compute c′ ← Enc′kE (m), and
output the ciphertext 〈gy, c′,MackM (c′)〉.

� Dec: On input a private key sk = 〈G, q, g, x,H〉 and a ciphertext
〈c, c′, t〉, output ⊥ if c 6∈ G. Else, compute kE‖kM := H(cx). If
VrfykM (c′, t) 6= 1 then output ⊥; otherwise, output Dec′kE (c′).

DHIES/ECIES.

CCA-secure encryption with Construction 12.19. Combining the KEM
in Construction 12.19 with any CCA-secure private-key encryption scheme
yields a CCA-secure public-key encryption scheme. (See Theorem 12.14.)
Instantiating this approach using Construction 5.6 for the private-key compo-
nent matches what is done in DHIES/ECIES, variants of which are included
in the ISO/IEC 18033-2 standard for public-key encryption. (See Construc-
tion 12.23.) Encryption of a message m in these schemes takes the form

〈gy, Enc′kE (m),MackM (c′)〉,

where Enc′ denotes a CPA-secure private-key encryption scheme and c′ de-
notes Enc′kE (m). DHIES, the Diffie–Hellman Integrated Encryption Scheme,
can be used generically to refer to any scheme of this form, or to refer specif-
ically to the case when the group G is a cyclic subgroup of a finite field.
ECIES, the Elliptic Curve Integrated Encryption Scheme, refers to the case
when G is an elliptic-curve group. We remark that in Construction 12.23 it is
critical to check during decryption that c, the first component of the cipher-
text, is in G. Otherwise, an attacker might request decryption of a malformed

436 Introduction to Modern Cryptography

ciphertext 〈c, c′, t〉 in which c 6∈ G; decrypting such a ciphertext (i.e., without
returning ⊥) might leak information about the private key.

By Theorem 5.7, encrypting a message and then applying a (strong) mes-
sage authentication code yields a CCA-secure private-key encryption scheme.
Combining this with Theorem 12.14, we conclude:

COROLLARY 12.24 Let ΠE be a CPA-secure private-key encryption
scheme, and let ΠM be a strongly secure message authentication code. If the
gap-CDH problem is hard relative to G, and H is modeled as a random oracle,
then Construction 12.23 is a CCA-secure public-key encryption scheme.

12.5 RSA-Based Encryption

In this section we turn our attention to encryption schemes based on the
RSA assumption defined in Section 9.2.4. We remark that although RSA-
based encryption is still in use, there is currently a gradual shift away from
using RSA—and toward using CDH/DDH-based cryptosystems relying on
elliptic-curve groups—because of the longer key lengths required for RSA-
based schemes. We refer to Section 10.4 for further discussion.

12.5.1 Plain RSA Encryption

We begin by describing a simple encryption scheme based on the RSA
problem. Although the scheme is insecure, it provides a useful starting point
for the secure schemes that follow.

Let GenRSA be a ppt algorithm that, on input 1n, outputs a modulus N
that is the product of two n-bit primes, along with integers e, d satisfying
ed = 1 mod φ(N). (As usual, the algorithm may fail with negligible probabil-
ity but we ignore that here.) Recall from Section 9.2.4 that such an algorithm
can be easily constructed from any algorithm GenModulus that outputs a
composite modulus N along with its factorization; see Algorithm 12.25.

ALGORITHM 12.25
RSA key generation GenRSA

Input: Security parameter 1n

Output: N , e, d as described in the text

(N, p, q)← GenModulus(1n)
φ(N) := (p− 1) · (q − 1)
choose e > 1 such that gcd(e, φ(N)) = 1
compute d := [e−1 mod φ(N)]
return N, e, d

Public-Key Encryption 437

Let N, e, d be as above, and let c = me mod N for some m ∈ Z∗N . RSA
encryption relies on the fact that someone who knows d can recover m from
c by computing [cd mod N]; this works because

cd = (me)d = med = m mod N,

as discussed in Section 9.2.4. On the other hand, without knowledge of d—
even if N and e are known—the RSA assumption (cf. Definition 9.46) implies
that it is difficult to recover m from c, at least if m is chosen uniformly
from Z∗N . This naturally suggests the public-key encryption scheme shown as
Construction 12.26: The receiver runs GenRSA to obtain N, e, d; it publishes
N and e as its public key, and keeps d in its private key. To encrypt a message
m ∈ Z∗N , a sender computes the ciphertext c := [me mod N]. As we have just
noted, the receiver—who knows d—can decrypt c and recover m.

CONSTRUCTION 12.26

Let GenRSA be as in the text. Define a public-key encryption scheme as
follows:

� Gen: on input 1n run GenRSA(1n) to obtain N, e, and d. The
public key is 〈N, e〉 and the private key is 〈N, d〉.

� Enc: on input a public key pk = 〈N, e〉 and a message m ∈ Z∗N ,
compute the ciphertext

c := [me mod N].

� Dec: on input a private key sk = 〈N, d〉 and a ciphertext c ∈ Z∗N ,
compute the message

m := [cd mod N].

The plain RSA encryption scheme.

The following gives a worked example of the above (see also Example 9.49).

Example 12.27
Say GenRSA outputs (N, e, d) = (391, 3, 235). (Note that 391 = 17 · 23 and so
φ(391) = 16 · 22 = 352. Moreover, 3 · 235 = 1 mod 352.) So the public key is
〈391, 3〉 and the private key is 〈391, 235〉.

To encrypt the message m = 158 ∈ Z∗391 using the public key (391, 3), we
simply compute c := [1583 mod 391] = 295; this is the ciphertext. To decrypt,
the receiver computes [295235 mod 391] = 158. ♦

Is the plain RSA encryption scheme secure? The factoring assumption im-
plies that it is computationally infeasible for an attacker who is given the
public key to derive the corresponding private key; see Section 9.2.5. This is
necessary—but not sufficient—for a public-key encryption scheme to be se-
cure. The RSA assumption implies that if the message m is chosen uniformly

438 Introduction to Modern Cryptography

from Z∗N then an eavesdropper given N, e, and c (namely, the public key and
the ciphertext) cannot recover m in its entirety. But these are weak guaran-
tees, and fall short of the level of security we want. In particular, they leave
open the possibility that an attacker can recover the message when it is not
chosen uniformly from Z∗N—and, indeed, when m is chosen from a small range
it is easy to see that an attacker can compute m from the public key and ci-
phertext. In addition, it does not rule out the possibility that an attacker can
learn partial information about the message, even when it is uniform. (In fact,
this is known to be possible.) Moreover, plain RSA encryption is deterministic
and so cannot be CPA-secure, as we have discussed in Section 12.2.1.

More Attacks on Plain RSA

We have already noted that plain RSA encryption is not CPA-secure. Nev-
ertheless, there may be a temptation to use plain RSA for encrypting “random
messages” and/or in situations where leaking a few bits of information about
the message is acceptable. We warn against this in general, and provide here
a few examples of what can go wrong. (Some of the attacks assume e = 3.
In several cases the attacks can be extended, at least partially, to larger e;
in any case, as noted in Section 9.2.4, setting e = 3 is often done in prac-
tice. The attacks should be taken as demonstrating that Construction 12.26
is inadequate, not as indicating that using e = 3 is a bad choice in general.)

A quadratic improvement in recovering m. Since plain RSA encryption
is deterministic, if an attacker knows that m < B then the attacker can
determine m from the ciphertext c = [me mod N] in time O(B) using the
brute-force attack discussed in Section 12.2.1. One might hope, however, that
plain RSA encryption can be used if B is large, i.e., if the message is chosen
from a reasonably large set of values. One possible scenario where this might
occur is in the context of hybrid encryption (cf. Section 12.3), where the
“message” is a uniform n-bit key and so B = 2n. Unfortunately, there is a
clever attack that recovers m, with high probability, in time roughly O(

√
B).

This can make a significant difference in practice: a 280-time attack (say) is
infeasible, but an attack running in time 240 is relatively easy to carry out.

A description of the attack is given as Algorithm 12.28. In our description,
we assume B = 2n and let α ∈ (1

2 , 1) denote some fixed constant (see below).
Binary search is used in the second-to-last line to check whether there exists
an r with xr = [se mod N]. The time for the attack is dominated by the time
to perform 2T = O(2αn) exponentiations.

We now sketch why the attack recovers m with high probability. Let c =
me mod N . For appropriate choice of α ≈ 1

2 , it can be shown that if m
is a uniform n-bit integer then with high probability there exist r, s with
1 < r ≤ s ≤ 2αn for which m = r · s. (For example, if n = 64 and so m is a
uniform 64-bit string, then with probability 0.35 there exist r, s of length at
most 34 bits such that m = r · s. See the references at the end of the chapter

Public-Key Encryption 439

ALGORITHM 12.28
An attack on plain RSA encryption

Input: Public key 〈N, e〉; ciphertext c; bound 2n

Output: m < 2n such that me = c mod N

set T := 2αn

for r = 1 to T :
xr := [c/re mod N]

sort the pairs {(r, xr)}Tr=1 by their second component
for s = 1 to T :

if [se mod N]
?
= xr for some r

return [r · s mod N]

for details.) Assuming this to be the case, the above algorithm finds m since

c = me = (r · s)e = re · se mod N,

and so xr = c/re = se mod N with r, s ≤ T .

Encrypting short messages using small e. The previous attack shows
how to recover a message m known to be smaller than some bound B in time
roughly O(

√
B). Here we show how to do the same thing in time poly(‖N‖)

if B ≤ N1/e (where this means the eth root of N as a real number).
The attack relies on the observation that when m < N1/e, raising m to the

eth power modulo N involves no modular reduction; i.e., [me mod N] is equal
to the integer me. This means that given the ciphertext c = [me mod N], an
attacker can determine m by computing m := c1/e over the integers (i.e., not
moduloN); this can be done easily in time poly(‖c‖) = poly(‖N‖) since finding
eth roots is easy over the integers and hard only when working modulo N .

For small e this represents a serious weakness of plain RSA encryption. For
example, if we take e = 3 and assume ‖N‖ ≈ 2048 bits, then the attack works
even when m is a uniform 256-bit string; this once again rules out security of
plain RSA even when used as part of a hybrid encryption scheme.

Encrypting a partially known message. This attack assumes a sender
who encrypts a message, part of which is known to the adversary (something
that should not lead to an attack when using a secure scheme). We rely on a
powerful theorem due to Coppersmith that we state without proof:

THEOREM 12.29 Let p(x) be a polynomial of degree e. Then in time
poly(‖N‖ , e) one can find all m such that p(m) = 0 mod N and |m| ≤ N1/e.

Due to the dependence of the running time on e, the attack is only practical
for small e. In what follows we assume e = 3 for concreteness.

Assume a sender encrypts a message m = m1‖m2, where m1 is known but
m2 is not. Say m2 is k bits long, so m = 2k · m1 + m2. Given the result-

ing ciphertext c = [(m1‖m2)3 mod N], an eavesdropper can define p(x)
def
=

440 Introduction to Modern Cryptography

(2k · m1 + x)3 − c, a cubic polynomial. This polynomial has m2 as a root
(modulo N), and |m2| < 2k. Theorem 12.29 thus implies that the attacker
can compute m2 efficiently as long as 2k ≤ N1/3. A similar attack works
when m2 is known but m1 is not.

Encrypting related messages.3 This attack assumes a sender who encrypts
two related messages to the same receiver (something that should not result
in an attack when using a secure encryption scheme). Assume the sender
encrypts both m and m+δ, where the offset δ is known but m is not. Given the
two ciphertexts c1 = [me mod N] and c2 = [(m+δ)e mod N], an eavesdropper

can define the two polynomials f1(x)
def
= xe−c1 and f2(x)

def
= (x+δ)e−c2, each

of degree e. Note that x = m is a root (modulo N) of both polynomials, and
so the linear term (x−m) is a factor of both. Thus, if the greatest common
divisor of f1(x) and f2(x) (modulo N) is linear, it will reveal m. The greatest
common divisor can be computed in time poly(‖N‖ , e) using an algorithm
similar to the one in Appendix B.1.2; thus, this attack is feasible for small e.

Sending the same message to multiple receivers.4 Our final attack
assumes a sender who encrypts the same message to multiple receivers (some-
thing that, once again, should not result in an attack when using a secure
encryption scheme). Let e = 3, and say the same message m is encrypted to
three different parties holding public keys pk1 = 〈N1, 3〉, pk2 = 〈N2, 3〉, and
pk3 = 〈N3, 3〉, respectively. Assume gcd(Ni, Nj) = 1 for distinct i, j (if not,
then at least one of the moduli can be factored immediately and the message
m can be easily recovered). An eavesdropper sees

c1 = [m3 mod N1], c2 = [m3 mod N2], and c3 = [m3 mod N3].

Let N∗ = N1N2N3. An extended version of the Chinese remainder theorem
says that there exists a unique non-negative integer ĉ < N∗ such that

ĉ = c1 mod N1

ĉ = c2 mod N2

ĉ = c3 mod N3.

Moreover, using techniques similar to those shown in Section 9.1.5 it is pos-
sible to compute ĉ efficiently given the public keys and the above cipher-
texts. Note finally that m3 satisfies the above equations, and m3 < N∗ since
m < min{N1, N2, N3}. This means that ĉ = m3 over the integers (i.e., with
no modular reduction taking place), and so the message m can be recovered
by computing the integer cube root of ĉ.

3This attack relies on some algebra slightly beyond what we have covered in this book.
4This attack relies on the Chinese remainder theorem presented in Section 9.1.5.

Public-Key Encryption 441

12.5.2 Padded RSA and PKCS #1 v1.5

Although plain RSA is insecure, it does suggest one general approach to
public-key encryption based on the RSA problem: to encrypt a message m
using public key 〈N, e〉, first map m to an element m̂ ∈ Z∗N ; then compute the
ciphertext c := [m̂e mod N]. To decrypt a ciphertext c, the receiver computes
m̂ := [cd mod N] and then recovers the original message m. For the receiver
to be able to recover the message, the mapping from messages to elements
of Z∗N must be (efficiently) reversible. For a scheme following this approach
to have a hope of being CPA-secure, the mapping must be randomized so
encryption is not deterministic. This is, of course, a necessary condition but
not a sufficient one, and security of the encryption scheme depends critically
on the specific mapping that is used.

One simple implementation of the above idea is to randomly pad the mes-
sage before encrypting. That is, to map a message m (viewed as a bit-string)
to an element of Z∗N , the sender chooses a uniform bit-string r ∈ {0, 1}` (for
some appropriate `) and sets m̂ := r‖m; the resulting value can naturally be
interpreted as an integer in Z∗N . (This mapping is clearly reversible.) See
Construction 12.30, where the bounds on `(n) and the length of m ensure
that the integer m̂ is less than N .

CONSTRUCTION 12.30

Let GenRSA be as before, and let ` be a function with `(n) < 2n. Define
a public-key encryption scheme as follows:

� Gen: on input 1n, run GenRSA(1n) to obtain (N, e, d). Output the
public key pk = 〈N, e〉, and the private key sk = 〈N, d〉.

� Enc: on input a public key pk = 〈N, e〉 and a message
m ∈ {0, 1}‖N‖−`(n)−1, choose a uniform string r ∈ {0, 1}`(n) and
interpret m̂ := r‖m as an element of Z∗N . Output the ciphertext

c := [m̂e mod N].

� Dec: on input a private key sk = 〈N, d〉 and a ciphertext c ∈ Z∗N ,
compute

m̂ := [cd mod N],

and output the ‖N‖ − `(n)− 1 least-significant bits of m̂.

The padded RSA encryption scheme.

The construction is parameterized by a value ` that determines the length
of the random padding used. Security of the scheme depends on `. There is
an obvious brute-force attack on the scheme that runs in time 2`, so if ` is
too short (in particular, if `(n) = O(log n)), the scheme is insecure. At the
other extreme, the result we show in the following section shows that when

442 Introduction to Modern Cryptography

the padding is as large as possible, and m is just a single bit, then it is possible
to prove security based on the RSA assumption. In intermediate cases, the
situation is less clear: for certain ` we cannot prove security based on the
RSA assumption but no polynomial-time attacks are known either. We defer
further discussion until after our treatment of PKCS #1 v1.5 next.

RSA PKCS #1 v1.5. The RSA Laboratories Public-Key Cryptography
Standard (PKCS) #1 version 1.5, issued in 1993, utilizes a variant of padded
RSA encryption. For a public key pk = 〈N, e〉 of the usual form, let k denote
the length of N in bytes; i.e., k is the integer satisfying 28(k−1) ≤ N < 28k.
Messages m to be encrypted are assumed to have length an integer number
of bytes ranging from one to k − 11. Encryption of a D-byte message m is
computed as

[(0x00‖0x02‖r‖0x00‖m)e mod N] ,

where r is a randomly generated, (k−D−3)-byte string with none of its bytes
equal to 0x00. (This latter condition enables the message to be unambiguously
recovered upon decryption.) Note that the maximum allowed length of m
ensures that r is at least 8 bytes long.

Unfortunately, PKCS #1 v1.5 as specified is not CPA-secure because it
allows using random padding that is too short. This is best illustrated by
showing that an attacker can determine the initial portion of a message known
to have many trailing 0s. For simplicity, say m = b‖ 0 · · · 0︸ ︷︷ ︸

L

where b ∈ {0, 1} is

unknown and m is as long as possible (so L = 8 · (k− 11)− 1). Encryption of
m gives a ciphertext c with

c = (0x00‖0x02‖r‖0x00‖b‖0 · · · 0)e mod N.

An attacker can compute c′ := c/(2L)e mod N ; note that

c′ =

(
0x00‖0x02‖r‖0x00‖b‖0 · · · 0

10 · · · 0

)e
= (0x02‖r‖0x00‖b)e mod N.

The integer 0x02‖r‖0x00‖b is 75 bits long (note that 0x02 = 0000 0010, and
all the high-order 0-bits don’t count), and so an attacker can now apply the
“short-message attack,” or the attack based on encrypting a partially known
message, from the previous section. To avoid these attacks we need to take
r of length at least ‖N‖ /e. Even if e is large, however, the “quadratic-
improvement attack” from the previous section shows that r can be recovered,
with high probability, in time roughly 2‖r‖/2.

If we force r to be roughly half the length of N , and correspondingly re-
duce the maximum message length, then it is reasonable to conjecture that
the encryption scheme in PKCS #1 v1.5 is CPA-secure. (We stress, however,
that no proof of security based on the RSA assumption is known.) Neverthe-
less, because of a serious chosen-ciphertext attack on the scheme, described
briefly in Section 12.5.5, newer versions of the PKCS #1 standard have been
introduced and should be used instead.

Public-Key Encryption 443

12.5.3 *CPA-Secure Encryption without Random Oracles

In this section we show an encryption scheme that can be proven to be
CPA-secure based on the RSA assumption. We begin by describing a specific
hard-core predicate (see Section 8.1.3) for the RSA problem and then show
how to use that hard-core predicate to encrypt a single bit. We then extend
this scheme to give a KEM.

The schemes described in this section are mainly of theoretical interest and
are not used in practice. This is because they are less efficient than alterna-
tive RSA-based constructions that can be proven secure in the random-oracle
model (cf. Section 6.5). We will see examples of such encryption schemes in
the sections that follow.

A hard-core predicate for the RSA problem. Loosely speaking, the
RSA assumption says that given N, e, and [xe mod N] (for x chosen uniformly
from Z∗N), it is infeasible to recover x. By itself, this says nothing about
the computational difficulty of computing some specific information about x.
Can we isolate some particular bit of information about x that is hard to
compute from N, e and [xe mod N]? The notion of a hard-core predicate
captures exactly this requirement. (Hard-core predicates were introduced in
Section 8.1.3. The fact that the RSA assumption gives a family of one-way
permutations is discussed in Section 9.4.1. Our treatment here, however,
is self-contained.) It is possible to show that the least-significant bit of x,
denoted lsb(x), is a hard-core predicate for the RSA problem.

Define the following experiment for a given algorithm GenRSA (with the
usual behavior) and algorithm A:

The RSA hard-core predicate experiment RSA-lsbA,GenRSA(1n):

1. Run GenRSA(1n) to obtain (N, e, d).

2. Choose a uniform x ∈ Z∗N and compute y := [xe mod N].

3. A is given N, e, y, and outputs a bit b.

4. The output of the experiment is 1 if and only if lsb(x) = b.

Observe that lsb(x) is a uniform bit when x ∈ Z∗N is uniform. A can
guess lsb(x) with probability 1/2 by simply outputting a uniform bit b. The
following theorem states that if the RSA problem is hard, then no efficient
algorithm A can do significantly better than this; i.e., the least-significant bit
is a hard-core predicate of the RSA permutation.

THEOREM 12.31 If the RSA problem is hard relative to GenRSA then
for all probabilistic polynomial-time algorithms A there is a negligible function
negl such that Pr [RSA-lsbA,GenRSA(n) = 1] ≤ 1

2 + negl(n).

A full proof of this theorem is beyond the scope of this book. However,
we provide some intuition for the theorem by sketching a proof of a weaker

444 Introduction to Modern Cryptography

result: that the RSA assumption implies Pr [RSA-lsbA,GenRSA(n) = 1] < 1 for
all probabilistic polynomial-time A. To prove this we show that an efficient
algorithm that always correctly computes lsb(r) from N, e, and [re mod N]
can be used to efficiently recover x (in its entirety) from N, e, and [xe mod N].

Fix N and e, and let A be an algorithm such that A([re mod N]) = lsb(r).
Given N, e, and y = [xe mod N], we will recover the bits of x one-by-one, from
least to most significant. To determine lsb(x) we simply run A(y). There are
now two cases:

Case 1: lsb(x) = 0. Note that y/2e = (x/2)e mod N , and because x is even
(i.e., lsb(x) = 0), 2 divides the integer x. So x/2 is just the right-wise bit-shift
of x, and lsb(x/2) is equal to 2sb(x), the 2nd-least-significant bit of x. So we
can obtain 2sb(x) by computing y′ := [y/2e mod N] and then running A(y′).

Case 2: lsb(x) = 1. Here [x/2 mod N] = (x + N)/2. So lsb([x/2 mod N])
is equal to 2sb(x + N); the latter is equal to 1 ⊕ 2sb(N) ⊕ 2sb(x) (we have
a carry bit in the second position because both x and N are odd). So if we
compute y′ := [y/2e mod N], then 2sb(x) = A(y′)⊕ 1⊕ 2sb(N).

Continuing in this way, we can recover all the bits of x.

Encrypting one bit. We can use the hard-core predicate identified above
to encrypt a single bit. The idea is straightforward: to encrypt the message
m ∈ {0, 1}, the sender chooses uniform r ∈ Z∗N subject to the constraint that
lsb(r) = m; the ciphertext is c := [re mod N]. See Construction 12.32.

CONSTRUCTION 12.32

Let GenRSA be as usual, and define a public-key encryption scheme as
follows:

� Gen: on input 1n, run GenRSA(1n) to obtain (N, e, d). Output the
public key pk = 〈N, e〉, and the private key sk = 〈N, d〉.

� Enc: on input a public key pk = 〈N, e〉 and a message m ∈ {0, 1},
choose a uniform r ∈ Z∗N subject to the constraint that lsb(r) = m.
Output the ciphertext c := [re mod N].

� Dec: on input a private key sk = 〈N, d〉 and a ciphertext c, com-
pute r := [cd mod N] and output lsb(r).

Single-bit encryption using a hard-core predicate for RSA.

THEOREM 12.33 If the RSA problem is hard relative to GenRSA then
Construction 12.32 is CPA-secure.

PROOF Let Π denote Construction 12.32. We prove that Π has indistin-

Public-Key Encryption 445

guishable encryptions in the presence of an eavesdropper; by Proposition 12.3,
this implies it is CPA-secure.

Let A be a probabilistic polynomial-time adversary. Without loss of gener-
ality, we may assume m0 = 0 and m1 = 1 in experiment PubKeav

A,Π(n). So

Pr[PubKeav
A,Π(n) = 1] =

1

2
· Pr[A(N, e, c) = 0 | c is an encryption of 0]

+
1

2
· Pr[A(N, e, c) = 1 | c is an encryption of 1].

Consider running A in experiment RSA-lsb. By definition,

Pr[RSA-lsbA,GenRSA(n) = 1] = Pr[A
(
N, e, [re mod N]

)
= lsb(r)],

where r is uniform in Z∗N . Since Pr[lsb(r) = 1] = 1/2, we have

Pr[RSA-lsbA,GenRSA(n) = 1] =
1

2
· Pr[A

(
N, e, [re mod N]

)
= 0 | lsb(r) = 0]

+
1

2
· Pr[A

(
N, e, [re mod N]

)
= 1 | lsb(r) = 1].

Noting that encrypting m ∈ {0, 1} corresponds exactly to choosing uniform r
subject to the constraint that lsb(r) = m, we see that

Pr[PubKeav
A,Π(n) = 1] = Pr[RSA-lsbA,GenRSA(n) = 1].

Theorem 12.31 thus implies that there is a negligible function negl such that

Pr[PubKeav
A,Π(n) = 1] ≤ 1

2
+ negl(n),

as desired.

Constructing a KEM. We now show how to extend Construction 12.32 so
as to obtain a KEM with key length n. A naive way of doing this would be to
simply choose a uniform, n-bit key k and then encrypt the bits of k one-by-one
using n invocations of Construction 12.32. This would result in a rather long
ciphertext consisting of n elements of Z∗N .

A better approach is for the sender to apply the RSA permutation (namely,
raising to the eth power modulo N) repeatedly, starting from an initial, uni-
form value c1. That is, the sender will successively compute ce1, followed by

(ce1)e = ce
2

1 , and so on, up to ce
n

1 (all modulo N). The final value [ce
n

1 mod N]

will be the ciphertext, and the sequence of bits lsb(c1), lsb(ce1), . . . , lsb(ce
n−1

1)
is the key. To decrypt a ciphertext c, the receiver simply reverses this process,
successively computing cd, (cd)d = cd

2

up to cd
n

(again, all modulo N) to re-
cover the initial value c1 = cd

n

used by the sender. Having recovered c1, as
well as the intermediate values ce

n

1 , . . . , ce1, the receiver can compute the key.

446 Introduction to Modern Cryptography

It is possible to implement decryption more efficiently using the fact that the
receiver knows the order of the group Z∗N . At key-generation time, the receiver
can pre-compute d′ := [dn mod φ(N)] and store d′ as part of its private key.
To decrypt, the receiver can then directly compute c1 := [cd

′
mod N], after

which it can compute ce1, . . . , c
en

1 . (Exponentiations to the power e are more
efficient than exponentiations to the power d since e � d in practice.) This
works, of course, since

cd
n

mod N = c[d
n mod φ(N)] = cd

′
mod N.

The above is formally described as Construction 12.34.

CONSTRUCTION 12.34

Let GenRSA be as usual, and define a KEM as follows:

� Gen: on input 1n, run GenRSA(1n) to obtain (N, e, d). Then com-
pute d′ := [dn mod φ(N)] (note that φ(N) can be computed from
(N, e, d) or obtained during the course of running GenRSA). Out-
put pk = 〈N, e〉 and sk = 〈N, d′〉.

� Encaps: on input pk = 〈N, e〉, choose a uniform c1 ∈ Z∗N . Then
for i = 1, . . . , n do:

1. Compute ki := lsb(ci).

2. Compute ci+1 := [cei mod N].

Output the ciphertext cn+1 and the key k = k1 · · · kn.

� Decaps: on input sk = 〈N, d′〉 and a ciphertext c, compute c1 :=

[cd
′

mod N]. Then for i = 1, . . . , n do:

1. Compute ki := lsb(ci).

2. Compute ci+1 := [cei mod N].

Output the key k = k1 · · · kn.

A KEM using a hard-core predicate for RSA.

The construction is reminiscent of the approach used to construct a pseu-
dorandom generator from a one-way permutation toward the end of Sec-
tion 8.4.2. If we let f denote the RSA permutation relative to some public key

〈N, e〉 (i.e., f(x)
def
= [xe mod N]), then CPA-security of Construction 12.34 is

equivalent to pseudorandomness of lsb(fn−1(c1)), . . . , lsb(c1) even conditioned
on the value c = fn(c1). This, in turn, can be proven using Theorem 12.31
and the techniques from Section 8.4.2. (The only difference is that in Sec-
tion 8.4.2 the value fn(c1) was itself a uniform n-bit string, whereas here it
is a uniform element of Z∗N . Pseudorandomness of the successive hard-core
predicates is independent of the domain of f .) Summarizing:

Public-Key Encryption 447

THEOREM 12.35 If the RSA problem is hard relative to GenRSA then
Construction 12.34 is a CPA-secure KEM.

Efficiency. Construction 12.34 is reasonably efficient. To be concrete, assume
that n = 128, the RSA modulus N is 2048 bits long, and the public expo-
nent e is 3 so that exponentiation to the power e modulo N can be computed
using two modular multiplications. (See Appendix B.2.3.) Encryption then
requires 2n = 256 modular multiplications. Decryption can be done with one
full modular exponentiation (at the cost of approximately 1.5 · 2048 = 3072
modular multiplications) plus an additional 256 modular multiplications. The
cost of decryption is thus only about 8% less efficient than for the plain RSA
encryption scheme. Encryption is significantly more expensive than in plain
RSA, but in many applications decryption time is more important (since it
may be implemented by a server that is performing thousands of decryptions
simultaneously).

12.5.4 OAEP and PKCS #1 v2

We now consider CCA-security for RSA-based encryption schemes. We
begin by showing that all the RSA-based encryption schemes we have seen so
far are vulnerable to chosen-ciphertext attacks.

Plain RSA encryption. Plain RSA is not even CPA-secure. But it does
ensure that if m ∈ Z∗N is uniform then an attacker who eavesdrops on the
encryption c = [me mod N] of m with respect to the public key 〈N, e〉 cannot
recoverm. Even this weak guarantee no longer holds in a setting where chosen-
ciphertext attacks are possible. As in the case of El Gamal encryption, this is
a consequence of the fact that plain RSA is malleable: given the encryption
c = [me mod N] of an unknown message m, it is easy to generate a ciphertext
c′ that is an encryption of [2m mod N] by setting

c′ := [2e · c mod N]

= 2e ·me = (2m)e mod N.

In fact, we have used this observation several times already.

RSA PKCS #1 v1.5. Padded RSA encryption, which is conjectured to be
CPA-secure for the right setting of the parameters, is vulnerable to essentially
the same attack as plain RSA encryption is. But there is also a more interest-
ing chosen-ciphertext attack on PKCS #1 v1.5 encryption that, in contrast
to an attack that exploits malleability, does not require full access to a de-
cryption oracle; it only requires access to a “partial” decryption oracle that
indicates whether or not decryption of some ciphertext returns an error. This
makes the attack much more practical, as it can be carried out whenever an
attacker can distinguish a decryption success from a decryption failure, as in
the case of the padding-oracle attack discussed in Section 5.1.1.

448 Introduction to Modern Cryptography

Recall that the public-key encryption scheme defined in the PKCS #1 v1.5
standard uses a variant of padded RSA encryption where the padding is done
in a specific way. In particular, the two high-order bytes of the padded mes-
sage are always 0x00‖0x02. When decrypting, the receiver is supposed to
check that the two high-order bytes of the intermediate result match these
values, and return an error if this is not the case. In 1998, Bleichenbacher
developed a chosen-ciphertext attack that exploits the fact that this check is
done. Roughly, given a ciphertext c that corresponds to an honest encryption
of some unknown message m with respect to a public key 〈N, e〉, Bleichen-
bacher’s attack repeatedly chooses uniform s ∈ Z∗N and submits the ciphertext
c′ := [se · c mod N] to the receiver. Say c = [m̂e mod N] where

m̂ = 0x00‖0x02‖r‖0x00‖m,

as specified by PKCS #1 v1.5. Then decryption of c′ will give the intermediate
result m̂′ = [s · m̂ mod N], and the receiver will return an error unless the
top two bytes of m̂′ are exactly 0x00‖0x02. (Other checks are done as well,
but we ignore those for simplicity.) Thus, whenever decryption succeeds the
attacker learns that the top two bytes of s · m̂ mod N are 0x00‖0x02, where
s is known. Sufficiently many equations of this type suffice for the attacker
to learn m̂ and recover all of the original message m.

The CPA-secure KEM. In Section 12.5.3 we showed a construction of a
KEM that can be proven CPA-secure based on the RSA assumption. That
construction is also insecure against a chosen-ciphertext attack; we leave the
details as an exercise.

RSA-OAEP

We explore a construction of CCA-secure encryption from RSA using what
is called optimal asymmetric encryption padding (OAEP). The resulting RSA-
OAEP scheme follows the idea (used also in Section 12.5.2) of taking a mes-
sage m, mapping it to an element m̂ ∈ Z∗N , and then letting c = [m̂e mod N]
be the ciphertext. The transformation here, however, is more complex than
before. A version of RSA-OAEP has been standardized as part of RSA
PKCS #1 since version 2.0.

Let `(n), k(n) be integer-valued functions with k(n) = Θ(n), and such that
`(n) + 2k(n) is less than the bit-length of moduli output by GenRSA(1n).
Fix n, and let ` = `(n) and k = k(n). Let G : {0, 1}k → {0, 1}`+k and
H : {0, 1}`+k → {0, 1}k be two hash functions that will be modeled as inde-
pendent random oracles. (Although using more than one random oracle was
not discussed in Section 6.5.1, we can do so in the natural way.) The trans-
formation defined by OAEP is based on a two-round Feistel network with G
and H as round functions; see Figure 12.4. Mapping a message m ∈ {0, 1}` to
m̂ is done as follows: first set m′ := m‖0k and choose a uniform r ∈ {0, 1}k.

Public-Key Encryption 449

FIGURE 12.4: The OAEP transformation.

Then compute

t := m′ ⊕G(r) ∈ {0, 1}`+k, s := r ⊕H(t) ∈ {0, 1}k,

and set m̂ := s‖t. (The PKCS #1 standard differs from what we have de-
scribed, but the differences are unimportant for our purposes.) To encrypt a
message m with respect to the public key 〈N, e〉, the sender generates m̂ as
above and outputs the ciphertext c := [m̂e mod N]. (Note that m̂, interpreted
as an integer, is less than N because of the constraints on `, k.)

To decrypt, the receiver computes m̂ := [cd mod N] and lets s‖t := m̂ with
s and t of the appropriate lengths. It then inverts the Feistel network by
computing r := H(t)⊕ s and m′ := G(r)⊕ t. Importantly, the receiver then
verifies that the trailing k bits of m′ are all 0; if not, the ciphertext is rejected
and an error message is returned. Otherwise, the k least-significant 0s of m′

are discarded, and the remaining ` bits of m′ are output as the message. This
process is described in Construction 12.36.

RSA-OAEP can be proven to be CCA-secure based on the RSA assumption
if G and H are modeled as random oracles. The proof is rather complicated,
and we do not give it here; instead, we merely provide some intuition. First
consider CPA-security. During encryption the sender computes

m′ := m‖0k1 , t := m′ ⊕G(r), s := r ⊕H(t)

for uniform r; the ciphertext is [(s‖t)e mod N]. If the attacker never queries r
to G then, since we model G as a random function, the value G(r) is uniform
from the attacker’s point of view and so m is masked with a uniform string
just as in the one-time pad encryption scheme. Thus, if the attacker never
queries r to G then no information about the message is leaked.

Can the attacker query r to G? The value of r is itself masked by H(t). So
the attacker has no information about r unless it first queries t to H. If the
attacker does not query t to H then the attacker may get lucky and guess r
anyway, but if r is sufficiently long the probability of doing so is negligible.

450 Introduction to Modern Cryptography

CONSTRUCTION 12.36

Let GenRSA be as in the previous sections, and `, k be as described in
the text. Let G : {0, 1}k → {0, 1}`+k and H : {0, 1}`+k → {0, 1}k be
functions. Construct a public-key encryption scheme as follows:

� Gen: on input 1n, run GenRSA(1n) to obtain (N, e, d). The public
key is 〈N, e〉 and the private key is 〈N, d〉.

� Enc: on input a public key 〈N, e〉 and a message m ∈ {0, 1}`, set
m′ := m‖0k and choose a uniform r ∈ {0, 1}k. Then compute

t := m′ ⊕G(r), s := r ⊕H(t)

and set m̂ := s‖t. Output the ciphertext c := [m̂e mod N].

� Dec: on input a private key 〈N, d〉 and a ciphertext c ∈ Z∗N ,
compute m̂ := [cd mod N]. If ‖m̂‖ > `+2k, output ⊥. Otherwise,
parse m̂ as s‖t with s ∈ {0, 1}`+k and t ∈ {0, 1}k. Compute
r := H(t) ⊕ s and m′ := G(r) ⊕ t. If the k least-significant bits
of m′ are not all 0, output ⊥. Otherwise, output the ` most-
significant bits of m′.

The RSA-OAEP encryption scheme.

Can the attacker query t to H? Doing so would require the attacker to
compute t from [(s‖t)e mod N]. Note that doing so does not directly solve
the RSA problem, which instead would require computing both s and t. Nev-
ertheless, for the right settings of the parameters it is possible to show that
recovering t is computationally infeasible if the RSA problem is hard.

Arguing CCA-security involves additional complications, but the basic idea
is to show that every decryption-oracle query c made by the attacker falls
into one of two categories: either the attacker obtained c by legally encrypt-
ing some message m itself (in which case the attacker learns nothing from
the decryption query), or else decryption of c returns an error. This is a con-
sequence of the fact that the receiver checks that the k least-significant bits
of m′ are 0 during decryption; if the attacker did not generate the cipher-
text c using the prescribed encryption algorithm, the probability that this
condition holds is negligible. The formal proof is complicated by the fact that
the attacker’s decryption-oracle queries must be answered correctly without
knowledge of the private key, which means there must be an efficient way
to determine whether to return an error or not and, if not, what message
to return. This is accomplished by looking at the adversary’s queries to the
random oracles G,H.

Manger’s chosen-ciphertext attack on PKCS #1 v2.0. In 2001, James
Manger showed a chosen-ciphertext attack against certain implementations of
the RSA encryption scheme specified in PKCS #1 v2.0—even though what
was specified was a variant of RSA-OAEP! Since Construction 12.36 can be
proven to be CCA-secure, how is this possible?

Public-Key Encryption 451

Examining the decryption algorithm in Construction 12.36, note that there
are two ways an error can occur: either m̂ ∈ Z∗N is too large, or m′ ∈ {0, 1}`+k
does not have enough trailing 0s. In Construction 12.36, the receiver is sup-
posed to return the same error (denoted ⊥) in either case. In some imple-
mentations, however, the receiver would output different errors depending on
which step failed. This single bit of additional information enabled a chosen-
ciphertext attack that could recover a message m in its entirety from a cor-
responding ciphertext using only ≈ ‖N‖ queries to an oracle leaking the type
of error upon decryption. This shows the importance of implementing cryp-
tographic schemes exactly as specified, since the resulting proof and analysis
may no longer apply if aspects of the scheme are changed.

Note that even if the same error is returned in both cases, an attacker
might be able to determine where the error occurs if the time to return the
error is different. (This is a great example of how an attacker is not limited
to examining the inputs/outputs of an algorithm, but can use side-channel
information to attack a scheme.) Implementations should ensure that the
time to return an error is identical in either case.

12.5.5 *A CCA-Secure KEM in the Random-Oracle Model

We show here a construction of an RSA-based KEM that is CCA-secure in
the random-oracle model; this scheme is included as part of the ISO/IEC
18033-2 standard for public-key encryption. (Recall from Theorem 12.14
that any such construction can be used in conjunction with any CCA-secure
private-key encryption scheme to give a CCA-secure public-key encryption
scheme.) As compared to the RSA-OAEP scheme from the previous section,
the main advantage is the simplicity of both the construction and its proof of
security. Its main disadvantage is that it results in longer ciphertexts when
encrypting short messages since it requires the KEM/DEM paradigm whereas
RSA-OAEP does not. For encrypting long messages, however, RSA-OAEP
would also be used as part of a hybrid encryption scheme, and would result
in an encryption scheme having similar efficiency to what would be obtained
using the KEM shown here.

The public key of the scheme includes 〈N, e〉 as usual, as well as a speci-
fication of a function H : Z∗N → {0, 1}n that will be modeled as a random
oracle in the analysis. (This function can be based on some underlying cryp-
tographic hash function, as discussed in Section 6.5. We omit the details.) To
encapsulate a key, the sender chooses uniform r ∈ Z∗N and then computes the
ciphertext c := [re mod N] and the key k := H(r). To decrypt a ciphertext c,
the receiver simply recovers r in the usual way and then re-derives the same
key k := H(r). See Construction 12.37.

CPA-security of the scheme is immediate. Indeed, the ciphertext c is equal
to [re mod N] for uniform r ∈ Z∗N , and so the RSA assumption implies that
an eavesdropper who observes c will be unable to compute r. This means,
in turn, that (except with negligible probability) the eavesdropper will not

452 Introduction to Modern Cryptography

CONSTRUCTION 12.37

Let GenRSA be as usual, and construct a KEM as follows:

� Gen: on input 1n, run GenRSA(1n) to compute (N, e, d). The
public key is 〈N, e〉, and the private key is 〈N, d〉.
As part of key generation, a functionH : Z∗N → {0, 1}n is specified,
but we leave this implicit.

� Encaps: on input public key 〈N, e〉, choose a uniform r ∈ Z∗N .
Output the ciphertext c := [re mod N] and the key k := H(r).

� Decaps: on input private key 〈N, d〉 and a ciphertext c ∈ Z∗N ,
compute r := [cd mod N] and output the key k := H(r).

A CCA-secure KEM (in the random-oracle model).

query r to H, and thus the value of the key k
def
= H(r) will remain uniform

from the attacker’s point of view.

In fact, the above extends to show CCA-security as well. This is because
answering a decapsulation-oracle query for any ciphertext c̃ 6= c only in-
volves evaluating H at some input [c̃d mod N] = r̃ 6= r. Thus, the attacker’s
decapsulation-oracle queries do not reveal any additional information about
the key H(r) encapsulated by the challenge ciphertext. (A formal proof is
slightly more involved since we must show how it is possible to simulate the
answers to decapsulation-oracle queries without knowledge of the private key.
Nevertheless, this turns out to be not very difficult.)

THEOREM 12.38 If the RSA problem is hard relative to GenRSA and H
is modeled as a random oracle, then Construction 12.37 is CCA-secure.

PROOF Let Π denote Construction 12.37, and let A be a probabilistic
polynomial-time adversary. For convenience, and because this is the first
proof where we use the full power of the random-oracle model, we explicitly
describe the steps of experiment KEMcca

A,Π(n):

1. GenRSA(1n) is run to obtain (N, e, d). In addition, a random function
H : Z∗N → {0, 1}n is chosen.

2. Uniform r ∈ Z∗N is chosen, and the ciphertext c := [re mod N] and key
k := H(r) are computed.

3. A uniform bit b ∈ {0, 1} is chosen. If b = 0 set k̂ := k. If b = 1 then

choose a uniform k̂ ∈ {0, 1}n.

4. A is given pk = 〈N, e〉, c, and k̂, and may query H(·) (on any input)
and the decapsulation oracle Decaps〈N,d〉(·) on any ciphertext ĉ 6= c.

Public-Key Encryption 453

5. A outputs a bit b′. The output of the experiment is defined to be 1 if
b′ = b, and 0 otherwise.

In an execution of experiment KEMcca
A,Π(n), let Query be the event that, at

any point during its execution, A queries r to the random oracle H. We let
Success denote the event that b′ = b (i.e., the experiment outputs 1). Then

Pr[Success] = Pr
[
Success ∧ Query

]
+ Pr[Success ∧ Query]

≤ Pr
[
Success ∧ Query

]
+ Pr[Query],

where all probabilities are taken over the randomness used in experiment
KEMcca

A,Π(n). We show that Pr
[
Success ∧ Query

]
≤ 1

2 and that Pr[Query] is
negligible. The theorem follows.

We first argue that Pr
[
Success ∧ Query

]
≤ 1

2 . If Pr[Query] = 0 this is im-

mediate. Otherwise, Pr
[
Success ∧ Query

]
≤ Pr

[
Success|Query

]
. Now, con-

ditioned on Query, the value of the correct key k = H(r) is uniform because
H is a random function. Consider A’s information about k in experiment
KEMcca

A,Π(n). The public key pk and ciphertext c, by themselves, do not con-
tain any information about k. (They do uniquely determine r, but since H is
chosen independently of anything else, this gives no information about H(r).)
Queries that A makes to H also do not reveal any information about r, unless
A queries r to H (in which case Query occurs); this, again, relies on the fact
that H is a random function. Finally, queries that A makes to its decap-
sulation oracle only reveal H(r̃) for r̃ 6= r. This follows from the fact that
Decaps〈N,d〉(c̃) = H(r̃) where r̃ = [c̃d mod N], but c̃ 6= c implies r̃ 6= r. Once
again, this and the fact that H is a random function mean that no information
about H(r) is revealed unless Query occurs.

The above shows that, as long as Query does not occur, the value of the
correct key k is uniform even given A’s view of the public key, ciphertext, and
the answers to all its oracle queries. In that case, then, there is no way A can
distinguish (any better than random guessing) whether k̂ is the correct key
or a uniform, independent key. Therefore, Pr

[
Success|Query

]
= 1

2 .
We highlight that nowhere in the above argument did we rely on the fact

that A is computationally bounded, and in fact Pr
[
Success ∧ Query

]
≤ 1

2
even if no computational restrictions are placed on A. This indicates part of
the power of the random-oracle model.

To complete the proof of the theorem, we show

CLAIM 12.39 If the RSA problem is hard relative to GenRSA and H is
modeled as a random oracle, then Pr[Query] is negligible.

To prove this, we construct an algorithm A′ that uses A as a subroutine.
A′ is given an instance N, e, c of the RSA problem, and its goal is to compute
r for which re = c mod N . To do so, it will run A, answering its queries
to H and Decaps. Handling queries to H is simple, since A′ can just return

454 Introduction to Modern Cryptography

a random value. Queries to Decaps are trickier, however, since A′ does not
know the private key associated with the effective public key 〈N, e〉.

On further thought, however, decapsulation queries are also easy to answer
since A′ can just return a random value here as well. That is, although the
query Decaps(c̃) is supposed to be computed by first computing r̃ such that
r̃e = c̃ mod N and then evaluating H(r̃), the result is just a uniform value.
Thus, A′ can simply return a random value without performing the inter-
mediate computation. The only “catch” is that A′ must ensure consistency
between its answers to H-queries and Decaps-queries; namely, it must ensure
that for any r̃, c̃ with r̃e = c̃ mod N it holds that H(r̃) = Decaps(c̃). This is
handled using simple bookkeeping and lists LH and LDecaps that keep track
of the answers A′ has given in response to the respective oracle queries. We
now give the details.

Algorithm A′:
The algorithm is given (N, e, c) as input.

1. Initialize empty lists LH , LDecaps. choose a uniform k ∈ {0, 1}n
and store (c, k) in LDecaps.

2. Choose a uniform bit b ∈ {0, 1}. If b = 0 set k̂ := k. If

b = 1 then choose a uniform k̂ ∈ {0, 1}n. Run A on 〈N, e〉, c,
and k̂.

When A makes a query H(r̃), answer it as follows:

� If there is an entry in LH of the form (r̃, k) for some k,
return k.

� Otherwise, let c̃ := [r̃e mod N]. If there is an entry in
LDecaps of the form (c̃, k) for some k, return k and store
(r̃, k) in LH .

� Otherwise, choose a uniform k ∈ {0, 1}n, return k, and
store (r̃, k) in LH .

When A makes a query Decaps(c̃), answer it as follows:

� If there is an entry in LDecaps of the form (c̃, k) for some k,
return k.

� Otherwise, for each entry (r̃, k) ∈ LH , check if r̃e =
c̃ mod N and, if so, output k.

� Otherwise, choose a uniform k ∈ {0, 1}n, return k, and
store (c̃, k) in LDecaps.

3. At the end of A’s execution, if there is an entry (r, k) in LH
for which re = c mod N then return r.

Clearly A′ runs in polynomial time, and the view of A when run as a sub-
routine by A′ in experiment RSA-invA′,GenRSA(n) is identical to the view of A
in experiment KEMcca

A,Π(n): the inputs given to A clearly have the right dis-
tribution, the answers to A’s oracle queries are consistent, and the responses

Public-Key Encryption 455

to all H-queries are uniform and independent. Finally, A′ outputs the correct
solution exactly when Query occurs. Hardness of the RSA problem relative to
GenRSA thus implies that Pr[Query] is negligible, as required.

It is worth remarking on the various properties of the random-oracle model
(see Section 6.5.1) that are used in the above proof. First, we rely on the fact
that the value H(r) is uniform unless r is queried to H—even if H is queried
on multiple other values r̃ 6= r. We also, implicitly, use extractability to argue
that the attacker cannot query r to H; otherwise, we could use this attacker
to solve the RSA problem. Finally, the proof relies on programmability in
order to simulate the adversary’s decapsulation-oracle queries.

12.5.6 RSA Implementation Issues and Pitfalls

We close this section with a brief discussion of some issues related to the
implementation of RSA-based schemes, and some pitfalls to be aware of.

Using Chinese remaindering. In implementations of RSA-based encryp-
tion, the receiver can use the Chinese remainder theorem (Section 9.1.5) to
speed up computation of eth roots modulo N during decryption. Specifically,
let N = pq and say the receiver wishes to compute the eth root of some
value y using d = [e−1 mod φ(N)]. The receiver can use the correspondence
[yd mod N]↔ ([yd mod p], [yd mod q]) to compute the partial results

xp := [yd mod p] =
[
y[d mod (p−1)] mod p

]
(12.19)

and

xq := [yd mod q] =
[
y[d mod (q−1)] mod q

]
, (12.20)

and then combine these to obtain x↔ (xp, xq), as discussed in Section 9.1.5.
Note that [d mod (p − 1)] and [d mod (q − 1)] could be pre-computed since
they are independent of y.

Why is this better? Assume exponentiation modulo an `-bit integer takes
γ · `3 operations for some constant γ. If p, q are each n bits long, then naively
computing [yd mod N] takes γ · (2n)3 = 8γ · n3 steps (because ‖N‖ = 2n).
Using Chinese remaindering reduces this to roughly 2 · (γ · n3) steps (because
‖p‖ = ‖q‖ = n), or roughly 1/4 of the time.

Example 12.40

We revisit Example 9.49. Recall that N = 143 = 11 · 13 and d = 103, and

456 Introduction to Modern Cryptography

y = 64 there. To calculate [64103 mod 143] we compute(
[64 mod 11], [64 mod 13]

)103
=
(
[(−2)103 mod 11], [(−1)103 mod 13]

)
=
(

[(−2)[103 mod 10] mod 11], −1
)

=
(
[−8 mod 11], −1

)
= (3, −1).

We can compute 1p = 78 ↔ (1, 0) and 1q = 66↔ (0, 1), as discussed in Sec-
tion 9.1.5. (Note these values can be pre-computed, as they are independent
of y.) Then (3,−1) ↔ 3 · 1p − 1q = 3 · 78 − 66 = 168 = 25 mod 143, in
agreement with the answer previously obtained. ♦

A fault attack when using Chinese remaindering. When using Chinese
remaindering as just described, one should be aware of a potential attack that
can be carried out if faults occur (or can be induced to occur by an attacker,
e.g., by hardware tampering) during the course of the computation.

Consider what happens if [yd mod N] is computed twice: the first time with
no error (giving the correct result x), but the second time with an error during
computation of Equation (12.20) but not Equation (12.19) (the same attack
applies in the opposite case). The second computation yields an incorrect
result x′ for which x′ = x mod p but x′ 6= x mod q. This means that p | (x′−x)
but q 6 | (x′ − x). But then gcd(x′ − x,N) = p, yielding the factorization of N .

One possible countermeasure is to verify correctness of the result before
using it, by checking that xe = y mod N . (Since ‖e‖ � ‖d‖, using Chinese
remaindering still gives better efficiency.) This is recommended in hardware
implementations.

Dependent public keys I. When multiple receivers wish to utilize the same
encryption scheme, they should use independent public keys. This and the
following attack demonstrate what can go wrong when this is not done.

Imagine a company wants to use the same modulus N for each of its em-
ployees. Since it is not desirable for messages encrypted to one employee to
be read by any other employee, the company issues different (ei, di) pairs to
each employee. That is, the public key of the ith employee is pki = 〈N, ei〉
and their private key is sk = 〈N, di〉, where ei · di = 1 mod φ(N) for all i.

This approach is insecure and allows any employee to read messages en-
crypted to all other employees. The reason is that, as noted in Section 9.2.4,
given N and ei, di with ei · di = 1 mod φ(N), the factorization of N can be
efficiently computed. Given the factorization of N , of course, it is possible to
compute dj := e−1

j mod φ(N) for any j.

Dependent public keys II. The attack just shown allows any employee to
decrypt messages sent to any other employee. This still leaves the possibility
that sharing the modulus N is fine as long as all employees trust each other
(or, alternatively, as long as confidentiality need only be preserved against
outsiders but not against other members of the company). Here we show a

Public-Key Encryption 457

scenario indicating that sharing a modulus is still a bad idea, at least when
plain RSA encryption is used.

Say the same message m is encrypted and sent to two different (known)
employees with public keys (N, e1) and (N, e2) where e1 6= e2. Assume further
that gcd(e1, e2) = 1. Then an eavesdropper sees the two ciphertexts

c1 = me1 mod N and c2 = me2 mod N.

Since gcd(e1, e2) = 1, there exist integers X,Y such that Xe1 + Y e2 = 1 by
Proposition 9.2. Moreover, given the public exponents e1 and e2 it is possible
to efficiently compute X and Y using the extended Euclidean algorithm (see
Appendix B.1.2). We claim that m = [cX1 · cY2 mod N], which can easily be
calculated. This is true because

cX1 · cY2 = mXe1mY e2 = mXe1+Y e2 = m1 = m mod N.

A similar attack applies when using padded RSA or RSA-OAEP if the sender
uses the same transformed message m̂ when encrypting to two users.

Randomness quality in RSA key generation. Throughout this book,
we always assume that honest parties have access to sufficient, high-quality
randomness. When this assumption is violated then security may fail to hold.
For example, if an `-bit string is chosen from some set S ⊂ {0, 1}` rather than
uniformly from {0, 1}`, then an attacker can perform a brute-force search (in
time O(|S|)) to attack the system.

In some cases the situation may be even worse. Consider in particular
the case of RSA key generation, where random bits rp is used to choose the
first prime p, and random bits rq is used to generate the second prime q.
Assume further that many public/private keys are generated using the same
source of poor-quality randomness, in which rp, rq are each chosen uniformly
from some set S of size 2s. After generating roughly 2s/2 public keys (see
Appendix A.4), we expect to obtain two different moduli N,N ′ that were
generated using identical randomness rp = r′p but different randomness rq 6=
r′q. These two moduli share a prime factor which can be easily found by
computing gcd(N,N ′). An attacker can attempt to exploit this by scraping
the Internet for a large set of RSA public keys, computing their pairwise gcd’s,
and thus hoping to factor some subset of them. Although computing pairwise
gcd’s of 2s/2 moduli would naively take time O(2s), it turns out that this
can be significantly improved using a “divide-and-conquer” approach that is
beyond the scope of this book. The upshot is that an attacker can factor a
small number of public moduli in time less than 2s. Note also that the attack
works even if the set S is unknown to the attacker.

The above scenario was verified experimentally by two research teams work-
ing independently, who carried out exactly the above attack on public keys
obtained over the Internet, and were able to successfully factor a significant
fraction of the keys they found.

458 Introduction to Modern Cryptography

References and Additional Reading

The idea of public-key encryption was first proposed in the open literature
by Diffie and Hellman [65]. Rivest, Shamir, and Adleman [171] introduced
the RSA assumption and proposed a public-key encryption scheme based on
this assumption. As pointed out in the previous chapter, other pioneers of
public-key cryptography include Merkle and Rabin (in academic publications)
and Ellis, Cocks, and Williamson (in classified publications).

Definition 12.2 is rooted in the seminal work of Goldwasser and Micali [87],
who were also the first to recognize the necessity of probabilistic encryption
for satisfying this definition. As noted in Chapter 4, chosen-ciphertext at-
tacks were first formally defined by Naor and Yung [147] and Rackoff and
Simon [168]. The expository article by Shoup [180] discusses the importance
of security against chosen-ciphertext attacks. Bellare et al. give a unified,
modern treatment of various security notions for public-key encryption [18].

A proof of CPA-security for hybrid encryption was first given by Blum and
Goldwasser [40]. The case of CCA-security was treated in [63].

Somewhat amazingly, the El Gamal encryption scheme [77] was not sug-
gested until 1984, even though it can be viewed as a direct transformation
of the Diffie–Hellman key-exchange protocol (see Exercise 12.4). DHIES was
introduced in [2]. The ISO/IEC 18033-2 standard for public-key encryption
can be found at http://www.shoup.net/iso.

Plain RSA encryption corresponds to the original scheme introduced by
Rivest, Shamir, and Adleman [171]. The attacks on plain RSA encryption de-
scribed in Section 12.5.1 are due to [186, 62, 92, 55, 44]; see [137, Chapter 8]
and [42] for additional attacks and further information. Proofs of Copper-
smith’s theorem can be found in the original work [54] or several subsequent
expositions (e.g., [76, 135]).

The PKCS #1 standards are available as RFCs [107, 108, 145]. For progress
toward proving security of the padded RSA encryption scheme, see the work
of Smith and Zhang [189]. The chosen-plaintext attack on PKCS #1 v1.5
described here is due to Coron et al. [57]. A description of Bleichenbacher’s
chosen-ciphertext attack on PKCS #1 v1.5 can be found in the original pa-
per [38]. See the work of Bardou et al. [13] for subsequent improvements.

Proofs of Theorem 12.31, and generalizations, can be found in [8, 94, 73, 7].
See Section 15.1.2 for a general treatment of schemes of this form. Construc-
tion 12.37 appears to have been introduced and first analyzed by Shoup [181].
OAEP was introduced by Bellare and Rogaway [25]. The original proof of
security for OAEP was later found to be flawed; other proofs have since been
given [43, 182, 75]. For details of Manger’s chosen-ciphertext attack on im-
plementations of PKCS #1 v2.0, see [133].

The pairwise-gcd attack described in Section 12.5.6 was carried out by
Lenstra et al. [125] and Heninger et al. [96].

http://www.shoup.net

Public-Key Encryption 459

When using any encryption scheme in practice, the question arises as to
what key length to use. This issue should not be taken lightly, and we refer
the reader to Section 10.4 and references therein for an in-depth treatment.

The first efficient CCA-secure public-key encryption scheme not relying
on the random-oracle model was shown by Cramer and Shoup [58] based
on the DDH assumption. Subsequently, Hoffheinz and Kiltz have shown an
efficient CCA-secure scheme without random oracles based on the RSA as-
sumption [100].

Exercises

12.1 Assume a public-key encryption scheme for single-bit messages with no
decryption error. Show that, given pk and a ciphertext c computed via
c ← Encpk(m), it is possible for an unbounded adversary to determine
m with probability 1.

12.2 Show that for any CPA-secure public-key encryption scheme for single-
bit messages, the length of the ciphertext must be superlogarithmic in
the security parameter.

Hint: If not, the range of possible ciphertexts has polynomial size.

12.3 Say a public-key encryption scheme (Gen,Enc,Dec) is one-way if any
ppt adversary A has negligible probability of success in the following
experiment:

� Gen(1n) is run to obtain keys (pk, sk).

� A uniform message m in the message space is chosen,
and a ciphertext c← Encpk(m) is computed.

� A is given pk and c, and outputs a message m′. We say
A succeeds if m′ = m.

(a) Construct a CPA-secure KEM in the random-oracle model based on
a one-way public-key encryption scheme with message space {0, 1}n.

(b) Can a deterministic public-key encryption scheme be one-way? If
not, prove impossibility; if so, give a construction based on any of
the assumptions introduced in this book.

12.4 Show that any two-round key-exchange protocol (that is, where each
party sends a single message) satisfying Definition 11.1 can be converted
into a CPA-secure public-key encryption scheme.

12.5 Show that Claim 12.7 does not hold in the setting of CCA-security.

460 Introduction to Modern Cryptography

12.6 Consider the following public-key encryption scheme. The public key
is (G, q, g, h) and the private key is x, generated exactly as in the El
Gamal encryption scheme. In order to encrypt a bit b, the sender does
the following:

(a) If b = 0 then choose a uniform y ∈ Zq and compute c1 := gy and
c2 := hy. The ciphertext is 〈c1, c2〉.

(b) If b = 1 then choose independent uniform y, z ∈ Zq, compute
c1 := gy and c2 := gz, and set the ciphertext equal to 〈c1, c2〉.

Show that it is possible to decrypt efficiently given knowledge of x.
Prove that this encryption scheme is CPA-secure if the decisional Diffie–
Hellman problem is hard relative to G.

12.7 Consider the following variant of El Gamal encryption. Let p = 2q + 1,
let G be the group of squares modulo p (so G is a subgroup of Z∗p of
order q), and let g be a generator of G. The private key is (G, g, q, x)
and the public key is (G, g, q, h), where h = gx and x ∈ Zq is chosen
uniformly. To encrypt a message m ∈ Zp, choose a uniform r ∈ Zq,
compute c1 := gr mod p and c2 := hr +m mod p, and let the ciphertext
be 〈c1, c2〉. Is this scheme CPA-secure? Prove your answer.

12.8 Consider the following protocol for two parties A and B to flip a fair coin
(more complicated versions of this might be used for Internet gambling):
(1) a trusted party T publishes her public key pk; (2) then A chooses a
uniform bit bA, encrypts it using pk, and announces the ciphertext cA
to B and T ; (3) next, B acts symmetrically and announces a ciphertext
cB 6= cA; (4) T decrypts both cA and cB , and the parties XOR the
results to obtain the value of the coin.

(a) Argue that even if A is dishonest (but B is honest), the final value
of the coin is uniformly distributed.

(b) Assume the parties use El Gamal encryption (where the bit b is
encoded as the group element gb before being encrypted—note that
efficient decryption is still possible). Show how a dishonest B can
bias the coin to any value he likes.

(c) Suggest what type of encryption scheme would be appropriate to
use here. Can you define an appropriate notion of security and
prove that your suggestion achieves this definition?

12.9 Prove formally that the El Gamal encryption scheme is not CCA-secure.

12.10 In Section 12.4.4 we showed that El Gamal encryption is malleable, and
specifically that given a ciphertext 〈c1, c2〉 that is the encryption of some
unknown message m, it is possible to produce a ciphertext 〈c1, c′2〉 that
is the encryption of α ·m (for known α). A receiver who receives both

Public-Key Encryption 461

these ciphertexts might be suspicious since both ciphertexts share the
first component. Show that it is possible to generate 〈c′1, c′2〉 that is the
encryption of α ·m, with c′1 6= c1 and c′2 6= c2.

12.11 Prove Theorem 12.22.

12.12 One of the attacks on plain RSA discussed in Section 12.5.1 involves a
sender who encrypts two related messages using the same public key.
Formulate an appropriate definition of security ruling out such attacks,
and show that any CPA-secure public-key encryption scheme satisfies
your definition.

12.13 One of the attacks on plain RSA discussed in Section 12.5.1 involves
a sender who encrypts the same message to three different receivers.
Formulate an appropriate definition of security ruling out such attacks,
and show that any CPA-secure public-key encryption scheme satisfies
your definition.

12.14 Consider the following modified version of padded RSA encryption: As-
sume messages to be encrypted have length exactly ‖N‖ /2. To encrypt,
first compute m̂ := 0x00‖r‖0x00‖m where r is a uniform string of length
‖N‖ /2− 16. Then compute the ciphertext c := [m̂e mod N]. When de-
crypting a ciphertext c, the receiver computes m̂ := [cd mod N] and
returns an error if m̂ does not consist of 0x00 followed by ‖N‖ /2 − 16
arbitrary bits followed by 0x00. Show that this scheme is not CCA-
secure. Why is it easier to construct a chosen-ciphertext attack on this
scheme than on PKCS #1 v1.5?

12.15 Consider the RSA-based encryption scheme in which a user encrypts a
message m ∈ {0, 1}` with respect to the public key 〈N, e〉 by computing
m̂ := H(m)‖m and outputting the ciphertext [m̂e mod N]. (Here, let
H : {0, 1}` → {0, 1}n and assume ` + n < ‖N‖.) Is this scheme CPA-
secure if H is modeled as a random oracle?

12.16 Show a chosen-ciphertext attack on Construction 12.34.

12.17 Say three users have RSA public keys 〈N1, 3〉, 〈N2, 3〉, and 〈N3, 3〉 (i.e.,
they all use e = 3), with N1 < N2 < N3. Consider the following method
for sending the same messagem ∈ {0, 1}` to each of these parties: choose
a uniform r ← Z∗N1

, and send to everyone the same ciphertext〈
[r3 mod N1], [r3 mod N2], [r3 mod N3], H(r)⊕m

〉
,

where H : Z∗N1
→ {0, 1}`. Assume ‖N1‖ = ‖N2‖ = ‖N3‖ = n� `.

(a) Show that this is not CPA-secure, and an adversary can recover m
from the ciphertext even when H is modeled as a random oracle.

Hint: See Section 12.5.1.

462 Introduction to Modern Cryptography

(b) Show a simple way to fix this and get a CPA-secure method that
transmits a ciphertext of length 3`+O(n).

(c) Show a better approach that is still CPA-secure but with a cipher-
text of length `+O(n).

12.18 Let Π = (Gen,Enc,Dec) be a CPA-secure public-key encryption scheme,
and let Π′ = (Gen′,Enc′,Dec′) be a CCA-secure private-key encryption
scheme. Consider the following construction:

CONSTRUCTION 12.41

Let H : {0, 1}n → {0, 1}n be a function. Construct a public-key
encryption scheme as follows:

� Gen∗: on input 1n, run Gen(1n) to obtain (pk, sk). Output
these as the public and private keys, respectively.

� Enc∗: on input a public key pk and a message m ∈ {0, 1}n,
choose a uniform r ∈ {0, 1}n and output the ciphertext〈

Encpk(r), Enc′H(r)(m)
〉
.

� Dec∗: on input a private key sk and a ciphertext 〈c1, c2〉, com-
pute r := Decsk(c1) and set k := H(r). Then output Dec′k(c2).

Does the above construction have indistinguishable encryptions under
a chosen-ciphertext attack, if H is modeled as a random oracle? If
yes, provide a proof. If not, where does the approach used to prove
Theorem 12.38 break down?

12.19 Consider the following variant of Construction 12.32:

CONSTRUCTION 12.42

Let GenRSA be as usual, and define a public-key encryption scheme
as follows:

� Gen: on input 1n, run GenRSA(1n) to obtain (N, e, d). Output
the public key pk = 〈N, e〉, and the private key sk = 〈N, d〉.

� Enc: on input a public key pk = 〈N, e〉 and a message
m ∈ {0, 1}, choose a uniform r ∈ Z∗N . Output the ciphertext
〈[re mod N], lsb(r)⊕m〉.

� Dec: on input a private key sk = 〈N, d〉 and a ciphertext 〈c, b〉,
compute r := [cd mod N] and output lsb(r)⊕ b.

Prove that this scheme is CPA-secure.

12.20 Fix an RSA public key 〈N, e〉 and assume we have an algorithm A that
always correctly computes lsb(x) given [xe mod N]. Write full pseu-
docode for an algorithm A′ that computes x from [xe mod N].

Chapter 13

Digital Signature Schemes

13.1 Digital Signatures – An Overview

In the previous chapter we explored how public-key encryption can be used
to achieve secrecy in the public-key setting. Integrity (or authenticity) in the
public-key setting is provided using digital signature schemes. These can be
viewed as the public-key analogue of message authentication codes although,
as we will see, there are several important differences between these primitives.

Signature schemes allow a signer S who has established a public key pk to
“sign” a message using the associated private key sk in such a way that anyone
who knows pk (and knows that this public key was established by S) can verify
that the message originated from S and was not modified in transit. (Note
that, in contrast to public-key encryption, in the context of digital signatures
the owner of the public key acts as the sender.) As a prototypical application,
consider a software company that wants to disseminate software updates in
an authenticated manner; that is, when the company releases an update it
should be possible for any of its clients to verify that the update is authentic,
and a malicious third party should never be able to fool a client into accepting
an update that was not actually released by the company. To do this, the
company can generate a public key pk along with a private key sk, and then
distribute pk in some reliable manner to its clients while keeping sk secret. (As
in the case of public-key encryption, we assume that this initial distribution
of the public key is carried out correctly so that all clients have a correct copy
of pk. In the current example, pk could be bundled with the original software
purchased by a client.) When releasing a software update m, the company
computes a digital signature σ on m using its private key sk, and sends (m,σ)
to every client. Each client can verify the authenticity of m by checking that
σ is a correct signature on m with respect to the public key pk.

A malicious party might try to issue a fraudulent update by sending (m′, σ′)
to a client, where m′ represents an update that was never released by the
company. This m′ might be a modified version of some previous update, or it
might be completely new and unrelated to any prior updates. If the signature
scheme is “secure” (in a sense we will define more carefully soon), however,
then when the client attempts to verify σ′ it will find that this is an invalid
signature on m′ with respect to pk, and will therefore reject the signature. The

463

464 Introduction to Modern Cryptography

client will reject even if m′ is modified only slightly from a genuine update m.
The above is not just a theoretical application of digital signatures, but one

that is in widespread use today for distributing software updates.

Comparison to Message Authentication Codes

Both message authentication codes and digital signature schemes are used
to ensure the integrity of transmitted messages. Although the discussion in
Chapter 11 comparing the public-key and private-key settings focused mainly
on encryption, that discussion applies also to message integrity. Using digital
signatures rather than message authentication codes simplifies key distribu-
tion and management, especially when a sender needs to communicate with
multiple receivers as in the software-update example above. By using a digital
signature scheme the sender avoids having to establish a distinct secret key
with each potential receiver, and avoids having to compute a separate MAC
tag with respect to each such key. Instead, the sender need only compute a
single signature that can be verified by all recipients.

A qualitative advantage that digital signatures have as compared to message
authentication codes is that signatures are publicly verifiable. This means that
if a receiver verifies that a signature on a given message is legitimate, then all
other parties who receive this signed message will also verify it as legitimate.
This feature is not achieved by message authentication codes if the signer
shares a separate key with each receiver: in such a setting a malicious sender
might compute a correct MAC tag with respect to the key it shares with
receiver A but an incorrect MAC tag with respect to the key it shares with a
different user B. In this case, A knows that he received an authentic message
from the sender but has no guarantee that B will agree.

Public verifiability implies that signatures are transferable: a signature σ
on a message m by a signer S can be shown to a third party, who can then
verify herself that σ is a legitimate signature on m with respect to S’s public
key (here, we assume this third party also knows S’s public key). By making a
copy of the signature, this third party can then show the signature to another
party and convince them that S authenticated m, and so on. Public verifiabil-
ity and transferability are essential for the application of digital signatures to
certificates and public-key infrastructures, as we will discuss in Section 13.6.

Digital signature schemes also provide the very important property of non-
repudiation. This means that once S signs a message he cannot later deny
having done so (assuming the public key of S is widely publicized and dis-
tributed). This aspect of digital signatures is crucial for legal applications
where a recipient may need to prove to a third party (say, a judge) that a
signer did indeed “certify” a particular message (e.g., a contract): assum-
ing S’s public key is known to the judge, or is otherwise publicly available,
a valid signature on a message serves as convincing evidence that S indeed
signed that message. Message authentication codes simply cannot provide
non-repudiation. To see this, say users S and R share a key kSR, and S

Digital Signature Schemes 465

sends a message m to R along with a (valid) MAC tag t computed using this
key. Since the judge does not know kSR (indeed, this key is kept secret by S
and R), there is no way for the judge to determine whether t is valid or not. If
R were to reveal the key kSR to the judge, there would be no way for the judge
to know whether this is the “actual” key that S and R shared, or whether it is
some “fake” key manufactured by R. Finally, even if we assume the judge can
somehow obtain the actual key kSR shared by the parties, there is no way for
the judge to distinguish whether S generated t or whether R did—this is be-
cause message authentication codes are a symmetric-key primitive; anything
S can do, R can do also.

As in the case of private-key vs. public-key encryption, message authenti-
cation codes have the advantage of being shorter and roughly 2–3 orders of
magnitude more efficient to generate/verify than digital signatures. Thus, in
situations where public verifiability, transferability, and/or non-repudiation
are not needed, and the sender communicates primarily with a single recipi-
ent (with whom it is able to share a secret key), message authentication codes
should be used.

Relation to Public-Key Encryption

Digital signatures are often mistakenly viewed as the “inverse” of public-key
encryption, with the roles of the sender and receiver interchanged. Histori-
cally,1 in fact, it has been suggested that digital signatures can be obtained
by “reversing” public-key encryption, i.e., signing a message m by decrypting
it (using the private key) to obtain σ, and verifying a signature σ by encrypt-
ing it (using the corresponding public key) and checking whether the result
is m. The suggestion to construct signature schemes in this way is completely
unfounded : in most cases, it is simply inapplicable, and even in cases where
it can be applied it results in signature schemes that are not secure.

13.2 Definitions

Digital signatures are the public-key counterpart of message authentication
codes, and their syntax and security guarantees are analogous. The algorithm
that the sender applies to a message is here denoted Sign (rather than Mac),
and the output of this algorithm is now called a signature (rather than a tag).

1This view no doubt arose because, as we will see in Section 13.4.1, plain RSA signatures
are the reverse of plain RSA encryption. However, neither plain RSA signatures nor plain
RSA encryption meet even minimal notions of security.

466 Introduction to Modern Cryptography

The algorithm that the receiver applies to a message and a signature in order
to check validity is still denoted Vrfy.

DEFINITION 13.1 A (digital) signature scheme consists of three proba-
bilistic polynomial-time algorithms (Gen,Sign,Vrfy) such that:

1. The key-generation algorithm Gen takes as input a security parameter 1n

and outputs a pair of keys (pk, sk). These are called the public key and
the private key, respectively. We assume that pk and sk each has length
at least n, and that n can be determined from pk or sk.

2. The signing algorithm Sign takes as input a private key sk and a mes-
sage m from some message space (that may depend on pk). It outputs
a signature σ, and we write this as σ ← Signsk(m).

3. The deterministic verification algorithm Vrfy takes as input a public key pk,
a message m, and a signature σ. It outputs a bit b, with b = 1 meaning
valid and b = 0 meaning invalid. We write this as b := Vrfypk(m,σ).

It is required that except with negligible probability over (pk, sk) output by
Gen(1n), it holds that Vrfypk(m,Signsk(m)) = 1 for every (legal) message m.

If there is a function ` such that for every (pk, sk) output by Gen(1n) the
message space is {0, 1}`(n), then we say that (Gen,Sign,Vrfy) is a signature
scheme for messages of length `(n).

We call σ a valid signature on a message m (with respect to some public
key pk understood from the context) if Vrfypk(m,σ) = 1.

A signature scheme is used in the following way. One party S, who acts as
the sender, runs Gen(1n) to obtain keys (pk, sk). The public key pk is then
publicized as belonging to S; e.g., S can put the public key on its webpage or
place it in some public directory. As in the case of public-key encryption, we
assume that any other party is able to obtain a legitimate copy of S’s public
key (see discussion below). When S wants to authenticate a message m, it
computes the signature σ ← Signsk(m) and sends (m,σ). Upon receipt of
(m,σ), a receiver who knows pk can verify the authenticity of m by checking

whether Vrfypk(m,σ)
?
= 1. This establishes both that S sent m, and also that

m was not modified in transit. As in the case of message authentication codes,
however, it does not say anything about when m was sent, and replay attacks
are still possible (see Section 4.2).

The assumption that parties are able to obtain a legitimate copy of S’s
public key implies that S is able to transmit at least one message (namely, pk
itself) in a reliable and authenticated manner. If S is able to transmit messages
reliably, however, then why does it need a signature scheme at all? The answer
is that reliable distribution of pk may be difficult and expensive, but using
a signature scheme means that such distribution need only be carried out

Digital Signature Schemes 467

once, after which an unlimited number of messages can subsequently be sent
reliably. Furthermore, as we will discuss in Section 13.6, signature schemes
themselves are used to ensure the reliable distribution of other public keys.
They thus serve as a central tool for setting up a “public-key infrastructure”
to address the key-distribution problem.

Security of signature schemes. For a fixed public key pk generated by
a signer S, a forgery is a message m along with a valid signature σ, where
m was not previously signed by S. Security of a signature scheme means
that an adversary should be unable to output a forgery even if it obtains
signatures on many other messages of its choice. This is the direct analogue
of the definition of security for message authentication codes, and we refer the
reader to Section 4.2 for motivation and further discussion.

The formal definition of security is essentially the same as Definition 4.2,
with the main difference being that here the adversary is given a public key.
Let Π = (Gen,Sign,Vrfy) be a signature scheme, and consider the following
experiment for an adversary A and parameter n:

The signature experiment Sig-forgeA,Π(n):

1. Gen(1n) is run to obtain keys (pk, sk).

2. Adversary A is given pk and access to an oracle Signsk(·).
The adversary then outputs (m,σ). Let Q denote the set of
all queries that A asked its oracle.

3. A succeeds if and only if (1) Vrfypk(m,σ) = 1 and (2) m 6∈ Q.
In this case the output of the experiment is defined to be 1.

DEFINITION 13.2 A signature scheme Π = (Gen,Sign,Vrfy) is existen-
tially unforgeable under an adaptive chosen-message attack, or just secure, if for
all probabilistic polynomial-time adversaries A, there is a negligible function
negl such that:

Pr[Sig-forgeA,Π(n) = 1] ≤ negl(n).

Strong security can be defined analogously to Definition 4.3.

13.3 The Hash-and-Sign Paradigm

As in the case of public-key vs. private-key encryption, “native” signature
schemes are orders of magnitude less efficient than message authentication
codes. Fortunately, as with hybrid encryption (see Section 12.3), it is possible
to obtain the functionality of digital signatures at the asymptotic cost of a

468 Introduction to Modern Cryptography

private-key operation, at least for sufficiently long messages. This can be done
using the hash-and-sign approach, discussed next.

The intuition behind the hash-and-sign approach is straightforward. Say we
have a signature scheme for messages of length `, and wish to sign a (longer)
message m ∈ {0, 1}∗. Rather than sign m itself, we can instead use a hash
function H to hash the message to a fixed-length digest H(m) of length `,
and then sign the resulting digest. This approach is exactly analogous to the
hash-and-MAC approach discussed in Section 6.3.1.

CONSTRUCTION 13.3

Let Π = (Gen, Sign,Vrfy) be a signature scheme for messages of
length `(n), and let ΠH = (GenH , H) be a hash function with output
length `(n). Construct signature scheme Π′ = (Gen′,Sign′,Vrfy′) as fol-
lows:

� Gen′: on input 1n, run Gen(1n) to obtain (pk, sk) and run
GenH(1n) to obtain s; the public key is 〈pk, s〉 and the private
key is 〈sk, s〉.

� Sign′: on input a private key 〈sk, s〉 and a message m ∈ {0, 1}∗,
output σ ← Signsk(Hs(m)).

� Vrfy′: on input a public key 〈pk, s〉, a message m ∈ {0, 1}∗, and a

signature σ, output 1 if and only if Vrfypk(Hs(m), σ)
?
= 1.

The hash-and-sign paradigm.

THEOREM 13.4 If Π is a secure signature scheme for messages of
length ` and ΠH is collision resistant, then Construction 13.3 is a secure sig-
nature scheme (for arbitrary-length messages).

The proof of this theorem is almost identical to that of Theorem 6.6.

13.4 RSA-Based Signatures

We begin our consideration of concrete signature schemes with a discussion
of schemes based on the RSA assumption.

13.4.1 Plain RSA Signatures

We first describe a simple, RSA-based signature scheme. Although the
scheme is insecure, it serves as a useful starting point.

Digital Signature Schemes 469

As usual, let GenRSA be a ppt algorithm that, on input 1n, outputs a
modulus N that is the product of two n-bit primes (except with negligible
probability), along with integers e, d satisfying ed = 1 mod φ(N). Key gener-
ation in plain RSA involves simply running GenRSA, and outputting 〈N, e〉 as
the public key and 〈N, d〉 as the private key. To sign a message m ∈ Z∗N , the
signer computes σ := [md mod N]. Verification of a signature σ on a message
m with respect to the public key 〈N, e〉 is carried out by checking whether

m
?
= σe mod N . See Construction 13.5.

CONSTRUCTION 13.5

Let GenRSA be as in the text. Define a signature scheme as follows:

� Gen: on input 1n run GenRSA(1n) to obtain (N, e, d). The public
key is 〈N, e〉 and the private key is 〈N, d〉.

� Sign: on input a private key sk = 〈N, d〉 and a message m ∈ Z∗N ,
compute the signature

σ := [md mod N].

� Vrfy: on input a public key pk = 〈N, e〉, a message m ∈ Z∗N , and
a signature σ ∈ Z∗N , output 1 if and only if

m
?
= [σe mod N].

The plain RSA signature scheme.

It is easy to see that verification of a legitimately generated signature is
always successful since

σe = (md)e = m[ed mod φ(N)] = m1 = m mod N.

One might expect this scheme to be secure since, for an adversary knowing
only the public key 〈N, e〉, computing a valid signature on a message m seems
to require solving the RSA problem (since the signature is exactly the eth root
of m). Unfortunately, this reasoning is incorrect. For one thing, the RSA as-
sumption only implies hardness of computing a signature (that is, computing
an eth root) of a uniform message m; it says nothing about hardness of com-
puting a signature on a nonuniform m or on some message m of the attacker’s
choice. Moreover, the RSA assumption says nothing about what an attacker
might be able to do once it learns signatures on other messages. The following
examples demonstrate that both of these observations lead to attacks on the
plain RSA signature scheme.

A no-message attack. The first attack we describe generates a forgery using
the public key alone, without obtaining any signatures from the legitimate
signer. The attack works as follows: given a public key pk = 〈N, e〉, choose

470 Introduction to Modern Cryptography

a uniform σ ∈ Z∗N and compute m := [σe mod N]. Then output the forgery
(m,σ). It is immediate that σ is a valid signature on m, and this is a forgery
since no signatures at all were issued by the owner of the public key. We
conclude that the plain RSA signature scheme does not satisfy Definition 13.2.

One might argue that this does not constitute a “realistic” attack since the
adversary has “no control” over the message m for which it forges a valid sig-
nature. This is irrelevant as far as Definition 13.2 is concerned, and we have
already discussed (in Chapter 4) why it is dangerous to assume any seman-
tics for messages that are going to be authenticated using any cryptographic
scheme. Moreover, the adversary does have some control over m: for exam-
ple, by choosing multiple, uniform values of σ it can (with high probability)
obtain an m with a few bits set in some desired way. By choosing σ in some
specific manner, it may also be possible to influence the resulting message for
which a forgery is output.

Forging a signature on an arbitrary message. A more damaging attack
on the plain RSA signature scheme requires the adversary to obtain two signa-
tures from the signer, but allows the adversary to output a forged signature on
any message of its choice. Say the adversary wants to forge a signature on the
message m ∈ Z∗N with respect to the public key pk = 〈N, e〉. The adversary
chooses arbitrary m1,m2 ∈ Z∗N distinct from m such that m = m1·m2 mod N .
It then obtains signatures σ1, σ2 on m1,m2, respectively. Finally, it outputs
σ := [σ1 · σ2 mod N] as a valid signature on m. This works because

σe = (σ1 · σ2)e = (md
1 ·md

2)e = med
1 ·med

2 = m1 ·m2 = m mod N,

using the fact that σ1, σ2 are valid signatures on m1,m2.
Being able to forge a signature on an arbitrary message is devastating. Nev-

ertheless, one might argue that this attack is unrealistic since an adversary
will not be able to convince a signer to sign the exact messages m1 and m2.
Once again, this is irrelevant as far as Definition 13.2 is concerned. Further-
more, it is dangerous to make assumptions about what messages the signer
may or may not be willing to sign. For example, a client may use a signature
scheme to authenticate to a server by signing a random challenge sent by the
server. Here, a malicious server would be able to obtain a signature on any
message(s) of its choice. More generally, it may be possible for the adversary
to choose m1 and m2 as “legitimate” messages that the signer will agree to
sign. Finally, note that the attack can be generalized: if an adversary obtains
valid signatures on q arbitrary messages M = {m1, . . . ,mq}, then the adver-
sary can output a valid signature on any of 2q − q other messages obtained
by taking products of subsets of M (of size different from 1).

13.4.2 RSA-FDH and PKCS #1 Standards

One can attempt to prevent the attacks from the previous section by ap-
plying some transformation to messages before signing them. That is, the

Digital Signature Schemes 471

signer will now specify as part of its public key a (deterministic) function H
with certain cryptographic properties (described below) mapping messages
to Z∗N ; the signature on a message m will be σ := [H(m)d mod N], and verifi-
cation of the signature σ on the message m will be done by checking whether

σe
?
= H(m) mod N . See Construction 13.6.

CONSTRUCTION 13.6

Let GenRSA be as in the previous sections, and construct a signature
scheme as follows:

� Gen: on input 1n, run GenRSA(1n) to compute (N, e, d). The
public key is 〈N, e〉 and the private key is 〈N, d〉.
As part of key generation, a function H : {0, 1}∗ → Z∗N is specified,
but we leave this implicit.

� Sign: on input a private key 〈N, d〉 and a message m ∈ {0, 1}∗,
compute

σ := [H(m)d mod N].

� Vrfy: on input a public key 〈N, e〉, a message m, and a signature σ,
output 1 if and only if

σe
?
= H(m) mod N.

The RSA-FDH signature scheme.

What properties does H need in order for this construction to be secure?
At a minimum, to prevent the no-message attack it should be infeasible for
an attacker to start with σ, compute m̂ := [σe mod N], and then find a
message m such that H(m) = m̂. This, in particular, means that H should
be hard to invert in some sense. To prevent the second attack, we need an H
that does not admit “multiplicative relations,” that is, for which it is hard to
find three messages m,m1,m2 with H(m) = H(m1) ·H(m2) mod N . Finally,
it must be hard to find collisions in H: if H(m1) = H(m2), then m1 and m2

have the same signature and forgery becomes trivial.

There is no known way to choose H so that Construction 13.6 can be
proven secure. However, it is possible to prove security if H is modeled as a
random oracle that maps its inputs uniformly onto Z∗N ; the resulting scheme
is called the RSA full-domain hash (RSA-FDH) signature scheme. One can
check that a random function of this sort satisfies the requirements discussed
in the previous paragraph: a random function (with large range) is hard to
invert, does not have any easy-to-find multiplicative relations, and is collision
resistant. Of course, this informal reasoning does not rule out all possible
attacks, but the proof of security below does.

Before continuing, we stress that it is critical for the range of H to be (close

472 Introduction to Modern Cryptography

to) all of Z∗N ; in particular it does not suffice to simply let H be an “off-
the-shelf” cryptographic hash function such as SHA-2. (The output length
of SHA-2 is much smaller than the length of RSA moduli used in practice.)
Indeed, practical attacks on Construction 13.6 are known if the output length
of H is too small (e.g., if the output length is 256 bits as would be the case if
a version of SHA-2 were used directly as H).

Before turning to the formal proof, we provide some intuition. Our goal is
to prove that if the RSA problem is hard relative to GenRSA, then RSA-FDH
is secure when H is modeled as a random oracle. We consider first security
against a no-message attack, i.e., when the adversary A cannot request any
signatures. Here the adversary is limited to making queries to the random
oracle, and we assume without loss of generality that A always makes exactly
q (distinct) queries to H and that if the adversary outputs a forgery (m,σ)
then it had previously queried m to H.

Say there is an efficient adversary A that carries out a no-message attack
and makes exactly q queries to H. We construct an efficient algorithm A′ solv-
ing the RSA problem relative to GenRSA. Given input (N, e, y), algorithm A′
runs A on the public key pk = 〈N, e〉. Let m1, . . . ,mq denote the q (distinct)
queries that A makes to H. Our algorithm A′ answers these random-oracle
queries of A with uniform elements of Z∗N except for one query—say, the ith
query, chosen uniformly from the oracle queries of A—that is answered with y
itself. Note that, from the point of view of A, all its random-oracle queries
are answered with uniform elements of Z∗N (recall that y is uniform as well,
although it is not chosen by A′), and so A has no information about i. More-
over, the view of A when run as a subroutine by A′ is identically distributed
to the view of A when attacking the original signature scheme.

If A outputs a forgery (m,σ) then, because m ∈ {m1, . . . ,mq}, with prob-
ability 1/q we will have m = mi. In that case,

σe = H(m) = H(mi) = y mod N

and A′ can output σ as the solution to its given RSA instance (N, e, y). We
conclude that if A outputs a forgery with probability ε, then A′ solves the
RSA problem with probability ε/q. Since q is polynomial, we conclude that
ε must be negligible if the RSA problem is hard relative to GenRSA.

Handling the case when the adversary is allowed to request signatures on
messages of its choice is more difficult. The complication arises since our
algorithm A′ above does not know the decryption exponent d, yet now has to
compute valid signatures on messages queried by A to its signing oracle. This
seems impossible (and possibly even contradictory!) until we realize that A′
can correctly compute a signature on a message m as long as it sets H(m) to
be equal to [σe mod N] for a known value σ. (Here we are using the fact that
the random oracle is “programmable.”) If σ is uniform then [σe mod N] is
uniform as well, and so the random oracle is still emulated “properly” by A′.

The above intuition is formalized in the proof of the following:

Digital Signature Schemes 473

THEOREM 13.7 If the RSA problem is hard relative to GenRSA and H
is modeled as a random oracle, then Construction 13.6 is secure.

PROOF Let Π = (Gen,Sign,Vrfy) denote Construction 13.6, and let A be a
probabilistic polynomial-time adversary. We assume without loss of generality
that if A requests a signature on a message m, or outputs a forgery (m,σ),
then it previously queried m to H. Let q(n) be a polynomial upper bound
on the number of queries A makes to H on security parameter n; we assume
without loss of generality that A makes exactly q(n) distinct queries to H.

For convenience, we list the steps of experiment Sig-forgeA,Π(n):

1. GenRSA(1n) is run to obtain (N, e, d). A random function
H : {0, 1}∗ → Z∗N is chosen.

2. The adversary A is given pk = 〈N, e〉, and may query H
as well as a signing oracle Sign〈N,d〉(·) that, on input a mes-

sage m, returns σ := [H(m)d mod N].

3. A outputs (m,σ), where it had not previously requested a sig-
nature on m. The output of the experiment is 1 if and only
if σe = H(m) mod N .

We define a modified experiment Sig-forge′A,Π(n) in which a guess is made at
the outset as to which message (from among the q messages that A queries
to H) will correspond to the eventual forgery (if any) output by A:

1. Choose uniform j ∈ {1, . . . , q}.
2. GenRSA(1n) is run to obtain (N, e, d). A random function

H : {0, 1}∗ → Z∗N is chosen.

3. The adversary A is given pk = 〈N, e〉, and may query H
as well as a signing oracle Sign〈N,d〉(·) that, on input a mes-

sage m, returns σ := [H(m)d mod N].

4. A outputs (m,σ), where it had not previously requested a sig-
nature on m. Let i be such that m = mi.

2 The output of the
experiment is 1 if and only if σe = H(m) mod N and j = i.

Since j is uniform and independent of everything else, the probability that
j = i (even conditioned on the event that A outputs a forgery) is exactly 1/q.
Therefore Pr[Sig-forge′A,Π(n) = 1] = 1

q(n) · Pr[Sig-forgeA,Π(n) = 1].

Now consider the modified experiment Sig-forge′′A,Π(n) in which the exper-
iment is aborted if A ever requests a signature on the message mj (where
mj denotes the jth message queried to H, and j is the uniform value chosen

2Here mi denotes the ith query made to H. Recall, by assumption, that if A requests a
signature on a message m, then it must have previously queried m to H.

474 Introduction to Modern Cryptography

at the outset). This does not change the probability that the output of the
experiment is 1, since if A ever requests a signature on mj then it cannot
possible output a forgery on mj . In words,

Pr[Sig-forge′′A,Π(n) = 1] = Pr[Sig-forge′A,Π(n) = 1]

=
Pr[Sig-forgeA,Π(n) = 1]

q(n)
. (13.1)

Finally, consider the following algorithm A′ solving the RSA problem:

Algorithm A′:
The algorithm is given (N, e, y) as input.

1. Choose uniform j ∈ {1, . . . , q}.
2. Run A on input the public key pk = 〈N, e〉. Store triples

(·, ·, ·) in a table, initially empty. An entry (mi, σi, yi) indi-
cates that A′ has set H(mi) = yi, and σei = yi mod N .

3. When A makes its ith random-oracle query H(mi), answer
it as follows:

� If i = j, return y as the answer to the query.

� Else choose uniform σi ∈ Z∗N , compute yi := [σei mod N],
return yi as the answer to the query, and store (mi, σi, yi)
in the table.

When A requests a signature on message m, let i be such
that m = mi and answer the query as follows3

� If i = j then A′ aborts.

� If i 6= j then there is an entry (mi, σi, yi) in the table.
Return σi as the answer to the query.

4. At the end of A’s execution, it outputs (m,σ). If m = mj

and σe = y mod N , then output σ.

Clearly, A′ runs in probabilistic polynomial time. Say the input (N, e, y) to
A′ is generated by running GenRSA(1n) to obtain (N, e, d), and then choosing
uniform y ∈ Z∗N . The crucial observation is that the view of A when run as a
subroutine by A′ is identical to the view of A in experiment Sig-forge′′A,Π(n).
In particular, all Sign-oracle queries are answered correctly, and each of the
random-oracle queries of A when run as a subroutine by A′ is answered with
a uniform element of Z∗N :

� The query H(mj) is answered with y, a uniform element of Z∗N .

3Here mi denotes the ith query made to H. Recall, by assumption, that if A requests a
signature on a message m, then it must have previously queried m to H.

Digital Signature Schemes 475

� Queries H(mi) with i 6= j are answered with yi = [σei mod N], where σi
is uniform in Z∗N . Since exponentiation to the eth power is a one-to-one
function, yi is uniformly distributed as well.

Finally, observe that whenever experiment Sig-forge′′A,Π(n) would output 1,
thenA′ outputs a correct solution to its given RSA instance. This follows since
Sig-forge′′A,Π(n) = 1 implies that j = i and σe = H(mi) mod N . Now, when
j = i, algorithm A′ does not abort and in addition H(mi) = y. Thus, σe =
H(mi) = y mod N , and so σ is the desired inverse. Using Equation (13.1),
this means that

Pr[RSA-invA′,GenRSA(n) = 1] = Pr[Sig-forge′′A,Π(n) = 1]

=
Pr[Sig-forgeA,Π(n) = 1]

q(n)
. (13.2)

If the RSA problem is hard relative to GenRSA, there is a negligible function
negl such that Pr[RSA-invA′,GenRSA(n) = 1] ≤ negl(n). Since q(n) is poly-
nomial, we conclude from Equation (13.2) that Pr[Sig-forgeA,Π(n) = 1] is
negligible as well. This completes the proof.

RSA PKCS #1 standards. RSA PKCS #1 v1.5 specifies a signature
scheme that is very similar to RSA-FDH. A more-complex scheme that can
be viewed as a randomized variant of RSA-FDH has been included in the
PKCS #1 standard since version 2.1.

13.5 Signatures from the Discrete-Logarithm Problem

Signature schemes can be based on the discrete-logarithm assumption as
well, although the assumption does not lend itself as readily to signatures
as the RSA assumption does. In Sections 13.5.1 and 13.5.2 we describe the
Schnorr signature scheme that can be proven secure in the random-oracle
model. In Section 13.5.3 we describe the DSA and ECDSA signature schemes;
these standardized schemes are widely used even though they have no full
proof of security.

13.5.1 Identification Schemes and Signatures

The underlying intuition for the Schnorr signature scheme is best explained
by taking a slight detour to discuss (public-key) identification schemes. We
then describe the Fiat–Shamir transform that can be used to convert iden-
tification schemes to signature schemes in the random-oracle model. Finally,

476 Introduction to Modern Cryptography

we present the Schnorr identification scheme—and corresponding signature
scheme—based on the discrete-logarithm problem.

Identification Schemes

An identification scheme is an interactive protocol that allows one party to
prove its identity (i.e., to authenticate itself) to another. This is a very natural
notion, and it is common nowadays to authenticate oneself when logging in to
a website. We call the party identifying herself (e.g., the user) the “prover,”
and the party verifying the identity (e.g., the web server) the “verifier.” Here,
we are interested in the public-key setting where the prover and verifier do
not share any secret information (such as a password) in advance; instead,
the verifier only knows the public key of the prover. Successful execution of
the identification protocol convinces the verifier that it is communicating with
the intended prover rather than an imposter.

We will only consider three-round identification protocols of a specific form,
where the prover is specified by two algorithms P1,P2 and the verifier’s side
of the protocol is specified by an algorithm V. The prover runs P1(sk) using
its private key sk to obtain an initial message I along with some state st,
and initiates the protocol by sending I to the verifier. In response, the verifier
sends a challenge r chosen uniformly from some set Ωpk defined by the prover’s
public key pk. Next, the prover runs P2(sk, st, r) to compute a response s
that it sends back to the verifier. Finally, the verifier computes V(pk, r, s) and
accepts if and only if this results in the initial message I; see Figure 13.1. Of
course, for correctness we require that if the legitimate prover executes the
protocol correctly then the verifier should always accept.

Prover(sk) Verifier(pk)

(I, st)← P1(sk) I -
r ← Ωpk

� r

s := P2(sk, st, r)
s - V(pk, r, s)

?
= I

FIGURE 13.1: A three-round identification scheme.

For technical reasons, we assume identification schemes that are “non-
degenerate,” which intuitively means that there are many possible initial mes-
sages I, and none has a high probability of being sent. Formally, a scheme is
non-degenerate if for every private key sk and any fixed initial message I, the

Digital Signature Schemes 477

probability that P1(sk) outputs I is negligible. (Any identification scheme
can be trivially modified to be non-degenerate by sending a uniform n-bit
string along with the initial message.)

The basic security requirement of an identification scheme is that an ad-
versary who does not know the prover’s secret key should be unable to fool
the verifier into accepting. This should hold even if the attacker is able to
passively eavesdrop on multiple (honest) executions of the protocol between
the prover and verifier. We formalize such eavesdropping via an oracle Transsk
that, when called without any input, runs an honest execution of the protocol
and returns to the adversary the entire transcript (I, r, s) of the interaction.

Let Π = (Gen,P1,P2,V) be an identification scheme, and consider the fol-
lowing experiment for an adversary A and parameter n:

The identification experiment IdentA,Π(n):

1. Gen(1n) is run to obtain keys (pk, sk).

2. Adversary A is given pk and access to an oracle Transsk that
it can query as often as it likes.

3. At any point during the experiment, A outputs a message I.
A uniform challenge r ∈ Ωpk is chosen and given to A, who
responds with some s. (A may continue to query Transsk even
after receiving r.)

4. The experiment outputs 1 if and only if V(pk, r, s)
?
= I.

DEFINITION 13.8 An identification scheme Π = (Gen,P1,P2,V) is se-
cure against a passive attack, or just secure, if for all probabilistic polynomial-
time adversaries A, there exists a negligible function negl such that:

Pr[IdentA,Π(n) = 1] ≤ negl(n).

It is also possible to consider stronger notions of security, for example,
where the adversary can also carry out active attacks on the protocol by
impersonating a verifier and possibly sending maliciously chosen values r. We
will not need this for our application to signature schemes.

From Identification Schemes to Signatures

The Fiat–Shamir transform (Construction 13.9) provides a way to con-
vert any (interactive) identification scheme into a (non-interactive) signature
scheme. The basic idea is for the signer to act as a prover, running the iden-
tification protocol by itself. That is, to sign a message m, the signer first
computes I, and next generates the challenge r by applying some function
H to I and m. It then derives the correct response s. The signature on m
is (r, s), which can be verified by (1) recomputing I := V(pk, r, s) and then

(2) checking that H(I,m)
?
= r.

478 Introduction to Modern Cryptography

CONSTRUCTION 13.9

Let (Genid,P1,P2,V) be an identification scheme, and construct a signa-
ture scheme as follows:

� Gen: on input 1n, simply run Genid(1
n) to obtain keys pk, sk.

The public key pk specifies a set of challenges Ωpk. As part of key
generation, a function H : {0, 1}∗ → Ωpk is specified, but we leave
this implicit.

� Sign: on input a private key sk and a message m ∈ {0, 1}∗, do:

1. Compute (I, st)← P1(sk).

2. Compute r := H(I,m).

3. Compute s := P2(sk, st, r).

Output the signature (r, s).

� Vrfy: on input a public key pk, a message m, and a signature (r, s),
compute I := V(pk, r, s) and output 1 if and only if

H(I,m)
?
= r.

The Fiat–Shamir transform.

A signature (r, s) is “bound” to a specific message m because r is a function
of both I and m; changing m thus results in a completely different r. If H
is modeled as a random oracle mapping inputs uniformly onto Ωpk, then the
challenge r is uniform; intuitively, it will be just as difficult for an adversary
(who does not know sk) to find a valid signature (r, s) on a message m as it
would be to impersonate the prover in an honest execution of the protocol.
This intuition is formalized in the proof of the following theorem.

THEOREM 13.10 Let Π be an identification scheme, and let Π′ be the
signature scheme that results by applying the Fiat–Shamir transform to it. If
Π is secure and H is modeled as a random oracle, then Π′ is secure.

PROOF Let A′ be a probabilistic polynomial-time adversary attacking
the signature scheme Π′, with q = q(n) an upper bound on the number of
queries that A′ makes to H. We make a number of simplifying assumptions
without loss of generality. First, we assume that A′ makes any given query
to H only once. We also assume that after being given a signature (r, s) on a
message m with V(pk, r, s) = I, the adversary A′ never queries H(I,m) (since
it knows the answer will be r). Finally, we assume that if A′ outputs a forged
signature (r, s) on a message m with V(pk, r, s) = I, then A′ had previously
queried H(I,m).

We construct an efficient adversary A that uses A′ as a subroutine and
attacks the identification scheme Π:

Digital Signature Schemes 479

Algorithm A:
The algorithm is given pk and access to an oracle Transsk.

1. Choose uniform j ∈ {1, . . . , q}.
2. Run A′(pk). Answer its queries as follows:

When A′ makes its ith random-oracle query H(Ii,mi), an-
swer it as follows:

� If i = j, output Ij and receive in return a challenge r.
Return r to A′ as the answer to its query.

� If i 6= j, choose a uniform r ∈ Ωpk and return r as the
answer to the query.

When A′ requests a signature on m, answer it as follows:

(a) Query Transsk to obtain a transcript (I, r, s) of an honest
execution of the protocol.

(b) Return the signature (r, s).

3. If A′ outputs a forged signature (r, s) on a message m, com-

pute I := V(pk, r, s) and check whether (I,m)
?
= (Ij ,mj). If

so, then output s. Otherwise, abort.

The view of A′ when run as a subroutine by A in experiment IdentA,Π(n) is
almost identical to the view of A′ in experiment Sig-forgeA′,Π′(n). Indeed, all
the H-queries that A′ makes are answered with a uniform value from Ωpk, and
all the signing queries thatA′ makes are answered with valid signatures having
the correct distribution. The only difference between the views is that when
A′ is run as a subroutine by A it is possible for there to be an inconsistency
in the answers A′ receives from its queries to H: specifically, this happens if
A ever answers a signing query for a message m using a transcript (I, r, s) for
which H(I,m) is already defined (that is, A′ had previously queried (I,m)
to H) and H(I,m) 6= r. However, if Π is non-degenerate then this only ever
happens with negligible probability. Thus, the probability that A′ outputs a
forgery when run as a subroutine by A is Pr[Sig-forgeA′,Π′(n) = 1] − negl(n)
for some negligible function negl.

Consider an execution of experiment IdentA,Π(n) in which A′ outputs a
forged signature (r, s) on a message m, and let I := V(pk, r, s). Since j is uni-
form and independent of everything else, the probability that (I,m) = (Ij ,mj)
(even conditioned on the event that A′ outputs a forgery) is exactly 1/q. (Re-
call we assume that if A′ outputs a forged signature (r, s) on a message m
with V(pk, r, s) = I, then A′ had previously queried H(I,m).) When both
events happen, A successfully impersonates the prover. Indeed, A sends Ij
as its initial message, receives in response a challenge r, and responds with s.
But H(Ij ,mj) = r and (since the forged signature is valid) V(pk, r, s) = I.
Putting everything together, we see that

Pr[IdentA,Π(n) = 1] ≥ 1

q(n)
·
(
Pr[Sig-forgeA′,Π′(n) = 1]− negl(n)

)

480 Introduction to Modern Cryptography

or
Pr[Sig-forgeA′,Π′(n) = 1] ≤ q(n) · Pr[IdentA,Π(n) = 1] + negl(n).

If Π is secure then Pr[IdentA,Π(n) = 1] is negligible; since q(n) is polynomial
this implies that Pr[Sig-forgeA′,Π′(n) = 1] is also negligible. Because A′ was
arbitrary, this means Π′ is secure.

13.5.2 The Schnorr Identification/Signature Schemes

The Schnorr identification scheme is based on hardness of the discrete-
logarithm problem. Let G be a polynomial-time algorithm that takes as in-
put 1n and (except possibly with negligible probability) outputs a description
of a cyclic group G, its order q (with ‖q‖ = n), and a generator g. To gen-
erate its keys, the prover runs G(1n) to obtain (G, q, g), chooses a uniform
x ∈ Zq, and sets y := gx; the public key is 〈G, q, g, y〉 and the private key
is x. To execute the protocol (see Figure 13.2), the prover begins by choosing
a uniform k ∈ Zq and setting I := gk; it sends I as the initial message. The
verifier chooses and sends a uniform challenge r ∈ Zq; in response, the prover

computes s := [rx+ k mod q]. The verifier accepts if and only if gs · y−r ?
= I.

Correctness holds because

gs · y−r = grx+k · (gx)
−r

= gk = I.

Note that I is uniform in G, and so the scheme is non-degenerate.
Before giving the proof, we provide some high-level intuition. A first impor-

tant observation is that passive eavesdropping is of no help to the attacker.
The reason is that the attacker can simulate transcripts of honest executions
on its own, based only on the public key and without knowledge of the pri-
vate key. To do this, the attacker just reverses the order of the steps: it first
chooses uniform and independent r, s ∈ Zq and then sets I := gs · y−r. In an
honest transcript (I, r, s), the initial message I is a uniform element of G, the

Prover(x) Verifier(G, q, g, y)

k ← Zq
I := gk I -

r ← Zq
� r

s := [rx+ k mod q]
s - check whether gs · y−r ?

= I

FIGURE 13.2: An execution of the Schnorr identification scheme.

Digital Signature Schemes 481

challenge is an independent, uniform element of Zq, and s is then uniquely de-
termined as s = logg(I ·yr). Simulated transcripts constructed by an attacker
have the same distribution: r ∈ Zq is uniform and, because s is uniform in
Zq and independent of r, we see that I is uniform in G and independent of r.
Finally, s is uniquely determined as satisfying the same constraint as before.
Due to this, we may effectively assume that when attacking the identification
scheme, an attacker does not eavesdrop on honest executions at all.

So, we have reduced to an attacker who gets a public key y, sends an initial
message I, is given in response a uniform challenge r, and then must send a
response s for which gs · y−r = I. Informally, if an attacker is able to do this
with high probability then it must, in particular, be able to compute correct
responses s1, s2 to at least two different challenges r1, r2 ∈ Zq. Note

gs1 · y−r1 = I = gs2 · y−r2 ,

and so gs1−s2 = yr1−r2 . But this implies that the attacker (who, recall, is
able to generate s1 in response to r1, and s2 in response to r2) can implicitly
compute the discrete logarithm

logg y = [(s1 − s2) · (r1 − r2)−1 mod q],

contradicting the assumed hardness of the discrete-logarithm problem.

THEOREM 13.11 If the discrete-logarithm problem is hard relative to G,
then the Schnorr identification scheme is secure.

PROOF Let Π denote the Schnorr identification scheme, and let A be a
ppt adversary attacking the scheme. We construct the following ppt algo-
rithm A′ solving the discrete-logarithm problem relative to G:

Algorithm A′:
The algorithm is given G, q, g, y as input.

1. Run A(pk), answering all its queries to Transsk as described
in the intuition given previously.

2. WhenA outputs I, choose a uniform r1 ∈ Zq as the challenge.
Give r1 to A, who responds with s1.

3. Run A(pk) a second time (from the beginning), using the
same randomness as before except for uniform and indepen-
dent r2 ∈ Zq. Eventually, A responds with s2.

4. If gs1 · h−r1 = I and gs2 · h−r2 = I and r1 6= r2 then output
[(s1 − s2) · (r1 − r2)−1 mod q]. Else, output nothing.

Considering a single run of A as a subroutine of A′, let ω denote the random-
ness used in that execution except for the challenge itself. So, ω comprises any

482 Introduction to Modern Cryptography

randomness used by G, the choice of (unknown) private key x, any random-
ness used by A itself, and the randomness used by A′ when answering queries
to Transsk. Define V (ω, r) to be equal to 1 if and only if A correctly responds
to challenge r when randomness ω is used in the rest of the execution. For any

fixed ω, define δω
def
= Prr[V (ω, r) = 1]; having fixed ω, this is the probability

over choice of the challenge r that A responds correctly.

Define δ(n)
def
= Pr[IdentA,Π(n) = 1]. Since the simulation of the Transsk

oracle is perfect, we have

δ(n) = Prω,r[V (ω, r) = 1] =
∑
ω Pr[ω] · δω.

Moreover, the intuition preceding the proof shows that A′ correctly computes
the discrete logarithm of y whenever A succeeds twice and r1 6= r2. Thus:

Pr[DLogA′,G(n) = 1] = Prω,r1,r2 [V (ω, r1) ∧ V (ω, r2) ∧ r1 6= r2]

≥ Prω,r1,r2 [V (ω, r1) ∧ V (ω, r2)]− Prω,r1,r2 [r1 = r2]

=
∑
ω Pr[ω] · (δω)2 − 1/q

≥
(∑

ω Pr[ω] · δω
)2 − 1/q

= δ(n)2 − 1/q,

using Jensen’s inequality in the second-to-last step. (Jensen’s inequality says

that
∑
i ai · b2i ≥ (

∑
i ai)

−1 · (
∑
i ai · bi)

2
for positive {ai}.) If the discrete-

logarithm problem is hard relative to G then Pr[DLogA′,G(n) = 1] is negligible.
Since 1/q is negligible (because ‖q‖ = n), this implies that δ(n) is also negli-
gible, and so Π is a secure identification scheme.

The Schnorr signature scheme is obtained by applying the Fiat–Shamir
transform to the Schnorr identification scheme. See Construction 13.12.

CONSTRUCTION 13.12

Let G be as described in the text.

� Gen: run G(1n) to obtain (G, q, g). Choose a uniform x ∈ Zq and
set y := gx. The private key is x and the public key is (G, q, g, y).

As part of key generation, a function H : {0, 1}∗ → Zq is specified,
but we leave this implicit.

� Sign: on input a private key x and a message m ∈ {0, 1}∗, choose
uniform k ∈ Zq and set I := gk. Then compute r := H(I,m),
followed by s := [rx+ k mod q]. Output the signature (r, s).

� Vrfy: on input a public key (G, q, g, y), a message m, and a signa-

ture (r, s), compute I := gs · y−r and output 1 if H(I,m)
?
= r.

The Schnorr signature scheme.

Digital Signature Schemes 483

EdDSA is an efficient, standardized version of Schnorr signatures that uses
a specific elliptic-curve group.

13.5.3 DSA and ECDSA

The Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature
Algorithm (ECDSA) are based on the discrete-logarithm problem in different
classes of groups. They have been around in some form since 1991, and are
both included in the current Digital Signature Standard (DSS) issued by NIST
(although in 2019 NIST proposed to deprecate DSA).

Both schemes follow a common template and can be viewed as being con-
structed from an underlying identification scheme (see the previous section).
Let G be a cyclic group of prime order q with generator g. Consider the fol-
lowing identification scheme in which the prover’s private key is x and public
key is (G, q, g, y) with y = gx:

1. The prover chooses uniform k ∈ Z∗q and sends I := gk.

2. The verifier chooses and sends uniform α, r ∈ Zq as the challenge.

3. The prover sends s := [k−1 · (α+ xr) mod q] as the response.

4. The verifier accepts if s 6= 0 and gαs
−1 · yrs−1 ?

= I.

Note s 6= 0 unless α = −xr mod q, which occurs with negligible probability.
Assuming s 6= 0, the inverse s−1 mod q exists and

gαs
−1

· yrs
−1

= gαs
−1

· gxrs
−1

= g(α+xr)·s−1

= g(α+xr)·k·(α+xr)−1

= I.

We thus see that correctness holds with all but negligible probability.
One can show that this identification scheme is secure if the discrete-

logarithm problem is hard relative to G. We merely sketch the argument,
assuming familiarity with the results of the previous section. First of all,
transcripts of honest executions can be simulated: to do so, simply choose
uniform α, r ∈ Zq and s ∈ Z∗q , and then set I := gαs

−1 · yrs−1

. (This no longer
gives a perfect simulation, but it is close enough.) Moreover, if an attacker
outputs an initial message I for which it can give correct responses s1, s2 ∈ Z∗q
to distinct challenges (α, r1), (α, r2) then

gαs
−1
1 · yr1s

−1
1 = I = gαs

−1
2 · yr2s

−1
2 ,

and so gα(s−1
1 −s

−1
2) = yr1s

−1
1 −r2s

−1
2 and logg y can be computed as in the

previous section. The same holds if the attacker gives correct responses to
distinct challenges (α1, r), (α2, r).

The DSA/ECDSA signature schemes are constructed by “collapsing” the
above identification scheme into a non-interactive algorithm run by the signer.
In contrast to the Fiat–Shamir transform, however, the transformation here
is carried out as follows (see Construction 13.13):

484 Introduction to Modern Cryptography

� Set α := H(m), where m is the message being signed and H is a cryp-
tographic hash function.

� Set r := F (I) for a (specified) function F : G → Zq. Here, F is a
“simple” function that is not intended to act like a random oracle.

The function F depends on the group G, which in turn depends on the scheme.
In DSA, G is taken to be an order-q subgroup of Z∗p, for p prime (cf. Sec-

tion 9.3.3), and F (I)
def
= [I mod q]. In ECDSA, G is an order-q subgroup of

an elliptic-curve group E(Zp), for p prime.4 Recall from Section 9.3.4 that
any element of such a group can be represented as a pair (x, y) ∈ Zp × Zp.
The function F in this case is defined as F ((x, y))

def
= [x mod q].

CONSTRUCTION 13.13

Let G be as in the text.

� Gen: on input 1n, run G(1n) to obtain (G, q, g). Choose uniform
x ∈ Zq and set y := gx. The public key is 〈G, q, g, y〉 and the
private key is x.

As part of key generation, two functions H : {0, 1}∗ → Zq and
F : G→ Zq are specified, but we leave this implicit.

� Sign: on input the private key x and a message m ∈ {0, 1}∗,
choose uniform k ∈ Z∗q and set r := F (gk). Then compute s :=
[k−1 ·(H(m)+xr) mod q]. (If r = 0 or s = 0 then start again with
a fresh choice of k.) Output the signature (r, s).

� Vrfy: on input a public key 〈G, q, g, y〉, a message m ∈ {0, 1}∗, and
a signature (r, s) with r, s 6= 0 mod q, output 1 if and only if

r
?
= F

(
gH(m)·s−1

yr·s
−1
)
.

DSA and ECDSA—abstractly.

Assuming hardness of the discrete-logarithm problem, DSA and ECDSA
can be proven secure if H and F are modeled as random oracles. As we have
discussed above, however, while the random-oracle model may be reasonable
for H, it is not an appropriate model for F . No proofs of security are known
for the specific choices of F in the standard. Nevertheless, DSA and ECDSA
have been used and studied for decades without any attacks being found.

Proper generation of k. The DSA/ECDSA schemes specify that the signer
should choose a uniform k ∈ Z∗q when computing a signature. Failure to

4ECDSA also allows elliptic curves over other fields, but we have only covered the case of
prime fields in Section 9.3.4.

Digital Signature Schemes 485

choose k properly (e.g., due to poor random-number generation) can lead to
catastrophic results. For starters, if an attacker can predict the value of k
used to compute a signature (r, s) on a message m, then they can compute
the signer’s private key. This is true because s = k−1 · (H(m) + xr) mod q,
and if k is known then the only unknown is the private key x.

Even if k is unpredictable, the attacker can compute the signer’s private key
if the same k is ever used to generate two different signatures. The attacker
can easily tell when this happens because then r repeats as well. Say (r, s1)
and (r, s2) are signatures on messages m1 and m2, respectively. Then

s1 = k−1 · (H(m1) + xr) mod q

s2 = k−1 · (H(m2) + xr) mod q.

Subtracting gives s1 − s2 = k−1 (H(m1)−H(m2)) mod q, from which k can
be computed; given k, the attacker can determine the private key x as in
the previous paragraph. This very attack was used by hackers to extract the
master private key from the Sony PlayStation (PS3) in 2010.

13.6 Certificates and Public-Key Infrastructures

In this section we briefly discuss one of the primary applications of digital
signatures: the secure distribution of public keys. This brings us full circle in
our discussion of public-key cryptography. In this and the previous chapter we
have seen how to use public-key cryptography once public keys are securely
distributed. Now we show how public-key cryptography itself can be used to
securely distribute public keys. This may sound circular, but it is not. What
we will show is that once a single public key, belonging to a trusted party, is
distributed in a secure fashion, that key can be used to “bootstrap” the secure
distribution of arbitrarily many other public keys. Thus, at least in principle,
the problem of secure key distribution need only be solved once.

The key notion here is a digital certificate, which is simply a signature
binding an entity to some public key. To be concrete, say a party Charlie has
generated keys (pkC , skC) for a secure digital signature scheme (in this section,
we will only be concerned with signature schemes satisfying Definition 13.2).
Assume further that another party Bob has also generated keys (pkB , skB)
(in the present discussion, these may be keys for either a signature scheme or
a public-key encryption scheme), and that Charlie knows that pkB is Bob’s
public key. Then Charlie can compute the signature

certC→B
def
= SignskC (‘Bob’s key is pkB’)

and give this signature to Bob. We call certC→B a certificate for Bob’s key
issued by Charlie. In practice a certificate should unambiguously identify the

486 Introduction to Modern Cryptography

party holding a particular public key and so a more uniquely descriptive term
than “Bob” would be used, for example, Bob’s full name and email address,
or the URL of Bob’s website.

Now say Bob wants to communicate with some other party Alice who al-
ready knows pkC . Bob can send (pkB , certC→B) to Alice, who can then verify
that certC→B is indeed a valid signature on the message ‘Bob’s key is pkB’
with respect to pkC . Assuming verification succeeds, Alice now knows that
Charlie has signed the indicated message. If Alice trusts Charlie, she can
accept pkB as Bob’s legitimate public key.

All communication between Bob and Alice can occur over an insecure and
unauthenticated channel. If an active adversary interferes with the transmis-
sion of (pkB , certC→B) from Bob to Alice, that adversary will be unable to
generate a valid certificate linking Bob to any other public key pk′B unless
Charlie had previously signed some other certificate linking Bob with pk′B
(in which case this is anyway not much of an attack). This all assumes that
Charlie is not dishonest and that his private key has not been compromised.

We have omitted many details in the above description. Most prominently,
we have not discussed how Alice learns pkC in the first place; how Charlie
can be sure that pkB is Bob’s public key; and how Alice decides whether to
trust Charlie. Fully specifying such details (and others) defines a public-key
infrastructure (PKI) that enables the widespread distribution of public keys.
A variety of different PKI models have been suggested, and we mention a few
of the more popular ones now. Our treatment here will be kept at a relatively
high level, and the reader interested in further details is advised to consult
the references at the end of this chapter.

A single certificate authority. The simplest PKI assumes a single certifi-
cate authority (CA) who is completely trusted by everybody and who issues
certificates for everyone’s public key. A certificate authority would not typi-
cally be a person, but would more likely be a company whose business it is to
certify public keys, a government agency, or perhaps a department within an
organization (although in this latter case the CA would likely only be used by
people within the organization). Anyone who wants to rely on the services of
the CA would have to obtain a legitimate copy of the CA’s public key pkCA.
Clearly, this step must be carried out in a secure fashion since if some party
obtains an incorrect version of pkCA then that party may not be able to obtain
an authentic copy of anyone else’s public key. This means that pkCA must be
distributed over an authenticated channel. The easiest way of doing this is
via physical means: for example, if the CA is within an organization then any
employee can obtain an authentic copy of pkCA directly from the CA on their
first day of work. If the CA is a company, then other users would have to go
to this company at some point and, say, pick up a USB stick that contains
the CA’s public key. This inconvenient step need only be carried out once.

A common way for a CA to distribute its public key in practice is to “bun-
dle” this public key with some other software. For example, this occurs today

Digital Signature Schemes 487

in many popular web browsers: a CA’s public key is provided together with
the browser, and the browser is programmed to automatically verify certifi-
cates as they arrive. (Actually, modern web browsers have public keys of
multiple CAs hard-wired into their code, and so more accurately fall into the
“multiple CA” model discussed below.)

The mechanism by which a CA issues a certificate to some party Bob must
also be very carefully controlled, although the details may vary from CA
to CA. As one example, Bob may have to show up in person with a copy
of his public key pkB along with identification proving that his name (or his
email address) is what he claims. Only then would the CA issue the certificate.

In the model where there is a single CA, parties completely trust this CA to
issue certificates only when appropriate; this is why it is crucial that a detailed
verification process be used before a certificate is issued. As a consequence, if
Alice receives a certificate certCA→B certifying that pkB is Bob’s public key,
Alice will accept this assertion as valid, and use pkB as Bob’s public key.

Multiple certificate authorities. While the model in which there is only
one CA is simple and appealing, it is not very practical. For one thing, outside
of a single organization it is unlikely for everyone to trust the same CA. This
need not imply that anyone thinks the CA is corrupt; it could simply be the
case that someone finds the CA’s verification process to be insufficient (say,
the CA asks for only one form of identification when generating a certificate
but Alice would prefer that two be used instead). Moreover, the CA is a
single point of failure for the entire system. If the CA is corrupt, or can be
bribed, or even if the CA is merely lax with the way it protects its private
key, the legitimacy of issued certificates may be called into question. It is also
inconvenient for all parties who want certificates to have to contact this CA.

One approach to alleviating these issues is to rely on multiple CAs. A party
Bob who wants to obtain a certificate on his public key can choose which
CA(s) it wants to issue a certificate, and a party Alice who is presented
with a certificate, or even multiple certificates issued by different CAs, can
choose which CA’s certificates she trusts. There is no harm in having Bob
obtain a certificate from more than one CA (apart from some inconvenience
and expense for Bob), but Alice must be more careful since the security of
her communication is ultimately only as good as the least-secure CA that
she trusts. That is, say Alice trusts two CAs CA1 and CA2, and CA2 is
corrupted by an adversary. Then, although this adversary will not be able to
forge certificates issued by CA1, it will be able to issue fake certificates in the
name of CA2 for any identity/public key of its choice. This is a real problem
in current systems. As mentioned earlier, operating systems/web browsers
typically come pre-configured with many CAs’ public keys, and the default
setting is for all these CAs to be treated as equally trustworthy. Essentially
any company willing to pay, however, can be included as a CA. So the list
of pre-configured CAs includes some reputable, well-established companies
along with other, newer companies whose trustworthiness cannot be easily

488 Introduction to Modern Cryptography

established. It is left to the user to manually configure their settings so as to
only accept certificates from CAs the user trusts.

Delegation and certificate chains. Another approach which alleviates
some of the burden on a single CA (but does not address the security concerns
of having a single point of failure) is to use certificate chains. We present the
idea for certificate chains of length 2, although it is easy to see that everything
we say generalizes to chains of arbitrary length.

Say Charlie, acting as a CA, issues a certificate for Bob as in our original
discussion. Assume further that Bob’s key pkB is a public key for a signature
scheme. Bob, in turn, can issue his own certificates for other parties. For
example, Bob may issue a certificate for Alice of the form

certB→A
def
= SignskB (‘Alice’s key is pkA’).

Now, if Alice wants to communicate with some fourth party Dave who knows
Charlie’s public key (but not Bob’s), then Alice can send

pkA, certB→A, pkB , certC→B ,

to Dave. What can Dave deduce from this? Well, he can first verify that
Charlie, whom he trusts and whose public key is already in his possession, has
signed a certificate certC→B indicating that pkB indeed belongs to someone
named Bob. Dave can also verify that this person named Bob has signed a
certificate certB→A indicating that pkA indeed belongs to Alice. If Dave trusts
Charlie to issue certificates only to trustworthy people, then Dave may accept
pkA as being the authentic key of Alice.

We highlight that in this example stronger semantics are associated with a
certificate certC→B . In our prior discussion, a certificate of this form was only
an assertion that Bob holds public key pkB . Now, a certificate asserts that
Bob holds public key pkB and Bob is trusted to issue other certificates. When
Charlie signs a certificate for Bob having these stronger semantics, Charlie is,
in effect, delegating his ability to issue certificates to Bob. Bob can now act
as a proxy for Charlie, issuing certificates on Charlie’s behalf.

Coming back to a CA-based PKI, we can imagine one “root” CA and n
“second-level” CAs CA1, . . . ,CAn. The root CA can issue certificates for
each of the second-level CAs, who can then in turn issue certificates for other
principles holding public keys. This eases the burden on the root CA, and
also makes it more convenient for parties to obtain certificates (since they
may now contact the second-level CA who is closest to them, for example).
On the other hand, managing these second-level CAs may be difficult, and
their presence means that there are now more points of attack in the system.

The “web of trust” model. The last example of a PKI we will discuss is
a fully distributed model, with no central points of trust, called the “web of
trust.” A variant of this model is used by the PGP (“Pretty Good Privacy”)
email-encryption software for distribution of public keys.

Digital Signature Schemes 489

In the “web of trust” model, anyone can issue certificates to anyone else
and each user has to make their own decision about how much trust to place
in certificates issued by other users. As an example of how this might work,
say a user Alice is already in possession of public keys pk1, pk2, pk3 for some
users C1, C2, C3. (We discuss below how these public keys might initially
be obtained by Alice.) Another user Bob who wants to communicate with
Alice might have certificates certC1→B , certC3→B , and certC4→B , and will
send these certificates (along with his public key pkB) to Alice. Alice cannot
verify certC4→B (since she doesn’t have C4’s public key), but she can verify
the other two certificates. Now she has to decide how much trust she places
in C1 and C3. She may decide to accept pkB if she unequivocally trusts C1,
or if she trusts both C1 and C3 to a lesser extent. (She may, for example,
consider it likely that either C1 or C3 is corrupt, but consider it unlikely for
them both to be corrupt.)

In this model, as described, users are expected to collect both public keys
of other parties, as well as certificates on their own public key. In the context
of PGP, this used to be done at “key-signing parties” where PGP users got
together (say, at a conference), gave each other authentic copies of their public
keys, and issued certificates for each other. In general the users at a key-
signing party may not know each other, but they can check a driver’s license,
say, before accepting or issuing a certificate for someone’s public key.

Public keys and certificates can also be stored in a central database, and
this is done for PGP (see http://pgp.mit.edu). When Alice wants to send
an encrypted message to Bob, she can search for Bob’s public key in this
database; along with Bob’s public key, the database will return a list of all
certificates it holds that have been issued for Bob’s public key. It is also
possible that multiple public keys for Bob will be found in the database, and
each of these public keys may be certified by certificates issued by a different
set of parties. Once again, Alice then needs to decide how much trust to place
in any of these public keys before using them.

The web of trust model is attractive because it does not require trust in
any central authority. On the other hand, while it may work well for the
average user encrypting their email, it does not seem appropriate for settings
where security is more critical, or for the distribution of organizational public
keys (e.g., for e-commerce on the web). If a user wants to communicate with
his bank, for example, it is unlikely that he would trust people he met at
a conference to certify his bank’s public key, and also unlikely that a bank
representative will go to a key-signing party to get the bank’s key certified.

Invalidating Certificates

One important issue we have not yet touched upon at all is the fact that
certificates should generally not be valid indefinitely. An employee may leave
a company, in which case he or she is no longer allowed to receive encrypted
communication from others within the company; a user’s private key might

http://pgp.mit.edu

490 Introduction to Modern Cryptography

also be stolen, at which point the user (assuming they know about the theft)
will want to generate a new set of public/private keys and remove the old
public key from circulation. In either of these scenarios, we need a way to
render previously issued certificates invalid.

Approaches for handling these issues are varied and complex, and we will
only mention two relatively simple ideas that, in some sense, represent op-
posite extremes. (Improving these methods is an active area of real-world
network-security research.)

Expiration. One method for preventing certificates from being used indef-
initely is to include an expiry date as part of the certificate. A certificate
issued by a CA Charlie for Bob’s public key might now have the form

certC→B
def
= SignskC (‘Bob’s key is pkB’, date),

where date is some date in the future at which point the certificate becomes
invalid. (For example, one year from the day the certificate is issued.) When
another user verifies this certificate, they need to know not only pkB but
also the expiry date, and they now need to check not only that the signature
is valid, but also that the expiry date has not passed. A user who holds a
certificate must contact the CA to get a new certificate issued whenever their
current one expires; at this point, the CA verifies the identity/credentials of
the user again before issuing another certificate.

Using expiry dates provides a very coarse-grained solution to the problems
mentioned earlier. If an employee leaves a company the day after getting a
certificate, and the certificate expires one year after its issuance date, then
this employee can use his or her public key illegitimately for an entire year
until the expiry date passes. For this reason, this approach is typically used
in conjunction with other methods such as the one we describe next.

Revocation. When an employee leaves an organization, or a user’s private
key is stolen, we would like the certificates that have been issued for their
public keys to become invalid immediately, or at least as soon as possible.
This can be achieved by having the CA explicitly revoke the certificate. For
simplicity we assume a single CA, but everything we say applies more generally
if the user had certificates issued by multiple CAs.

There are many different ways revocation can be handled. One possibility
(the only one we will discuss) is for the CA to include a serial number in every
certificate it issues; that is, a certificate will now have the form

certC→B
def
= SignskC (‘Bob’s key is pkB’, ###),

where “###” represents the serial number of this certificate. Each certificate
should have a unique serial number, and the CA will store the information
(Bob, pkB , ###) for each certificate it generates.

If a user Bob’s private key corresponding to a public key pkB is stolen,
Bob can alert the CA to this fact. (The CA must verify Bob’s identity here,

Digital Signature Schemes 491

to prevent another user from falsely revoking a certificate issued to Bob.)
The CA will then search its database to find the serial number associated
with the certificate issued for Bob and pkB . At the end of each day, say,
the CA will then generate a certificate revocation list (CRL) with the serial
numbers of all revoked certificates, and sign the CRL and the current date.
The signed CRL is then widely distributed or otherwise made available to
potential verifiers. Verification of a certificate now requires checking that the
signature in the certificate is valid, checking that the serial number does not
appear on the most current revocation list, and verifying the CA’s signature
on the revocation list itself.

In this approach the way we have described it, there is a gap of at most one
day before a certificate becomes invalid. This offers more flexibility than an
approach based only on expiry dates.

13.7 Putting It All Together – TLS

The Transport Layer Security (TLS) protocol is used by your web browser
every time you securely connect to a website using https. TLS is a standard-
ized protocol based on a precursor called SSL (or Secure Sockets Layer) that
was developed by Netscape in the mid-1990s. TLS version 1.0 was released
in 1999, and then updated to version 1.1 in 2006, version 1.2 in 2008, and
version 1.3 (the current version) in 2018. In this section, we describe the
“cryptographic core” of the TLS protocol; this serves as a nice culmination
of everything we have covered in the book so far, and also demonstrates the
real-world applicability of what we have learned. Our description corresponds
roughly to TLS 1.3 but, as usual, we have slightly simplified and abstracted
parts of the protocol in order to convey the main point, and our description
should not be relied upon for an implementation. (The actual protocol is more
complex, and also includes several other interesting features that are outside
the scope of this book.) We do not formally define or prove security of the
protocol; this is a topic of active research.

The TLS protocol allows a client (e.g., a web browser) and a server (e.g., a
website) to agree on a set of shared keys and then use those keys to encrypt
and authenticate their subsequent communication. It consists of two parts: a
handshake protocol that performs (authenticated) key exchange to establish
the shared keys, and a record-layer protocol that uses those shared keys to
encrypt/authenticate the parties’ communication. Although TLS allows for
clients to authenticate to servers, it is primarily used only for authentication
of servers to clients because typically only servers have certificates. (After a
TLS session is established, client-to-server authentication—if desired—can be
done at the application layer by, e.g., having the client send a password.)

492 Introduction to Modern Cryptography

The handshake protocol. We describe the basic flow of the handshake
protocol in the most typical case. At the outset, the client C holds a set of
CAs’ public keys {pk1, . . . , pkn}, and the server S holds keys (pkS , skS) for a
digital signature scheme along with a certificate certi→S on pkS issued by one
of the CAs whose public key C knows. The parties run the following steps.

1. C begins by sending to S the initial message of the Diffie–Hellman key-
exchange protocol (cf. Section 11.3). This message includes a specifica-
tion of the underlying group G being used by the client (along with the
group order q and a generator g), as well as the value gx for a random
secret value x chosen by the client. The underlying group is selected
by the client from a set of standardized options, and can be either a
prime-order subgroup of Z∗p for some prime p or an elliptic-curve group.
The client also sends a uniform value (a “nonce”) NC ∈ {0, 1}n.

This message from C also includes information about which crypto-
graphic algorithms (or ciphersuites) are supported by the client.

2. S completes the Diffie–Hellman key exchange by sending a message to
the client containing gy for a random secret value y chosen by the server.
The server also includes its own uniform value NS ∈ {0, 1}n.

At this point, S can compute a shared secret K = gxy. It applies a key-
derivation function (cf. Section 6.6.4) to K to derive keys k′S , k

′
C , kS , kC

for an authenticated encryption (AE) scheme. Supported AE schemes
include GCM, CCM, and ChaCha20–Poly1305 (cf. Section 5.3.2).

Finally, S sends its public key pkS and its certificate certi→S , along with
a signature σ computed by the server (using its long-term key skS) on
the handshake messages exchanged thus far. These values sent by the
server are all encrypted using k′S .

3. C computes K from the server’s response, and also derives the keys
k′S , k

′
C , kS , and kC . It uses k′S to recover pkS and the associated cer-

tificate, as well as the signature σ. The client checks whether one of
the CA’s public keys that it holds matches the CA who issued S’s cer-
tificate. If so, C verifies the certificate (and also checks that it has not
expired or been revoked) and, if this was successful, learns that pkS is
indeed S’s public key. C then verifies the signature σ on the handshake
messages with respect to pkS , and aborts if verification fails.

Finally, C computes a MAC of the handshake messages exchanged thus
far using k′C . It sends the result back to S, who verifies the tag before
proceeding to the record-layer protocol.

At the end of the handshake protocol, C and S share session keys kC and kS
that they can use to encrypt and authenticate their subsequent communica-
tion. (The keys k′C , k

′
S are only used for the handshake.)

Digital Signature Schemes 493

As some intuition for why the handshake protocol is secure, note first that
since C verifies the certificate, it knows that pkS is the correct public key
of the intended server. If the signature σ is valid, then C knows it must
be communicating with the server because only someone with knowledge of
the associated secret key skS could have generated a valid signature. (It is
important here that the handshake messages being signed have high entropy,
so as to prevent a replay attack. This is why the client includes a random
nonce NC as part of its initial message.) Moreover, since the server signs
all the messages of the Diffie–Hellman key-exchange protocol, C knows that
none of those values were modified in transit as would be the case if an active
adversary were carrying out a man-in-the-middle attack (see Section 11.3). Of
course, the Diffie–Hellman protocol itself ensures that a passive eavesdropper
learns nothing about K (and hence nothing about the derived keys) from the
messages exchanged. In summary, then, by the end of the handshake phase C
knows that it shares keys kC , kS with the legitimate S, and that no adversary
could have learned anything about those keys.

TLS version 1.2 provided a variant that allowed C and S to agree on shared
keys using public-key encryption instead of Diffie–Hellman key exchange. In
that variant, the server’s long-term keys (pkS , skS) corresponded to a public-
key encryption scheme, and the client simply chose a key K and encrypted it
using pkS . (Several other aspects of the protocol were also different, and in
particular the client verified the certificate on the server’s public key before
encryption was done.) This variant was purposefully eliminated in version 1.3
due to the desire to ensure forward secrecy, i.e., secrecy of previous session
keys in the event of a server compromise. Diffie–Hellman key exchange pro-
vides forward secrecy since the server’s “ephemeral” secret value y used in
the handshake protocol can be erased once the handshake is finished; with-
out y an eavesdropper has no way to recover K. On the other hand, using
public-key encryption as just described does not provide forward secrecy since
the server’s long-term secret key skS cannot be erased; if an adversary ob-
tains it, then it can decrypt ciphertexts from past executions of the handshake
protocol and recover the session keys used by the parties involved.

The record-layer protocol. Once keys have been agreed upon by C and
S, the parties use those keys to encrypt and authenticate all their subsequent
communication using an AE scheme. C uses kC for the messages it sends
to S, whereas S uses kS for the messages it sends to C. Sequence numbers
are used to prevent replay attacks, as discussed in Section 5.4.

13.8 *Signcryption

To close this chapter, we briefly and informally discuss the issue of joint
secrecy and integrity in the public-key setting. While this parallels our treat-

494 Introduction to Modern Cryptography

ment from Section 5.2, the fact that we are now in the public-key setting
introduces several additional complications.

We consider a setting in which all relevant parties have public/private keys
for both encrypting and signing. We let (ek, dk) denote a (public) encryption
key and (private) decryption key, and use (vk, sk) for a (public) verification
key and (private) signing key. We assume all parties know all public keys.

Informally, our goal is to design a mechanism that allows a sender S to
send a message m to a receiver R while ensuring that (1) no other party in
the network can learn any information about m (i.e., secrecy) and (2) R is
assured that the message came from S (i.e., integrity). We consider both of
these security properties even against active (e.g., chosen-ciphertext) attacks
by other parties in the system.

Following our discussion in Section 5.2, a natural idea is to use an “encrypt-
then-authenticate” approach in which S sends 〈S, c,SignskS (c)〉 to R, where
c is an encryption of m using R’s encryption key ekR. (We explicitly in-
clude the sender’s identity here for convenience.) However, there is a clever
chosen-ciphertext attack here regardless of the encryption scheme used. Hav-
ing observed a transmission as above, another (adversarial) party A can strip
off S’s signature and replace it with its own, sending 〈A, c,SignskA(c)〉 to R.
In this case, R would not detect anything wrong, and would mistakenly think
that A has sent it the message m. If R replies to A, or otherwise behaves
toward A in a way that depends on the contents of the message, then A can
potentially learn the unknown message m.

(Another problem with this scheme, although somewhat independent of
our discussion here, is that it no longer provides non-repudiation. That is, R
cannot easily prove to a third party that S has signed the message m, at least
not without divulging its own decryption key dkR.)

One could instead try an “authenticate-then-encrypt” approach. Here, S
would first compute a signature σ ← SignskS (m) and then send

〈S,EncekR(m‖σ)〉.

(Note that this solves the non-repudiation issue mentioned above.) If the
encryption scheme is only CPA-secure then problems just like those mentioned
in Section 5.2 apply, so let us assume a CCA-secure encryption scheme is used
instead. Even then, there is an attack that can be carried out by a malicious R.
Upon receiving 〈S,EncekR(m‖σ)〉 from S, a malicious R can decrypt to obtain
m‖σ, and then re-encrypt and send 〈S,EncekR′ (m‖σ)〉 to another receiver R′.
This (honest) receiver R′ will then think that S sent it the message m. This
can have serious consequences, e.g., if m is the message “I owe you $100.”

These attacks can be prevented if parties are more careful about how they
handle identifiers. When encrypting, a sender should encrypt its own identity
along with the message; when signing, a party should sign the identity of the
intended recipient along with what is being signed. For example, the second
approach would be modified so that S first computes σ ← SignskS (m‖R), and

Digital Signature Schemes 495

then sends 〈S,EncekR(S‖m‖σ)〉 to R. When decrypting, the receiver should
check that the decrypted value includes the (purported) sender’s identity;
when verifying, the receiver should check that what was signed incorporates its
own identity. When including identities in this way, both authenticate-then-
encrypt and encrypt-then-authenticate are secure if a CCA-secure encryption
scheme and a strongly secure signature scheme are used.

References and Additional Reading

Notable early work on signatures includes that of Diffie and Hellman [65],
Rabin [165, 166], Rivest, Shamir, and Adleman [171], and Goldwasser, Micali,
and Yao [89]. For an extensive treatment of signature schemes beyond what
is covered here, see the monograph by Katz [109].

Goldwasser, Micali, and Rivest [88] defined the notion of existential un-
forgeability under an adaptive chosen-message attack, and also gave the first
construction of a stateful signature scheme satisfying this definition.

Plain RSA signatures date to the original RSA paper [171]. RSA-FDH was
proposed by Bellare and Rogaway in their paper introducing the random-
oracle model [24], although the idea (without proof) of using a cryptographic
hash function to prevent algebraic attacks can be traced back to Rabin [166].
A later improvement of RSA-FDH [26] was standardized in PKCS #1 v2.1.

The Fiat–Shamir transform [72] and the Schnorr signature scheme [175]
both date to the late-1980s. The proof of Theorem 13.10 is due to Abdalla et
al. [1] and the proof of Theorem 13.11 is inspired by Bellare and Neven [22].
The DSA and ECDSA standards are described in [150, 151].

The notion of certificates was first described by Kohnfelder [118] in his un-
dergraduate thesis. Public-key infrastructures are discussed in greater detail
in [113, Chapter 15]; see also [3, 69]. The TLS version 1.3 standard is available
as an RFC [170]. A formal treatment of combined secrecy and integrity in the
public-key setting is given by An et al. [10].

Exercises

13.1 Show that Construction 4.7 for constructing a variable-length MAC from
any fixed-length MAC can also be used (with appropriate modifications)
to construct a signature scheme for arbitrary-length messages from any
signature scheme for messages of fixed length `(n) ≥ n.

13.2 In Section 13.4.1 we showed an attack on the plain RSA signature scheme
in which an attacker forges a signature on an arbitrary message using

496 Introduction to Modern Cryptography

two signing queries. Show how an attacker can forge a signature on an
arbitrary message using a single signing query.

13.3 Assume the RSA problem is hard. Show that the plain RSA signature
scheme satisfies the following weak definition of security: an attacker is
given the public key 〈N, e〉 and a uniform message m ∈ Z∗N . The adver-
sary succeeds if it can output a valid signature on m without making
any signing queries.

13.4 Consider a “padded RSA” signature scheme where the public key is
〈N, e〉 as usual, and a signature on a message m ∈ {0, 1}` is computed
by choosing uniform r ∈ {0, 1}2n−`−1 and outputting [(r‖m)d mod N].

(a) How can verification be done for this scheme?

(b) Show that this scheme is insecure.

13.5 Another approach (besides hashing) that has been explored to construct
secure RSA-based signatures is to encode the message before applying
the RSA permutation. Here the signer fixes a public encoding function
enc : {0, 1}` → Z∗N as part of its public key, and the signature on a
message m is σ := [enc(m)d mod N].

(a) How is verification performed in such a scheme?

(b) Suggest an appropriate encoding function for `� ‖N‖ that heuris-
tically prevents the “no-message attack” described in Section 13.4.1.

(c) Show that encoded RSA is insecure if enc(m) = m‖0κ/10 (where

κ
def
= ‖N‖, |m| def

= 4κ/5, and m is not the all-0 message). Assume
e = 3.

(d) Show that encoded RSA is insecure for enc(m) = m‖0‖m (where

|m| def
= (‖N‖−1)/2 and m is not the all-0 message). Assume e = 3.

(e) Show attacks in parts (c) and (d) for arbitrary e.

13.6 Consider a variant of the Fiat–Shamir transform in which the signature
is (I, s) rather than (r, s) and verification is changed in the natural way.
Show that if the underlying identification scheme is secure, then this
variant signature scheme is secure as well.

13.7 Show that ECDSA is not strongly secure. Specifically, show that if (r, s)
is a valid signature on a message m, then so is (r,−s).

Hint: You will need to consider the representation of elliptic-curve

points.

13.8 Consider a variant of DSA in which the message space is Zq and H
is omitted. (So the second component of the signature is now s :=
[k−1 · (m+ xr) mod q].) Show that this variant is not secure.

Digital Signature Schemes 497

13.9 Assume revocation of certificates is handled in the following way: when
a user Bob claims that the private key corresponding to his public key
pkB has been stolen, the user sends to the CA a statement of this fact
signed with respect to pkB . Upon receiving such a signed message, the
CA revokes the appropriate certificate.

Explain why it is not necessary for the CA to check Bob’s identity in this
case. In particular, explain why it is of no concern that an adversary who
has stolen Bob’s private key can forge signatures with respect to pkB .

http://taylorandfrancis.com

Chapter 14

*Post-Quantum Cryptography

So far in this book (cf. Section 3.1.2), we have equated the notion of “efficient
adversaries” with adversarial algorithms running in (probabilistic) polynomial-
time on a classical computer. Thus, when evaluating the security of our
schemes we only considered efficient classical attacks. We did not, however,
consider the potential impact of quantum computers—that is, computers that
rely in an essential way on the principles of quantum mechanics. As we
will see here, quantum algorithms can in some cases be faster than classical
algorithms—possibly much faster—and thus quantum computers can have a
dramatic impact on the security of cryptosystems.

While the theoretical impact of quantum computing on cryptography has
been recognized since the mid-1990s, its potential impact in practice is cur-
rently unclear. As of this writing, no large-scale, general-purpose quantum
computer has been built, and the timeframe for developing such a computer
is uncertain due to the numerous engineering difficulties involved. Even if
such computers are one day built, the true cost in time or money of executing
quantum algorithms on those computers (as distinguished from the theoret-
ical analysis of the number of steps those algorithms take in theory) is not
well understood. Nevertheless, the current consensus is that there is a strong
chance that well-funded attackers (e.g., government agencies) will be able to
build quantum computers capable of attacking currently deployed cryptosys-
tems in the next 10–15 years. Assuming this to be the case, we cannot wait
10–15 years to worry about the problem: standardizing and deploying new
cryptographic algorithms takes time, and there may be messages encrypted
now that must remain secret for more than a decade.

The above concerns have motivated an intense research effort over the past
several years aimed at designing, analyzing, and developing “post-quantum”
cryptosystems that would remain secure even against (polynomial-time) quan-
tum algorithms. This work accelerated in 2017, when NIST announced an
effort to evaluate and (eventually) standardize quantum-resistant public-key
schemes. As in the case of the earlier AES and SHA-3 competitions, NIST
solicited proposals for public-key encryption schemes and signature schemes
from cryptographers around the world, eventually receiving 69 candidates;
26 of those made it to the second round in early 2019. In contrast to the AES
and SHA-3 process, NIST is not expected to choose a single “winner” in each
category; instead, the idea is to identify multiple schemes judged to be secure.
NIST is expected to issue a set of draft standards for such schemes by 2024.

499

500 Introduction to Modern Cryptography

The goal of this chapter is to describe the impact of quantum algorithms
on the schemes used today, and to offer a glimpse of some schemes offering
plausible post-quantum security. We do not assume any background in quan-
tum mechanics or quantum computing, and will not present any quantum
algorithms in detail. Rather, we explain what existing quantum algorithms
can do (without describing in detail how they do it) and otherwise treat them
as “black boxes.” The post-quantum cryptosystems we describe are similar to
current leading candidates in the NIST post-quantum standardization effort,
but we have simplified them for pedagogical purposes.

Post-quantum cryptography vs. quantum cryptography. Quantum
cryptography is related to, but distinct from, post-quantum cryptography as
we use the term here. Quantum cryptography refers to cryptosystems that
are implemented using quantum computers, quantum-mechanical phenomena,
and quantum communication channels; for this reason, they would be difficult
to deploy widely over the existing Internet. Post-quantum cryptosystems, on
the other hand, are entirely classical—but are intended to ensure security even
if an attacker has access to a quantum computer.

Interestingly, quantum cryptosystems can in some cases be proven secure
unconditionally (i.e., without any computational assumptions), even against
quantum attackers. In contrast, post-quantum cryptosystems—as with the
rest of the schemes in this book—rely on assumptions regarding the hardness
of certain mathematical problems even for quantum algorithms.

14.1 Post-Quantum Symmetric-Key Cryptography

We begin by exploring the impact of quantum computers on symmetric-key
cryptography. While there are known quantum attacks that can outperform
classical attacks in this setting, the net result is only a polynomial speedup
and so the overall impact on symmetric-key cryptography is relatively minor.

14.1.1 Grover’s Algorithm and Symmetric-Key Lengths

Consider the following abstract problem: Given oracle access to a function
f : D → {0, 1}, find an input x for which f(x) = 1. If there is only one such
input, chosen uniformly in D, then it is not hard to show that any classical
algorithm for this problem requires O(|D|) evaluations of f ; this effectively
corresponds to exhaustive search over the domain D of the function.

In a surprising result published in 1996, Lov Grover showed that quantum
algorithms can do better. Specifically, he gave an algorithm that finds x as
above using only O(|D|1/2) evaluations of f—a quadratic speedup. It was
later shown that this is optimal, i.e., no quantum algorithm can do better.

Post-Quantum Cryptography 501

Let us explore the impact this has on the required key length for symmetric-
key cryptosystems. For concreteness, consider the case of a block cipher
F : {0, 1}n × {0, 1}` → {0, 1}` for which exhaustive search is the best at-
tack, and an attacker whose goal is to determine the key k ∈ {0, 1}n given a
constant number of input/output pairs {(xi, yi)} with yi = Fk(xi). Say we
want security against attacks running in time 2κ. Classically, it suffices to set
n = κ (since exhaustive search for k requires time ≈ 2n). But if we define

f(k) = 1⇔ Fk(xi) = yi for all i,

then Grover’s algorithm allows an attacker to find the key using O(2n/2)
evaluations of f , or equivalently O(2n/2) evaluations of F . Thus, to achieve
the desired level of security we must set n = 2κ. Summarizing:

To ensure equivalent security against exhaustive-search attacks in
the quantum setting, symmetric-key cryptosystems must use keys
that are double the length of keys used in the classical setting.

We stress that the above applies only if exhaustive-search attacks are the best
possible; in other cases quantum algorithms may give even larger speedups.

14.1.2 Collision-Finding Algorithms and Hash Functions

Consider next the problem of finding a collision in some hash function
H : {0, 1}m → {0, 1}n (with m > n). As we have seen already in Section 6.4.1,
this can be done classically via a “birthday attack” using O(2n/2) evaluations
of H. Is it possible to do better using a quantum algorithm?

It is indeed possible to do better via clever use of Grover’s algorithm. For
simplicity in the analysis we will model H as a random function (as we did in
Section 6.4.1); the collision-finding algorithm we describe can be adapted for
arbitrary H as well. The approach is as follows. Let ` � 2n be a parameter
that we will set later. Let C,D be disjoint subsets of {0, 1}m with |C| = `
and |D| = `2; for example, we can let C be the set of all strings whose first
log ` bits are all 0 and take D to be the set of all strings whose first 2 log `
bits are all 1. For xi ∈ C, set yi := H(xi) using ` evaluations of H; define
C ′ = {yi}. If yi = yj for some i 6= j then a collision has already been found.
Otherwise, define the function f : D → {0, 1} as

f(x) = 1⇔ H(x) ∈ C ′.

If there is any x with f(x) = 1, then we can use Grover’s algorithm to find such
an x using O(|D|1/2) evaluations of f , or equivalently O(|D|1/2) evaluations

of H. The overall number of evaluations of H, then, is O(`+
√
`2) = O(`).

What is the probability that such an x exists? We only run the second stage
of the algorithm if all the {yi} are distinct. Since we model H as a random
function, for any particular x ∈ D the probability that H(x) ∈ C ′ is `

2n , and

502 Introduction to Modern Cryptography

so the probability that the hash of some element of D lies in C ′ is

1−
(

1− `

2n

)`2
≥ 1− e−`

3/2n

(using Proposition A.3). We thus see that taking ` = Θ(2n/3) gives a constant
probability of finding a collision using only O(2n/3) evaluations of H.

Consider the impact this has on the required output length of a hash func-
tion H : {0, 1}m → {0, 1}n in order to achieve some desired level of security.
As in the previous section, say we want security (i.e., inability to find colli-
sions) against attackers running in time 2κ, and assume there are no struc-
tural weaknesses in H so generic attacks are the best possible. Classically,
it suffices to set n = 2κ (since a birthday attack would then require time
O(2n/2) = O(2κ)). But achieving the same level of security in the quantum
setting requires n = 3κ. Summarizing:

To ensure equivalent security against generic collision-finding at-
tacks in the quantum setting, the output length of a hash function
must be 50% larger than the output length in the classical setting.

14.2 Shor’s Algorithm and its Impact on Cryptography

In the previous section we have seen quantum algorithms that offer a poly-
nomial speedup as compared to the best classical algorithms for the same
problems. These improved algorithms necessitate changes in the underlying
parameters of symmetric-key schemes, but do not fundamentally render those
schemes insecure. Here, in contrast, we discuss quantum algorithms that re-
sult in exponential speedups for solving certain number-theoretic problems—
in particular, we show polynomial-time quantum algorithms for factoring and
computing discrete logarithms. The existence of such algorithms means that
all the public-key schemes we have discussed so far in this book are insecure
(at least asymptotically) against a quantum attacker.

We begin by discussing an abstract mathematical problem with no explicit
connection to cryptography. Let f : H → R be a function whose domain H
is an abelian group. (For now, R can be arbitrary.) Assume further that f
is periodic, i.e., there is a δ ∈ H (not equal to the identity) called the period
such that for all x ∈ H

f(x) = f(x+ δ).

(Note that if δ is a period then so is 2δ, etc., and so the period is not unique.)
The period-finding problem is to find a period, given oracle access to f .

Classically, it is not clear how to solve this problem efficiently; even verifying
that a given δ is a period seems difficult given only oracle access to f . In

Post-Quantum Cryptography 503

1994, Peter Shor stunned researchers by showing a polynomial-time quantum
algorithm for this problem for certain groups H. His result was subsequently
generalized by others to handle larger classes of groups. The details of Shor’s
algorithm lie outside our scope, but we discuss the cryptographic implications
of Shor’s algorithm below.

Implications for factoring and computing discrete logarithms. Period
finding is a powerful tool: in particular, it can be used to factor and compute
discrete logarithms! All we need to do is carefully choose the function whose
period gives us the solution we are looking for.

First consider the problem of factoring. Fix a composite number N that is
the product of two distinct primes. Taking any x ∈ Z∗N , define the function
fx,N : Z → Z∗N by

fx,N (r) = [xr mod N].

The key observation is that this function has period φ(N) since

fx,N (r + φ(N)) = [xr+φ(N) mod N] = [xr · xφ(N) mod N] = [xr mod N]

for any r. Thus, for any x ∈ Z∗N of our choice we can run Shor’s algorithm
to obtain some period of fx,N , i.e., a nonzero integer k such that xk = 1 mod
N . Theorem 9.50 shows that this enables us to factor N using polynomially
many calls to Shor’s algorithm and polynomial-time classical computation.
(Shor’s algorithm in this case runs in time polynomial in the logarithm of
the smallest period—which is at most φ(N)—and so this gives a quantum
algorithm running in polynomial time overall.)

Period finding can also be used to compute discrete logarithms. Fix some
cyclic group G of prime order q with generator g, and say we are given some
element h ∈ G. Consider the function fg,h : Zq × Zq → G given by

f(a, b) = ga · h−b.

If we let x = logg h, then fg,h has period (x, 1) since

fg,h(a+ x, b+ 1) = ga+xh−b−1 = gagxh−bh−1 = gah−b

for any a, b. Moreover, for any period (x′, y′) we have gx
′
h−y

′
= 1 = g0h0.

Lemma 9.65 thus shows that we can use any period to compute logg h using
classical polynomial-time computation. A quantum polynomial-time algo-
rithm for computing logg h follows from the fact that the running time of the
period-finding algorithm in this case is polynomial in log q.

Since the hardness of factoring and computing discrete logarithms underlies
all the public-key cryptosystems we have seen so far in the book (and, indeed,
all public-key algorithms in wide use today), we conclude that

all public-key cryptosystems we have covered thus far can be broken
in polynomial time by a quantum computer.

This stark fact highlights the importance of post-quantum cryptography.

504 Introduction to Modern Cryptography

14.3 Post-Quantum Public-Key Encryption

As noted at the end of the previous section, both the factoring and discrete-
logarithm problems become “easy” given a quantum computer. To have any
hope of constructing public-key schemes with post-quantum security, then, we
need to look for mathematical problems that are computationally hard even
for quantum computers. As in the classical case, we generally cannot prove
unconditionally that a specific problem is hard for quantum algorithms; all
we can do is rely on plausible conjectures about the (quantum) hardness of
certain problems. One notable difference from the classical setting is that the
problems being considered for post-quantum cryptography have, on the whole,
not been studied as long as the factoring and discrete-logarithm problems;
thus, in some sense, we have less confidence that they are truly hard.

In this section we introduce one computational problem that has received a
lot of attention, and is widely believed to be hard even for quantum algorithms.
We then show how to construct a public-key encryption scheme based on the
assumed hardness of that problem. We stress that our goal here is merely to
provide a taste of recent work on post-quantum cryptography; in particular,
we describe the scheme somewhat loosely without including every detail. For
pedagogical purposes we also focus on a simple encryption scheme without
attempting to optimize its efficiency.

The remainder of this section assumes a very basic knowledge of linear
algebra, but can be appreciated even without this background if the reader is
willing to accept certain facts on faith.

Throughout this section we let q be an odd prime. We let b·c denote the
standard “floor” function, so bxc is the largest integer less than or equal to x.
In this section we also change our view of Zq, equating it with the set

{−b(q − 1)/2c, . . . , 0, . . . , bq/2c}

(as opposed to {0, . . . , q − 1} as we have done until now). This viewpoint is
better suited to the present context, where we will say that an element of Zq
is “small” if it is “close” to 0.

The LWE assumption. Consider the following problem: A matrix B ∈
Zm×nq is chosen, along with a vector1 s ∈ Znq . We are then given B and
t := [B · s mod q] (i.e., all operations are done modulo q); the goal is to find
any value s′ ∈ Znq such that Bs′ = t mod q. This problem is easy and can be
solved used standard (efficient) linear-algebraic techniques.

Consider next the following variant of the problem. Choose B and s as
before, but now also choose a short “error vector” e ∈ Zmq . (We use the stan-
dard Euclidean norm to define the length of vectors. That is, the length of a

1By default, our vectors are column vectors and so we write, e.g., sT (the transpose of s)
to denote a row vector.

Post-Quantum Cryptography 505

vector e = [e1, . . . , em]T , denoted ‖e‖, is simply
√∑

i e
2
i . At the moment, we

do not quantify what we mean by “short.”) The value t is now computed as
t := [Bs + e mod q] and the goal, given B and t, is to find any s′ ∈ Znq such
that [t −Bs′ mod q] is short. For historical reasons, this is called the learn-
ing with errors (LWE) problem. When parameters are chosen appropriately,
this problem appears to be significantly more difficult than the previous prob-
lem (when there are no errors), and efficient algorithms for solving it—even
allowing for quantum algorithms—are not known.

For our purposes it is useful to consider a different version of the above called
the decisional LWE problem. Here, roughly speaking, the goal is to distin-
guish whether t was generated by the process described above, or whether t
was sampled uniformly from Zmq . It is possible to show (for certain settings of
the parameters) that this problem is hard if and only if the the LWE problem
itself is hard.

We now formalize the above discussion. Let m, q be deterministic functions
of the security parameter n withm > n; we leave the dependence on n implicit.
Let ψ be an efficient randomized algorithm that takes as input 1n and outputs
an integer; this ψ represents the distribution on the errors, and we also leave
its dependence on n implicit. The following defines what it means for the
decisional LWE problem to be (quantum-)hard for some m, q, ψ.

DEFINITION 14.1 We say the decisional LWEm,q,ψ problem is quantum-
hard if for all quantum polynomial-time algorithms A there is a negligible
function negl such that∣∣∣Pr[B← Zm×nq ; s← ψn; e← ψm : A

(
B, [Bs + e mod q]

)
= 1]

− Pr[B← Zm×nq ; t← Zmq : A(B, t) = 1]
∣∣∣ ≤ negl(n).

(Note that we also choose s to be short.) Clearly, if the decisional LWEm,q,ψ
problem is hard then so is the decisional LWEm′,q,ψ problem for any m′ ≤ m.
It is only slightly more difficult to show that increasing the length of s can
only make the problem harder. We leave the following as an exercise.

LEMMA 14.2 If the decisional LWEm,q,ψ problem is quantum-hard, then
for all quantum polynomial-time algorithms A and all functions m′, ` with
m′(n) ≤ m(n) and `(n) ≥ n there is a negligible function negl such that∣∣∣Pr[B← Zm

′×`
q ; s← ψ`; e← ψm

′
: A
(
B, [Bs + e mod q]

)
= 1]

− Pr[B← Zm
′×`

q ; t← Zm
′

q : A(B, t) = 1]
∣∣∣ ≤ negl(n).

LWE-Based encryption. We motivate the construction of an encryption
scheme from the decisional LWE problem by first describing an insecure key-

506 Introduction to Modern Cryptography

exchange protocol that can be viewed as a linear-algebraic version of Diffie-
Hellman key exchange. Fix n, q, ψ, and m > n, and consider the following
protocol run between two parties Alice and Bob. Alice begins by generating
a uniform B ∈ Zm×nq and choosing s ← ψn; she then sends (B, tA := [B ·
s mod q]). Bob chooses ŝ← ψm and replies with tTB := [ŝT ·B mod q]. Finally,
Alice computes kA := [tTB · s mod q] and Bob computes kB := [ŝT · tA mod q].
Note that

kA = tTB · s = ŝT ·B · s = ŝT · tA = kB

(where all calculations above are done modulo q), and so Alice and Bob have
agreed on a shared key!

Of course, the protocol above is not secure since an eavesdropper can use
linear algebra to recover s, ŝ, or both, and thus compute the key as well. By
judiciously adding noise, however (and under the assumption that the deci-
sional LWE problem is hard), it is possible for Alice and Bob to agree on a key
while preventing an adversary from learning it. Adapting the resulting proto-
col to give an encryption scheme (in the same way the Diffie-Hellman protocol
is adapted to give El Gamal encryption), we obtain Construction 14.3.

CONSTRUCTION 14.3

Let m, q, ψ be as in the text. Define a public-key encryption scheme as
follows:

� Gen: on input 1n choose uniform B ← Zm×nq as well as s ← ψn

and e← ψm. Set t := [B · s + e mod q]. The public key is 〈B, t〉
and the private key is s.

� Enc: on input a public key pk = 〈B, t〉 and a bit b, choose ŝ← ψm

and ê← ψn+1, and output the ciphertext

cT :=

[
ŝT · [B | t] + êT + [0, . . . , 0, b · b q

2
c]︸ ︷︷ ︸

n+1

mod q

]
.

� Dec: on input a private key s and a ciphertext cT , first compute

k := [cT ·
[
−s
1

]
mod q]. Then output 1 if k is closer to b q

2
c than

to 0 (see text), and 0 otherwise.

An encryption scheme based on the decisional LWE problem.

During decryption, “closeness” of k to b q2c is determined by looking at
the absolute value of [k − b q2c mod q]. Here it is important that we use the
particular representation of Zq described at the beginning of this section.

The construction is somewhat complicated, so it is worth stepping through
the process of encryption and decryption to verify that the scheme is correct
(at least with high probability) when parameters are set appropriately. Let

Post-Quantum Cryptography 507

cT be an honestly generated ciphertext, so

cT = ŝT · [B | t] + êT + bT ,

where we let bT = [0, . . . , 0, b · b q2c]. (By default from now on, all operations
are performed modulo q.) During decryption, the receiver computes

k = cT ·
[
−s
1

]
= (ŝT · [B | t] + êT + bT) ·

[
−s
1

]
= −ŝTBs + ŝT t + êT ·

[
−s
1

]
+ b · bq

2
c

= ŝTe + êT ·
[
−s
1

]
+ b · bq

2
c,

using the fact that t = B · s + e. At this point, it is unclear that the receiver
recovers the correct bit. However, simple algebra shows that as long as∣∣∣∣ŝTe + êT ·

[
−s
1

]∣∣∣∣ < (q − 1)/4 (14.1)

the receiver will output the same bit b used by the sender. Note that if
we let ŝT = [ŝ1, . . . , ŝm], and similarly for e, ê, and s, then we may write
Equation (14.1) as ∣∣∣∣∣

m∑
i=1

ŝiei −
n∑
i=1

êisi + en+1

∣∣∣∣∣ < (q − 1)/4,

so the left-hand side is a sum of products of integers output by ψ. Thus, if the
distribution ψ is chosen appropriately—specifically, so that it outputs integers
sufficiently small so that Equation (14.1) holds (at least with overwhelming
probability)—then correctness of the encryption scheme follows.

We now prove that Construction 14.3 is CPA-secure2 (even for quantum
adversaries) if the decisional LWEm,q,ψ problem is quantum-hard.

THEOREM 14.4 If the LWEm,q,ψ problem is quantum-hard, then Con-
struction 14.3 is CPA-secure (even for quantum adversaries).

2One can easily define a notion of CPA-security for quantum adversaries by simply replacing
“probabilistic polynomial-time” with “quantum polynomial-time” in Definition 12.2. In
doing so, we continue to assume the adversary has only classical access to the encryption
oracle in experiment, i.e., it can only request the encryption of classical messages. It is
possible to consider stronger notions of security where the attacker is given quantum access
to the encryption oracle; this is beyond the scope of our book.

508 Introduction to Modern Cryptography

PROOF Let Π denote Construction 14.3. We prove that Π has indistin-
guishable encryptions in the presence of an eavesdropper even for quantum
adversaries; as in the classical case, this implies that Π is CPA-secure even
for quantum adversaries).

Let A be a quantum polynomial-time adversary. Consider a modified en-
cryption scheme Π̃ in which key generation is done by choosing B as before,
but where t is chosen uniformly from Zmq . (Encryption is done as in Π.)

Although Π̃ is not actually an encryption scheme (as there is no way for the
receiver to decrypt), the experiment PubKeav

A,Π̃(n) is still well-defined since that

experiment depends only on the key-generation and encryption algorithms.

CLAIM 14.5
∣∣∣Pr[PubKeav

A,Π(n) = 1]− Pr[PubKeav
A,Π̃(n) = 1]

∣∣∣ is negligible.

PROOF The proof is by a direct reduction to the decisional LWE prob-
lem as specified in Definition 14.1. Consider the following algorithm D that
attempts to solve the decisional LWEm,q,ψ problem:

Algorithm D:
The algorithm is given B ∈ Zm×nq and t ∈ Zmq as input.

� Set pk := 〈B, t〉 and run A(pk) to obtain m0,m1 ∈ {0, 1}.
� Choose a uniform bit b, and set

cT :=
[

ŝT · [B | t] + êT + [0, . . . , 0,mb · b
q

2
c] mod q

]
.

� Give the ciphertext cT to A and obtain an output bit b′. If
b′ = b, output 1; otherwise, output 0.

Note that D is a quantum polynomial-time algorithm since A is.
It is immediate that

Pr[B← Zm×nq ; s← ψn; e← ψm : D
(
B, [Bs + e mod q]

)
= 1]

= Pr[PubKeav
A,Π(n) = 1]

and

Pr[B← Zm×nq ; t← Zmq : D(B, t) = 1] = Pr[PubKeav
A,Π̃(n) = 1].

Quantum hardness of the LWEm,q,ψ problem implies the claim.

Consider now a second modified encryption scheme Π̃′ in which key gener-
ation is done as in Π̃, but encryption of a bit b is done by choosing a uniform
t̂ ∈ Zn+1

q and outputting the ciphertext

cT := t̂T + [0, . . . , 0, b · bq
2
c].

Post-Quantum Cryptography 509

CLAIM 14.6
∣∣∣Pr[PubKeav

A,Π̃(n) = 1]− Pr[PubKeav
A,Π̃′(n) = 1]

∣∣∣ is negligible.

PROOF We begin by rewriting the way encryption is done in Π̃. Fixing

some public key 〈B, t〉, define B̂ = [B | t]T ∈ Z(n+1)×m
q . Encrypting a

bit b in Π̃ is then equivalent to choosing ŝ ← ψm and ê ← ψn+1, computing
t̂ := B̂ŝ + ê, and then outputting the ciphertext

cT := t̂T + [0, . . . , 0, b · bq
2
c].

The crucial observation is that t̂ is computed exactly as in the decisional

LWE assumption, though with different parameters (namely, B̂ ∈ Z(n+1)×m
q

instead of B ∈ Zm×nq). However, since m > n, and hence also n + 1 ≤ m,
Lemma 14.2 shows that the decisional LWE problem is hard for this setting
of the parameters as well. The claim can thus be proved similarly to the
previous claim.

CLAIM 14.7 Pr[PubKeav
A,Π̃′(n) = 1] = 1

2 .

PROOF This follows from the fact that, in Π̃′, the “message vector”
[0, . . . , 0, b · b q2c] is added to a uniform vector t̂T ∈ Zn+1

q modulo q.

The preceding three claims prove the theorem.

14.4 Post-Quantum Signatures

Security of all the signature schemes presented in Chapter 13 required either
the hardness of factoring or the hardness of computing discrete logarithms. As
we have discussed, constructions from alternate assumptions are needed if we
want security in a post-quantum world. While it is possible to construct sig-
nature schemes from the LWE assumption introduced in the previous section,
such schemes are complex and we explore a different approach here

Somewhat surprisingly, and in contrast to the case of public-key encryp-
tion, it is possible to construct signature schemes based on hash functions,
a symmetric-key primitve. Since existing cryptographic hash functions such
as SHA-3 are believed to be secure even against quantum algorithms (sub-
ject to the increase in parameters discussed in Section 14.1), this provides a
promising approach to constructing post-quantum signatures.

510 Introduction to Modern Cryptography

Signatures based on hash functions are interesting for several other reasons,
as well. First, it is amazing (and perhaps counterintuitive) that signatures can
be constructed without any number-theoretic assumptions, unlike public-key
encryption schemes. Moreover, as we will see, the ideas developed here can
be used to construct signature schemes from the minimal assumption that
one-way functions exist. It is also worth noting that the schemes we present
here do not rely on random oracles, as opposed to all the constructions we
saw in Chapter 13. Finally, signatures based on hash functions can be more
efficient than those relying on number-theoretic assumptions.

In the rest of this section, we no longer mention quantum attacks explicitly.
However, all security claims hold against such attacks so long as the hash
function used is quantum-secure (in the appropriate sense).

14.4.1 Lamport’s Signature Scheme

We initiate our study of signature schemes based on hash functions by con-
sidering the relatively weak notion of one-time signature schemes. Informally,
such schemes are “secure” as long as a given private key is used to sign only a
single message. Schemes satisfying this notion of security may be appropriate
for some applications, and also serve as useful building blocks for achieving
stronger notions of security, as we will see in the following section.

Let Π = (Gen,Sign,Vrfy) be a signature scheme, and consider the following
experiment for an adversary A and parameter n:

The one-time signature experiment Sig-forge1-time
A,Π (n):

1. Gen(1n) is run to obtain keys (pk, sk).

2. Adversary A is given pk and asks a single query m′ to its
oracle Signsk(·). A then outputs (m,σ) with m 6= m′.

3. The output of the experiment is defined to be 1 if and only if
Vrfypk(m,σ) = 1.

DEFINITION 14.8 Signature scheme Π = (Gen,Sign,Vrfy) is existentially
unforgeable under a single-message attack, or is a one-time signature scheme,
if for all probabilistic polynomial-time adversaries A, there exists a negligible
function negl such that:

Pr
[
Sig-forge1-time

A,Π (n) = 1
]
≤ negl(n).

Leslie Lamport gave a construction of a one-time signature scheme in 1979.
We illustrate the idea for the case of signing 3-bit messages. Let H be a
cryptographic hash function. A private key consists of six uniform values
x1,0, x1,1, x2,0, x2,1, x3,0, x3,1 ∈ {0, 1}n, and the corresponding public key

Post-Quantum Cryptography 511

contains the results obtained by applying H to each of these elements. These
keys can be visualized as two-dimensional arrays:

pk =

(
y1,0 y2,0 y3,0

y1,1 y2,1 y3,1

)
sk =

(
x1,0 x2,0 x3,0

x1,1 x2,1 x3,1

)
.

To sign a message m = m1m2m3 (where mi ∈ {0, 1}), the signer releases
the appropriate preimage xi,mi

for each bit of the message; the signature σ
consists of the three values (x1,m1

, x2,m2
, x3,m3

). Verification is carried out
in the natural way: presented with the candidate signature (x1, x2, x3) on the

message m = m1m2m3, accept if and only if H(xi)
?
= yi,mi

for 1 ≤ i ≤ 3.
This is shown graphically in Figure 14.1, and the general case—for messages
of any length `—is described formally in Construction 14.9.

Signing m = 011:

sk =

(
x1,0 x2,0 x3,0

x1,1 x2,1 x3,1

)
⇒ σ = (x1,0, x2,1, x3,1)

Verifying for m = 011 and σ = (x1, x2, x3):

pk =

(
y1,0 y2,0 y3,0

y1,1 y2,1 y3,1

)}
⇒

H(x1)
?
= y1,0

H(x2)
?
= y2,1

H(x3)
?
= y3,1

FIGURE 14.1: The Lamport scheme used to sign the message m = 011.

After observing a signature on a message, an attacker who wishes to forge
a signature on any other message must find a preimage of one of the three
“unused” elements in the public key. If H is one-way (see Definition 9.73),
then finding any such preimage is computationally difficult.

THEOREM 14.10 Let ` be any polynomial. If H is a one-way function,
then Construction 14.9 is a one-time signature scheme.

PROOF Let ` = `(n) throughout. As noted above, the key observation is
this: say an attacker A requests a signature on a message m′, and consider any
other message m 6= m′. There must be at least one position i∗ ∈ {1, . . . , `} on
which m and m′ differ. Say mi∗ = b 6= m′i∗ . Then forging a signature on m
requires, at least, finding a preimage (under H) of element yi∗,b∗ of the public
key. Since H is one-way, this is infeasible. We now formalize this intuition.

Let Π denote the Lamport scheme, and let A be a probabilistic polynomial-
time adversary. In a particular execution of Sig-forge1-time

A,Π (n), let m′ denote
the message whose signature is requested by A (we assume without loss of gen-
erality that A always requests a signature on a message), and let (m,σ) be the

512 Introduction to Modern Cryptography

CONSTRUCTION 14.9

Let H : {0, 1}∗ → {0, 1}∗ be a function. Construct a signature scheme
for messages of length ` = `(n) as follows:

� Gen: on input 1n, proceed as follows for i ∈ {1, . . . , `}:

1. Choose uniform xi,0, xi,1 ∈ {0, 1}n.

2. Compute yi,0 := H(xi,0) and yi,1 := H(xi,1).

The public key pk and the private key sk are

pk =

(
y1,0 y2,0 · · · y`,0
y1,1 y2,1 · · · y`,1

)
sk =

(
x1,0 x2,0 · · · x`,0
x1,1 x2,1 · · · x`,1

)
.

� Sign: on input a private key sk as above and a message m ∈ {0, 1}`
with m = m1 · · ·m`, output the signature (x1,m1 , . . . , x`,m`).

� Vrfy: on input a public key pk as above, a message m ∈ {0, 1}`
with m = m1 · · ·m`, and a signature σ = (x1, . . . , x`), output 1 if
and only if H(xi) = yi,mi for all 1 ≤ i ≤ `.

The Lamport signature scheme.

final output of A. We say that A outputs a forgery at (i, b) if Vrfypk(m,σ) = 1
and furthermore mi 6= m′i (i.e., messages m and m′ differ on their ith posi-
tion) and mi = b 6= m′i. Note that whenever A outputs a forgery, it outputs
a forgery at some (i, b).

Consider the following ppt algorithm I attempting to invert H:

Algorithm I:
The algorithm is given 1n and y as input.

1. Choose uniform i∗ ∈ {1, . . . , `} and b∗ ∈ {0, 1}. Set yi∗,b∗ := y.

2. For all i ∈ {1, . . . , `} and b ∈ {0, 1} with (i, b) 6= (i∗, b∗):

� Choose uniform xi,b ∈ {0, 1}n and set yi,b := H(xi,b).

3. Run A on input pk :=

(
y1,0 y2,0 · · · y`,0
y1,1 y2,1 · · · y`,1

)
.

4. When A requests a signature on the message m′:

� If m′i∗ = b∗, then I aborts the execution.

� Otherwise, I returns the signature σ = (x1,m′1
, . . . , x`,m′`).

5. When A outputs (m,σ) with σ = (x1, . . . , x`):

� If A outputs a forgery at (i∗, b∗), then output xi∗ .

Whenever A outputs a forgery at (i∗, b∗), algorithm I succeeds in inverting
its given input y. We are interested in the probability that this occurs when
the input to I is generated by choosing uniform x ∈ {0, 1}n and setting
y := H(x) (cf. Definition 9.73). Imagine a “mental experiment” in which I is

Post-Quantum Cryptography 513

given x at the outset, sets xi∗,b∗ := x, and then always returns a signature to
A in step 4 (i.e., even if m′i∗ = b∗). The view of A when run as a subroutine
by I in this mental experiment is distributed identically to the view of A in
experiment Sig-forge1-time

A,Π (n). Because (i∗, b∗) was chosen uniformly at the
beginning of the experiment, and the view of A is independent of this choice,
the probability that A outputs a forgery at (i∗, b∗), conditioned on the fact
that A outputs a forgery at all, is at least 1/2`. (The easiest way to see
this is to simply consider deferring the choice of (i∗, b∗) to the end of the
experiment.) We conclude that, in this mental experiment, the probability
that A outputs a forgery at (i∗, b∗) is at least 1

2` · Pr[Sig-forge1-time
A,Π (n) = 1].

Returning to the real experiment involving I as initially described, the key
point is that the probability that A outputs a forgery at (i∗, b∗) is unchanged.
This is because the mental experiment and the real experiment coincide if A
outputs a forgery at (i∗, b∗). That is, the experiments only differ if m′i∗ = b∗,
but if this happens then it is impossible (by definition) for A to subsequently
output a forgery at (i∗, b∗). So the probability that A outputs a forgery at
(i∗, b∗) is still at least 1

2` · Pr[Sig-forge1-time
A,Π (n) = 1]. In other words,

Pr[InvertI,H(n) = 1] ≥ 1

2`
· Pr[Sig-forge1-time

A,Π (n) = 1].

Because H is a one-way function, there is a negligible function negl such that

negl(n) ≥ Pr[InvertI,H(n) = 1].

Since ` is polynomial this implies that Pr[Sig-forge1-time
A,Π (n) = 1] is negligible,

completing the proof.

COROLLARY 14.11 If one-way functions exist, then for any polyno-
mial ` there is a one-time signature scheme for messages of length `.

14.4.2 Chain-Based Signatures

Being able to sign only a single message with a given private key is obviously
a significant drawback. We show here an approach based on collision-resistant
hash functions that allows a signer to sign arbitrarily many messages, at the
expense of maintaining state that must be updated after each signature is gen-
erated. In Section 14.4.3 we discuss a more efficient variant of this approach
(that still requires state), and then describe how that construction can be
made stateless. The result shows that full-fledged signature schemes satisfy-
ing Definition 13.2 can be constructed from collision-resistant hash functions.

We first define signature schemes that allow the signer to maintain state
that is updated after every signature is produced.

514 Introduction to Modern Cryptography

DEFINITION 14.12 A stateful signature scheme is a tuple of probabilistic
polynomial-time algorithms (Gen,Sign,Vrfy) satisfying the following:

1. The key-generation algorithm Gen takes as input a security parameter
1n and outputs (pk, sk, s0). These are called the public key, private key,
and initial state, respectively. We assume pk and sk each has length at
least n, and that n can be determined from pk, sk.

2. The signing algorithm Sign takes as input a private key sk, a value si−1,
and a message m ∈ {0, 1}∗. It outputs a signature σ and a value si.

3. The deterministic verification algorithm Vrfy takes as input a public key
pk, a message m, and a signature σ. It outputs a bit b.

We require that for every n, every (pk, sk, s0) output by Gen(1n), and any mes-
sages m1, . . . ,mt ∈ {0, 1}∗, if we iteratively compute (σi, si)← Signsk,si−1

(mi)
for i = 1, . . . , t, then for every i ∈ {1, . . . , t}, it holds that Vrfypk(mi, σi) = 1.

We emphasize that the verifier does not need to know the signer’s state in
order to verify a signature; in fact, in some schemes the state must be kept
secret by the signer in order for security to hold. Signature schemes that do
not maintain state (as in Definition 13.1) are called stateless to distinguish
them from stateful schemes. Clearly, stateless schemes are preferable (al-
though stateful schemes can still potentially be useful). We introduce stateful
signatures as a stepping stone to an eventual stateless construction.

Security for stateful signatures schemes is exactly analogous to Defini-
tion 13.2, with the only subtleties being that the signing oracle returns only
the signature (and not the state), and that the signing oracle updates the
state each time it is invoked.

For any polynomial t = t(n), we can easily construct a stateful “t-time-
secure” signature scheme. (The definition of security here would be the
obvious generalization of Definition 14.8.) We can do this by simply let-
ting the public key (resp., private key) consist of t independently generated
public keys (resp., private keys) for any one-time signature scheme; i.e., set
pk := 〈pk1, . . . , pkt〉 and sk := 〈sk1, . . . , skt〉 where each (pki, ski) is an inde-
pendently generated key-pair for some one-time signature scheme. The state
is a counter i initially set to 1. To sign a message m using the private key sk
and current state i ≤ t, compute σ ← Signski(m) (that is, generate a signa-
ture on m using the private key ski) and output (σ, i); the state is updated
to i := i+ 1. Since the state starts at 1, this means the ith message is signed
using ski. Verification of a signature (σ, i) on a message m is done by checking
whether σ is a valid signature on m with respect to pki. This scheme is secure
if used to sign t messages since each private key of the underlying one-time
scheme is used to sign only a single message.

As described, signatures have constant length (i.e., independent of t), but
the public key has length linear in t. It is possible to trade off the length

Post-Quantum Cryptography 515

of the public key and signatures by having the signer compute a Merkle tree
h :=MT t(pk1, . . . , pkt) (see Section 6.6.2) over the t underlying public keys
from the one-time scheme. That is, the public key will now be 〈t, h〉, and
the signature on the ith message will include (σ, i), as before, along with the
ith value pki and a proof πi that this is the correct value corresponding to h.
(Verification is done in the natural way.) The public key now has constant
size, and the signature length grows only logarithmically with t.

Since t can be an arbitrary polynomial, why don’t the previous schemes
give us the solution we are looking for? The main drawback is that they
require the upper bound t on the number of messages that can be signed to
be fixed in advance, at the time of key generation. This is a potentially severe
limitation since once the upper bound is reached a new public key would have
to be generated and distributed. We would prefer instead to have a single,
fixed public key that can be used to sign an unbounded number of messages.

Let Π = (Gen,Sign,Vrfy) be a one-time signature scheme. In the scheme we
have just described (ignoring the Merkle-tree optimization), the signer runs
t invocations of Gen to obtain public keys pk1, . . . , pkt, and includes each of
these in its actual public key pk. The signer is then restricted to signing at
most t messages. We can do better by using a “chain-based” scheme in which
the signer generates additional public keys on-the-fly, as needed.

In the chain-based scheme, the public key consists of just a single public
key pk1 generated using Gen, and the private key is just the associated pri-
vate key sk1. To sign the first message m1, the signer first generates a new
key-pair (pk2, sk2) using Gen, and then signs both m1 and pk2 using sk1 to
obtain σ1 ← Signsk1(m1‖pk2). The signature that is output includes both
pk2 and σ1, and the signer adds (m1, pk2, sk2, σ1) to its current state. In gen-
eral, when it comes time to sign the ith message the signer will have stored
{(mj , pkj+1, skj+1, σj)}i−1

j=1 as part of its state. To sign the ith message mi,
the signer first generates a new key-pair (pki+1, ski+1) using Gen, and then
signs mi and pki+1 using ski to obtain a signature σi ← Signski(mi‖pki+1).
The actual signature that is output includes pki+1, σi, and also the values
{mj , pkj+1, σj}i−1

j=1. The signer then adds (mi, pki+1, ski+1, σi) to its state.
See Figure 14.2 for a graphical depiction of this process.

To verify a signature (pki+1, σi, {mj , pkj+1, σj}i−1
j=1) on a message m = mi

with respect to public key pk1, the receiver verifies each link between a public
key pkj and the next public key pkj+1 in the chain, as well as the link between
the last public key pki and m. That is, verification outputs 1 if and only if

Vrfypkj (mj‖pkj+1, σj)
?
= 1 for all j ∈ {1, . . . , i}. (Refer to Figure 14.2.)

It is not hard to be convinced—at least on an intuitive level—that this sig-
nature scheme is existentially unforgeable under an adaptive chosen-message
attack (regardless of how many messages are signed). Informally, this is once
again due to the fact that each key-pair (pki, ski) is used to sign only a single
“message,” where in this case the “message” is actually a message/public-key
pair mi‖pki+1. Since we will prove security of a more efficient scheme in the

516 Introduction to Modern Cryptography

m1 pk2

m2 pk3

m1 pk2

s1

m2 pk3

s2

pk1 pk1

m3 pk4

s3

s1

s2

FIGURE 14.2: Chain-based signatures: the situation before and after
signing the third message m3.

next section, we do not prove security for the chain-based scheme here.

In the chain-based scheme, each public key pki is used to sign both a message
and another public key. Thus, it is essential that the underlying one-time
signature scheme Π is capable of signing messages longer than the public key.
The Lamport scheme presented in Section 14.4.1 does not have this property.
However, if we apply the hash-and-sign paradigm from Section 13.3 to the
Lamport scheme, we do obtain a one-time signature scheme that can sign
messages of arbitrary length. (Although Theorem 13.4 was stated only with
regard to signature schemes satisfying Definition 13.2, it is not hard to see
that an identical proof works for one-time signature schemes.) Because this
result is crucial for the next section, we state it formally. (Note that the
existence of collision-resistant hash functions implies the existence of one-way
functions; see Exercise 8.4.)

LEMMA 14.13 If collision-resistant hash functions exist, then there exists
a one-time signature scheme (for messages of arbitrary length).

The chain-based signature scheme is a stateful signature scheme that is
existentially unforgeable under an adaptive chosen-message attack. It has
a number of disadvantages, though. For one, there is no immediate way
to eliminate the state (recall that our ultimate goal is a stateless scheme
satisfying Definition 13.2). It is also not very efficient, in that the signature
length, size of the state, and verification time are all linear in the number of
messages that have been signed. Finally, each signature reveals all previously
signed messages, and this may be undesirable in some contexts.

Post-Quantum Cryptography 517

pk1

s
e

s1

pk
e

pk
0

pk11pk10

pk101pk100

s10 s11

pk111pk110

s101 s111

m = 101 m = 111

FIGURE 14.3: Tree-based signatures (conceptually).

14.4.3 Tree-Based Signatures

The signer in the chain-based scheme of the previous section can be viewed
as maintaining a tree of degree 1, rooted at the public key pk1, and with depth
equal to the number of messages signed so far (cf. Figure 14.2). A natural way
to improve efficiency is to use a binary tree in which each node has degree 2.
As before, a signature will correspond to a “signed” path in the tree from
a leaf to the root; as long as the tree has polynomial depth (even if it has
exponential size!), verification can be done in polynomial time.

Concretely, to sign messages of length n we will work with a binary tree
of depth n having 2n leaves. As before, the signer will add nodes to the tree
“on-the-fly,” as needed. In contrast to the chain-based scheme, however, only
leaves (and not internal nodes) will be used for signing messages. Each leaf
of the tree will correspond to one of the possible messages of length n.

In more detail, we imagine a binary tree of depth n where the root is labeled
by ε (i.e., the empty string), and a node that is labeled with the binary string w
(of length less than n) has left-child labeled w0 and right-child labeled w1.
This tree is never constructed in its entirety (note that it has exponential
size), but is instead built up by the signer as needed.

For every node w, we associate a pair of keys pkw, skw for a one-time sig-
nature scheme Π. The public key of the root, pkε, is the actual public key of
the signer. To sign a message m ∈ {0, 1}n, the signer does the following:

1. It first generates keys (as needed) for all nodes on the path from the
root to the leaf labeled m. (Some of these public keys may have been
generated in the process of signing previous messages, and in that case
are not generated again.)

518 Introduction to Modern Cryptography

2. Next, it “certifies” the path from the root to the leaf labeled m by
computing a signature on pkw0‖pkw1, using private key skw, for each
string w that is a proper prefix of m.

3. Finally, it “certifies” m itself by computing a signature on m using the
private key skm.

The final signature on m consists of the signature on m with respect to pkm,
as well as all the information needed to verify the path from the leaf labeled
m to the root; see Figure 14.3. Additionally, the signer updates its state by
storing all the keys generated as part of the above signing process. A formal
description of this scheme is given as Construction 14.14.

CONSTRUCTION 14.14

Let Π = (Gen, Sign,Vrfy) be a signature scheme. For a binary string m, let

m|i
def
= m1 · · ·mi denote the i-bit prefix of m (with m|0

def
= ε, the empty

string). Construct the scheme Π∗ = (Gen∗, Sign∗,Vrfy∗) as follows:

� Gen∗: on input 1n, compute (pkε, skε) ← Gen(1n) and output the
public key pkε. The private key and initial state are skε.

� Sign∗: on input a message m ∈ {0, 1}n, carry out the following.

1. For i = 0 to n− 1:

– If pkm|i0, pkm|i1, and σm|i are not in the state, compute
(pkm|i0, skm|i0) ← Gen(1n), (pkm|i1, skm|i1) ← Gen(1n),
and σm|i ← Signskm|i

(pkm|i0 ‖ pkm|i1). In addition, add

all of these values to the state.

2. If σm is not yet included in the state, compute σm ← Signskm(m)
and store it as part of the state.

3. Output the signature
({
σm|i , pkm|i0, pkm|i1

}n−1

i=0
, σm

)
.

� Vrfy∗: on input a public key pkε, message m, and signature({
σm|i , pkm|i0, pkm|i1

}n−1

i=0
, σm

)
, output 1 if and only if:

1. Vrfypkm|i
(pkm|i0 ‖ pkm|i1, σm|i)

?
= 1 for all i ∈ {0, . . . , n− 1}.

2. Vrfypkm(m,σm)
?
= 1.

A “tree-based” signature scheme.

Notice that each of the underlying keys in this scheme is used to sign only
a single “message.” Each key associated with an internal node signs a pair of
public keys, and a key at a leaf is used to sign only a single message. Since
each key is used to sign a pair of other keys, we again need the one-time
signature scheme Π to be capable of signing messages longer than the public

Post-Quantum Cryptography 519

key. Lemma 14.13 shows that such schemes can be constructed based on
collision-resistant hash functions.

Before proving security of this tree-based approach, note that it improves
on the chain-based scheme in a number of respects. It still allows for signing
an unbounded number of messages. (Although there are only 2n leaves, the
message space contains only 2n messages. In any case, 2n is eventually larger
than any polynomial function of n.) In terms of efficiency, the signature length
and verification time are now proportional to the message length n but are
independent of the number of messages signed. The scheme is still stateful,
but we will see how this can be avoided after we prove the following result.

THEOREM 14.15 Let Π be a one-time signature scheme. Then Con-
struction 14.14 is a secure signature scheme.

PROOF Let Π∗ denote Construction 14.14. Let A∗ be a probabilistic
polynomial time adversary, let `∗ = `∗(n) be a (polynomial) upper bound on

the number of signing queries made by A∗, and set ` = `(n)
def
= 2n`∗(n) + 1.

Note that ` upper bounds the number of public keys from Π that are needed to
generate `∗ signatures using Π∗. This is because each signature in Π∗ requires
at most 2n new keys from Π (in the worst case), and one additional key from
Π is used as the actual public key pkε.

Consider the following ppt adversary A attacking the one-time signature
scheme Π:

Adversary A:
A is given as input a public key pk (the security parameter n is implicit).

� Choose a uniform index i∗ ∈ {1, . . . , `}. Construct a list pk1, . . . , pk` of
keys as follows:

– Set pki
∗

:= pk.

– For i 6= i∗, compute (pki, ski)← Gen(1n).

� Run A∗ on input public key pkε = pk1. When A∗ requests a signature
on a message m do:

1. For i = 0 to n− 1:

– If the values pkm|i0, pkm|i1, and σm|i have not yet been de-
fined, then set pkm|i0 and pkm|i1 equal to the next two unused
public keys pkj and pkj+1, and compute a signature σm|i on
pkm|i0 ‖ pkm|i1 with respect to pkm|i .

3

3If i 6= i∗ then A can compute a signature with respect to pki by itself. A can also obtain
a (single) signature with respect to pki

∗
by making the appropriate query to its signing

oracle. This is what is meant here.

520 Introduction to Modern Cryptography

2. If σm is not yet defined, compute a signature σm on m with respect
to pkm (see footnote 3).

3. Give
({
σm|i , pkm|i0, pkm|i1

}n−1

i=0
, σm

)
to A∗.

� Say A∗ outputs a message m (for which it had not previously requested

a signature) and a signature
({

σ′m|i , pk
′
m|i0, pk

′
m|i1

}n−1

i=0
, σ′m

)
. If this

is a valid signature on m, then:

Case 1: Say there exists a j ∈ {0, . . . , n− 1} for which pk′m|j0 6= pkm|j0

or pk′m|j1 6= pkm|j1; this includes the case when pkm|j0 or pkm|j1 were

never defined by A. Take the minimal such j, and let i be such that
pki = pkm|j = pk′m|j (such an i exists by the minimality of j). If i = i∗,

output (pk′m|j0‖pk
′
m|j1, σ

′
m|j).

Case 2: If case 1 does not hold, then pk′m = pkm. Let i be such that
pki = pkm. If i = i∗, output (m,σ′m).

In experiment Sig-forge1-time
A,Π (n), the view of A∗ being run as a subroutine by

A is distributed identically to the view of A∗ in experiment Sig-forgeA∗,Π∗(n).4

Thus, the probability that A∗ outputs a forgery is exactly δ(n) when it is run
as a subroutine by A in this experiment. Given that A∗ outputs a forgery,
consider each of the two possible cases described above:

Case 1: Since i∗ is uniform and independent of the view ofA∗, the probability
that i = i∗ is exactly 1/`. If i = i∗, then A requested a signature on the
message pkm|j0‖pkm|j1 with respect to the public key pk = pki

∗
= pkm|j that

it was given (and requested no other signatures). Moreover,

pk′m|j0‖pk
′
m|j1 6= pkm|j0‖pkm|j1

and yet σ′m|j is a valid signature on pk′m|j0‖pk
′
m|j1 with respect to pk. Thus,

A outputs a forgery in this case.

Case 2: Again, since i∗ was chosen uniformly at random and is independent
of the view of A∗, the probability that i = i∗ is exactly 1/`. If i = i∗, then A
did not request any signatures with respect to the public key pk = pki = pkm
and yet σ′m is a valid signature on m with respect to pk.

We see that, conditioned on A∗ outputting a forgery, A outputs a forgery
with probability exactly 1/`. This means that

Pr[Sig-forge1-time
A,Π (n) = 1] = Pr[Sig-forgeA∗,Π∗(n) = 1]/`(n).

4As we have mentioned, A never “runs out” of public keys. A signing query of A∗ uses
2n public keys; thus, even if new public keys were required to answer every signing query
of A∗ (which will in general not be the case), only 2n`∗(n) public keys would be needed
by A in addition to the “root” public key pkε.

Post-Quantum Cryptography 521

Because Π is a one-time signature scheme, there is a negligible function negl
for which

Pr[Sig-forge1-time
A,Π (n) = 1] ≤ negl(n).

Since ` is polynomial, this means Pr[Sig-forgeA∗,Π∗(n) = 1] is negligible.

A Stateless Solution

As described, the signer generates state on-the-fly as needed. However, we
can imagine having the signer generate the necessary information for all the
nodes in the entire tree in advance, at the time of key generation. (That is,
at the time of key generation the signer could generate the keys {(pkw, skw)}
and the signatures {σw} for all binary strings w of length at most n.) If key
generation were done in this way, the signer would not have to update its
state at all; these values could all be stored as part of a (huge) private key,
and we would obtain a stateless scheme. The problem with this approach, of
course, is that generating all these values would require exponential time, and
storing them all would require exponential memory.

An alternative is to store some randomness that can be used to generate
the values {(pkw, skw)} and {σw}, as needed, rather than storing the values
themselves. That is, the signer could store a random string rw for each w, and
whenever the values pkw, skw are needed the signer can compute (pkw, skw) :=
Gen(1n; rw), where this denotes the generation of a length-n key using random
coins rw. Similarly, if the signing procedure is probabilistic, the signer can
store r′w and then set σw := Signskw(pkw0‖pkw1; r′w) (assuming here that
|w| < n). Generating and storing sufficiently many random strings, however,
still requires exponential time and memory.

A simple modification of this alternative gives a polynomial-time solution.
Instead of storing random rw and r′w as suggested above, the signer can store
two keys k, k′ for a pseudorandom function F . When needed, the values
pkw, skw can now be generated by the following two-step process:

1. Compute rw := Fk(w).5

2. Compute (pkw, skw) := Gen(1n; rw) (as before).

In addition, the key k′ is used to generate the value r′w that is used to compute
the signature σw. This gives a stateless scheme in which key generation (as
well as signing and verifying) can be done in polynomial time. Intuitively,
this is secure because storing a random function is equivalent to storing all
the rw and r′w values that are needed, and storing a pseudorandom function
is “just as good.” We leave it as an exercise to give a formal proof that this
modified scheme remains secure.

5We assume that the output length of F is sufficiently long, and that w is padded to some
fixed-length string in a one-to-one fashion. We ignore these technicalities here.

522 Introduction to Modern Cryptography

Since the existence of collision-resistant hash functions implies the existence
of one-way functions (cf. Exercise 8.4), and the latter implies the existence of
pseudorandom functions (see Chapter 8), we have:

THEOREM 14.16 If collision-resistant hash functions exist, then there
exists a (stateless) secure signature scheme.

We remark that it is possible to construct signature schemes satisfying
Definition 13.2 from the (minimal) assumption that one-way functions exist;
a proof of this result is beyond the scope of this book.

References and Additional Reading

Quantum computing is covered in the text by Nielsen and Chuang [153],
which also describes Grover’s algorithm [90] and Shor’s algorithm [178]. The
collision-finding algorithm in Section 14.1.2 is due to Brassard et al. [46].

For details of the NIST post-quantum cryptography standardization effort,
see https://csrc.nist.gov/projects/post-quantum-cryptography. The
LWE problem originated in the work of Regev [169]. Several of the candidate
public-key encryption schemes submitted to NIST can be viewed as following
the approach of the LWE-based scheme presented here (which is also due to
Regev [169]), with the most similar being Frodo (see https://frodokem.org).

Lamport’s signature scheme was published in 1979 [124], although it was al-
ready described by Diffie and Hellman [65]. A tree-based construction similar
in spirit to Construction 14.14 was suggested by Merkle [138, 139], and a tree-
based approach was also used in other schemes [88]. Goldreich [81] suggested a
way to make the Goldwasser–Micali–Rivest scheme [88] stateless, and we have
adapted his ideas in Section 14.4.3. Naor and Yung [146] showed that one-way
permutations suffice for constructing one-time signatures that can sign mes-
sages of arbitrary length, and this was improved by Rompel [174], who showed
that one-way functions are sufficient. (See also [110].) As we have seen in Sec-
tion 14.4.3, one-time signatures of this sort can be used to construct secure
signature schemes, implying that one-way functions suffice for the existence
of (stateless) secure signatures. SPHINCS+ (see https://sphincs.org) is a
hash-based signature scheme submitted to the NIST post-quantum cryptog-
raphy standardization effort.

https://sphincs.org
https://frodokem.org
https://csrc.nist.gov

Post-Quantum Cryptography 523

Exercises

14.1 Prove Lemma 14.2.

14.2 Prove that the existence of a one-time signature scheme for 1-bit mes-
sages implies the existence of one-way functions.

14.3 Let f be a one-way permutation. Consider the following signature
scheme for messages in the set {1, . . . , `}:

� To generate keys, choose uniform x ∈ {0, 1}n and set y := f (`)(x)

(where f (i)(·) refers to i-fold iteration of f , and f (0)(x)
def
= x). The

public key is y and the private key is x.

� To sign message i ∈ {1, . . . , `}, output f (`−i)(x).

� To verify signature σ on message i with respect to public key y,

check whether y
?
= f (i)(σ).

(a) Show that the above is not a one-time signature scheme. Given
a signature on a message i, for what messages j can an adversary
output a forgery?

(b) Prove that no ppt adversary given a signature on i can output a
forgery on any message j > i except with negligible probability.

(c) Suggest how to modify the scheme so as to obtain a one-time sig-
nature scheme.

Hint: Include two values y, y′ in the public key.

14.4 A strong one-time signature scheme satisfies the following (informally):
given a signature σ′ on a message m′, it is infeasible to output (m,σ) 6=
(m′, σ′) for which σ is a valid signature on m (note that m = m′ is
allowed).

(a) Give a formal definition of strong one-time signatures.

(b) Assuming the existence of one-way functions, show a one-way func-
tion for which Lamport’s scheme is not a strong one-time signature
scheme.

(c) Construct a strong one-time signature scheme based on any as-
sumption used in this book.

Hint: Use a particular one-way function in Lamport’s scheme.

14.5 Show an adversary attacking the Lamport scheme who obtains signa-
tures on two messages of its choice and can then forge signatures on any
message it likes.

524 Introduction to Modern Cryptography

14.6 The Lamport scheme uses 2` values in the public key to sign messages
of length `. Consider the variant in which the private key contains 2`
values x1, . . . , x2` and the public key contains the values y1, . . . , y2` with
yi := f(xi). A message m ∈ {0, 1}`′ is mapped in a one-to-one fashion
to a subset Sm ⊂ {1, . . . , 2`} of size `. To sign m, the signer reveals
{xi}i∈Sm

. Prove that this gives a one-time signature scheme. What is
the maximum message length `′ that this scheme supports?

14.7 At the end of Section 14.4.3, we show how a pseudorandom function can
be used to make Construction 14.14 stateless. Does a similar approach
work for the chain-based scheme described in Section 14.4.2? If so,
sketch a construction and proof. If not, explain why and modify the
scheme to obtain a stateless variant.

14.8 Prove Theorem 14.16.

Chapter 15

*Advanced Topics in Public-Key
Encryption

In Chapter 12 we saw several examples of public-key encryption schemes used
in practice. Here, we explore some schemes that are currently more of theo-
retical interest—although in some cases it is possible that these schemes (or
variants thereof) will be used more widely in the future.

We begin with a treatment of trapdoor permutations, a generalization of
one-way permutations, and show how to use them to construct public-key
encryption schemes. Trapdoor permutations neatly encapsulate the key char-
acteristics of the RSA permutation that make it so useful. As such, they often
provide a useful abstraction for designing new cryptosystems.

Next, we present three schemes based on problems related to factoring:

� The Paillier encryption scheme is an example of an encryption scheme
that is homomorphic. This property turns out to be useful for con-
structing more-complex cryptographic protocols, something we touch
on briefly in Section 15.3.

� The Goldwasser–Micali encryption scheme is of historical interest as the
first scheme to be proven CPA-secure. It is also homomorphic, and uses
some interesting number theory that can be applied in other contexts.

� Finally, we discuss the Rabin trapdoor permutation, which can be used to
construct a public-key encryption scheme. Although superficially similar
to the RSA trapdoor permutation, the Rabin trapdoor permutation
is distinguished by the fact that its security is based directly on the
hardness of factoring. (Recall from Section 9.2.5 that hardness of the
RSA problem appears to be a stronger assumption.)

15.1 Encryption from Trapdoor Permutations

In Section 12.5.3 we saw how to construct a CPA-secure public-key encryp-
tion scheme based on the RSA assumption. By distilling those properties of

525

526 Introduction to Modern Cryptography

RSA that are used in the construction, and defining an abstract notion that
encapsulates those properties, we obtain a general template for constructing
secure encryption schemes based on any primitive satisfying the same set of
properties. Trapdoor permutations turn out to be the “right” abstraction here.

In the following section we define (families of) trapdoor permutations and
observe that the RSA family of one-way permutations (Construction 9.77)
satisfies the additional requirements needed to be a family of trapdoor permu-
tations. In Section 15.1.2 we generalize the construction from Section 12.5.3
and show that public-key encryption can be constructed from any trapdoor
permutation. These results will be used again in Section 15.5, where we show
a second example of a trapdoor permutation, this time based directly on the
factoring assumption.

In this section we rely on the material from Section 9.4.1 or, alternately,
Chapter 8.

15.1.1 Trapdoor Permutations

Recall the definitions of families of functions and families of one-way per-
mutations from Section 9.4.1. In that section, we showed that the RSA as-
sumption naturally gives rise to a family of one-way permutations. The astute
reader may have noticed that the construction we gave (Construction 9.77) has
a special property that was not remarked upon there: namely, the parameter-
generation algorithm Gen outputs some additional information along with I
that enables efficient inversion of fI . We refer to such additional information
as a trapdoor, and call families of one-way permutations with this additional
property families of trapdoor permutations. A formal definition follows.

DEFINITION 15.1 A tuple of polynomial-time algorithms (Gen, Samp,
f , Inv) is a family of trapdoor permutations (or a trapdoor permutation) if:

� The probabilistic parameter-generation algorithm Gen, on input 1n, out-
puts (I, td) with |I| ≥ n. Each value of I defines a set DI that constitutes
the domain and range of a permutation (i.e., bijection) fI : DI → DI .

� Let Gen1 denote the algorithm that results by running Gen and outputting
only I. Then (Gen1,Samp, f) is a family of one-way permutations.

� Let (I, td) be an output of Gen(1n). The deterministic inverting algorithm
Inv, on input td and y ∈ DI , outputs x ∈ DI . We denote this by
x := Invtd(y). It is required that with all but negligible probability over
(I, td) output by Gen(1n) and uniform choice of x ∈ DI , we have

Invtd(fI(x)) = x.

As shorthand, we drop explicit mention of Samp and simply refer to trap-
door permutation (Gen, f, Inv). For (I, td) output by Gen we write x← DI to

Advanced Topics in Public-Key Encryption 527

denote uniform selection of x ∈ DI (with the understanding that this is done
by algorithm Samp).

The second condition above implies that fI cannot be efficiently inverted
without td, but the final condition means that fI can be efficiently inverted
with td. It is immediate that Construction 9.77 can be modified to give a fam-
ily of trapdoor permutations if the RSA problem is hard relative to GenRSA,
and so we refer to that construction as the RSA trapdoor permutation.

15.1.2 Public-Key Encryption from Trapdoor Permutations

We now sketch how a public-key encryption scheme can be constructed
from an arbitrary family of trapdoor permutations. The construction is sim-
ply a generalization of what was already done for the specific RSA trapdoor
permutation in Section 12.5.3.

We begin by (re-)introducing the notion of a hard-core predicate. This is the
natural adaptation of Definition 8.4 to our context, and also generalizes our
previous discussion of one specific hard-core predicate for the RSA trapdoor
permutation in Section 12.5.3.

DEFINITION 15.2 Let Π = (Gen, f, Inv) be a family of trapdoor per-
mutations, and let hc be a deterministic polynomial-time algorithm that, on
input I and x ∈ DI , outputs a single bit hcI(x). We say that hc is a hard-core
predicate of Π if for every probabilistic polynomial-time algorithm A there is
a negligible function negl such that

Pr[A(I, fI(x)) = hcI(x)] ≤ 1

2
+ negl(n),

where the probability is taken over the experiment in which Gen(1n) is run to
generate (I, td) and then x is chosen uniformly from DI .

The asymmetry provided by trapdoor permutations implies that anyone
who knows the trapdoor td associated with I can recover x from fI(x) and
thus compute hcI(x) from fI(x). But given only I, it is infeasible to compute
hcI(x) from fI(x) for a uniform x.

The following can be proved by a suitable modification of Theorem 8.5:

THEOREM 15.3 Given a family of trapdoor permutations Π, there is a
family of trapdoor permutations Π̂ with a hard-core predicate hc for Π̂.

Given a family of trapdoor permutations Π̂ = (Ĝen, f, Inv) with hard-core
predicate hc, we can construct a single-bit encryption scheme via the following
approach (see Construction 15.4 below, and compare to Construction 12.32):

To generate keys, run Ĝen(1n) to obtain (I, td); the public key is I and the

528 Introduction to Modern Cryptography

private key is td. Given a public key I, encryption of a message m ∈ {0, 1}
works by choosing uniform r ∈ DI subject to the constraint that hcI(r) = m,
and then setting the ciphertext equal to fI(r). In order to decrypt, the receiver
uses td to recover r from fI(r) and then outputs the message m := hcI(r).

CONSTRUCTION 15.4

Let Π̂ = (Ĝen, f, Inv) be a family of trapdoor permutations with hard-
core predicate hc. Define a public-key encryption scheme as follows:

� Gen: on input 1n, run Ĝen(1n) to obtain (I, td). Output the public
key I and the private key td.

� Enc: on input a public key I and a message m ∈ {0, 1}, choose a
uniform r ∈ DI subject to the constraint that hcI(r) = m. Output
the ciphertext c := fI(r).

� Dec: on input a private key td and a ciphertext c, compute the
value r := Invtd(c) and output the message hcI(r).

Public-key encryption from any family of trapdoor permutations.

A proof of security follows along the lines of the proof of Theorem 12.33.

THEOREM 15.5 If Π̂ is a family of trapdoor permutations with hard-core
predicate hc, then Construction 15.4 is CPA-secure.

PROOF Let Π denote Construction 15.4. We prove that Π has indistin-
guishable encryptions in the presence of an eavesdropper; by Proposition 12.3,
this implies it is CPA-secure.

We first observe that hc must be unbiased in the following sense. Let

δ0(n)
def
= Pr

(I,td)←Ĝen(1n);x←DI

[hcI(x) = 0]

and

δ1(n)
def
= Pr

(I,td)←Ĝen(1n);x←DI

[hcI(x) = 1].

Then there is a negligible function negl such that

δ0(n), δ1(n) ≥ 1

2
− negl(n);

if not, then an attacker who simply outputs the more frequently occurring bit
would violate Definition 15.2.

Now let A be a probabilistic polynomial-time adversary. Without loss of
generality, we may assume m0 = 0 and m1 = 1 in experiment PubKeav

A,Π(n).

Advanced Topics in Public-Key Encryption 529

We then have

Pr[PubKeav
A,Π(n) = 1] =

1

2
· Pr[A(pk, c) = 0 | c is an encryption of 0]

+
1

2
· Pr[A(pk, c) = 1 | c is an encryption of 1].

But then

Pr[A(I, fI(x)) = hcI(x)]

= δ0(n) · Pr[A(I, fI(x)) = 0 | hcI(x) = 0]

+ δ1(n) · Pr[A(I, fI(x)) = 1 | hcI(x) = 1]

≥
(

1

2
− negl(n)

)
· Pr[A(I, fI(x)) = 0 | hcI(x) = 0]

+

(
1

2
− negl(n)

)
· Pr[A(I, fI(x)) = 1 | hcI(1) = 1]

≥ 1

2
· Pr[A(I, fI(x)) = 0 | hcI(x) = 0]

+
1

2
· Pr[A(I, fI(x)) = 1 | hcI(1) = 1]− 2 · negl(n)

= Pr[PubKeav
A,Π(n) = 1]− 2 · negl(n).

Since hc is a hard-core predicate for Π̂, there is a negligible function negl′ such
that negl′(n) ≥ Pr[A(I, fI(x)) = hcI(x)]; this means that

Pr[PubKeav
A,Π(n) = 1] ≤ negl′(n) + 2 · negl(n),

completing the proof.

Encrypting longer messages. Using Claim 12.7, we know that we can
extend Construction 15.4 to encrypt `-bit messages using ciphertexts ` times
as long. Better efficiency can be obtained by constructing a KEM, following
along the lines of Construction 12.34. We leave the details as an exercise.

15.2 The Paillier Encryption Scheme

In this section we describe the Paillier encryption scheme, a public-key
encryption scheme whose security is based on an assumption related (but
not known to be equivalent) to the hardness of factoring. This encryption
scheme is particularly interesting because it possesses some nice homomorphic
properties, as we will discuss further in Section 15.2.3.

530 Introduction to Modern Cryptography

The Paillier encryption scheme utilizes the group Z∗N2 , the multiplicative
group of elements in the range {1, . . . , N2} that are relatively prime to N ,
for N a product of two distinct primes. To understand the scheme it is helpful
to first understand the structure of Z∗N2 . A useful characterization of this
group is given by the following proposition, which says, among other things,
that Z∗N2 is isomorphic to ZN × Z∗N (cf. Definition 9.23) for N of the form
we will be interested in. We prove the proposition in the next section. (The
reader willing to accept the proposition on faith can skip to Section 15.2.2.)

PROPOSITION 15.6 Let N = pq, where p, q are distinct odd primes of
equal length. Then:

1. gcd(N,φ(N)) = 1.

2. For any integer a ≥ 0, we have (1 +N)a = (1 + aN) mod N2.

As a consequence, the order of (1+N) in Z∗N2 is N . That is, (1+N)N =
1 mod N2 and (1 +N)a 6= 1 mod N2 for any 1 ≤ a < N .

3. ZN × Z∗N is isomorphic to Z∗N2 , with isomorphism f : ZN × Z∗N → Z∗N2

given by

f(a, b) = [(1 +N)a · bN mod N2] .

In light of the last part of the above proposition, we introduce some con-
venient notation. With N understood, and x ∈ Z∗N2 , a ∈ ZN , b ∈ Z∗N , we
write x ↔ (a, b) if f(a, b) = x where f is the isomorphism from the proposi-
tion above. One way to think about this notation is that it means “x in Z∗N2

corresponds to (a, b) in ZN × Z∗N .” We have used the same notation in this
book with regard to the isomorphism Z∗N ' Z∗p × Z∗q given by the Chinese
remainder theorem; we keep the notation because in both cases it refers to an
isomorphism of groups. Nevertheless, there should be no confusion since the
group Z∗N2 and the above proposition are only used in this section. We remark
that here the isomorphism—but not its inverse—is efficiently computable even
without the factorization of N .

15.2.1 The Structure of Z∗N2

This section is devoted to a proof of Proposition 15.6. Throughout, we let
N, p, q be as in the proposition.

CLAIM 15.7 gcd(N,φ(N)) = 1.

PROOF Recall that φ(N) = (p− 1)(q − 1). Assume p > q without loss of
generality. Since p is prime and p > p − 1 > q − 1, clearly gcd(p, φ(N)) = 1.
Similarly, gcd(q, q − 1) = 1. Now, if gcd(q, p − 1) 6= 1 then gcd(q, p − 1) = q

Advanced Topics in Public-Key Encryption 531

since q is prime. But then (p − 1)/q ≥ 2, contradicting the assumption that
p and q have the same length.

CLAIM 15.8 For a ≥ 0 an integer, we have (1 +N)a = 1 + aN mod N2.
Thus, the order of (1 +N) in Z∗N2 is N .

PROOF Using the binomial expansion theorem (Theorem A.1):

(1 +N)a =

a∑
i=0

(
a

i

)
N i.

Reducing the right-hand side modulo N2, all terms with i ≥ 2 become 0 and
so (1 +N)a = 1 + aN mod N2. The smallest nonzero a such that (1 +N)a =
1 mod N2 is therefore a = N .

CLAIM 15.9 The group ZN × Z∗N is isomorphic to the group Z∗N2 , with
isomorphism f : ZN × Z∗N → Z∗N2 given by f(a, b) = [(1 +N)a · bN mod N2].

PROOF Note that (1 + N)a · bN does not have a factor in common with
N2 since gcd((1 + N), N2) = 1 and gcd(b,N2) = 1 (because b ∈ Z∗N). So
[(1 +N)a · bN mod N2] lies in Z∗N2 . We now prove that f is an isomorphism.

We first show that f is a bijection. Since

|Z∗N2 | = φ(N2) = p · (p− 1) · q · (q − 1) = pq · (p− 1)(q − 1)

= |ZN | · |Z∗N | = |ZN × Z∗N |

(see Theorem 9.19 for the second equality), it suffices to show that f is one-
to-one. Say a1, a2 ∈ ZN and b1, b2 ∈ Z∗N are such that f(a1, b1) = f(a2, b2).
Then:

(1 +N)a1−a2 · (b1/b2)N = 1 mod N2. (15.1)

(Note that b2 ∈ Z∗N and thus b2 ∈ Z∗N2 , and so b2 has a multiplicative inverse
modulo N2.) Raising both sides to the power φ(N) and using the fact that
the order of Z∗N2 is φ(N2) = N · φ(N) we obtain

(1 +N)(a1−a2)·φ(N) · (b1/b2)N ·φ(N) = 1 mod N2

⇒ (1 +N)(a1−a2)·φ(N) = 1 mod N2 .

By Claim 15.8, (1 +N) has order N modulo N2. Applying Proposition 9.54,
we see that (a1 − a2) · φ(N) = 0 mod N and so N divides (a1 − a2) · φ(N).
Since gcd(N,φ(N)) = 1 by Claim 15.7, it follows that N | (a1 − a2). Since
a1, a2 ∈ ZN , this can only occur if a1 = a2.

532 Introduction to Modern Cryptography

Returning to Equation (15.1) and setting a1 = a2, we thus have bN1 =
bN2 mod N2. This implies bN1 = bN2 mod N . Since N is relatively prime to
φ(N), the order of Z∗N , exponentiation to the power N is a bijection in Z∗N
(cf. Corollary 9.17). This means that b1 = b2 mod N ; since b1, b2 ∈ Z∗N , we
have b1 = b2. We conclude that f is one-to-one, and hence a bijection.

To show that f is an isomorphism, we show that f(a1, b1) · f(a2, b2) =
f(a1 + a2, b1 · b2). (Note that multiplication on the left-hand side of the
equality takes place modulo N2, while addition/multiplication on the right-
hand side takes place modulo N .) We have:

f(a1, b1) · f(a2, b2) =
(
(1 +N)a1 · bN1

)
·
(
(1 +N)a2 · bN2

)
mod N2

= (1 +N)a1+a2 · (b1b2)N mod N2.

Since (1 +N) has order N modulo N2 (by Claim 15.8), we can apply Propo-
sition 9.53 and obtain

f(a1, b1) · f(a2, b2) = (1 +N)a1+a2 · (b1b2)N mod N2

= (1 +N)[a1+a2 mod N] · (b1b2)N mod N2. (15.2)

We are not yet done, since b1b2 in Equation (15.2) represents multiplication
modulo N2 whereas we would like it to be modulo N . Let b1b2 = r + γN ,
where γ, r are integers with 1 ≤ r < N (r cannot be 0 since b1, b2 ∈ Z∗N and
so their product cannot be divisible by N). Note that r = b1b2 mod N . We
also have

(b1b2)N = (r + γN)N mod N2

=

N∑
k=0

(
N

k

)
rN−k(γN)k mod N2

= rN +N · rN−1 · (γN) = rN = ([b1b2 mod N])N mod N2 ,

using the binomial expansion theorem as in Claim 15.8. Plugging this in to
Equation (15.2) we get the desired result:

f(a1, b1) · f(a2, b2) = (1 +N)[a1+a2 mod N] · (b1b2 mod N)N mod N2

= f(a1 + a2, b1b2),

proving that f is an isomorphism from ZN × Z∗N to Z∗N2 .

15.2.2 The Paillier Encryption Scheme

Let N = pq be a product of two distinct primes of equal length. Proposi-
tion 15.6 says that ZN × Z∗N is isomorphic to Z∗N2 , with isomorphism given
by f(a, b) = [(1+N)a · bN mod N2]. A consequence is that a uniform element

Advanced Topics in Public-Key Encryption 533

y ∈ Z∗N2 corresponds to a uniform element (a, b) ∈ ZN × Z∗N or, in other
words, an element (a, b) with uniform a ∈ ZN and uniform b ∈ Z∗N .

Call y ∈ Z∗N2 an N th residue modulo N2 if y is an Nth power, that is,
if there exists an x ∈ Z∗N2 with y = xN mod N2. We denote the set of Nth
residues modulo N2 by Res(N2). Let us characterize the Nth residues in Z∗N2 .
Taking any x ∈ Z∗N2 with x↔ (a, b) and raising it to the Nth power gives:

[xN mod N2]↔ (a, b)N = (N · a mod N, bN mod N) = (0, bN mod N).

(Recall that the group operation in ZN×Z∗N is addition modulo N in the first
component and multiplication modulo N in the second component.) More-
over, we claim that any element y with y ↔ (0, b) is an Nth residue. To see

this, recall that gcd(N,φ(N)) = 1 and so d
def
= [N−1 mod φ(N)] exists. So

(a, [bd mod N])N = (Na mod N, [bdN mod N]) = (0, b)↔ y

for any a ∈ ZN . We have thus shown that Res(N2) corresponds to the set{
(0, b) | b ∈ Z∗N

}
.

The above also demonstrates that the number of Nth roots of any y ∈ Res(N2)
is exactly N , and so computing Nth powers is an N -to-1 function. As such,
if r ∈ Z∗N2 is uniform then [rN mod N2] is a uniform element of Res(N2).

The decisional composite residuosity problem, roughly speaking, is to distin-
guish a uniform element of Z∗N2 from a uniform element of Res(N2). Formally,
let GenModulus be a polynomial-time algorithm that, on input 1n, outputs
(N, p, q) where N = pq, and p and q are n-bit primes (except with probability
negligible in n). Then:

DEFINITION 15.10 The decisional composite residuosity problem is hard
relative to GenModulus if for all probabilistic polynomial-time algorithms D
there is a negligible function negl such that∣∣∣Pr[D(N, [rN mod N2]) = 1]− Pr[D(N, r) = 1]

∣∣∣ ≤ negl(n),

where in each case the probabilities are taken over the experiment in which
GenModulus(1n) outputs (N, p, q), and then a uniform r ∈ Z∗N2 is chosen.
(Recall that [rN mod N2] is a uniform element of Res(N2).)

The decisional composite residuosity (DCR) assumption is the assumption
that there is a GenModulus relative to which the decisional composite residu-
osity problem is hard.

As we have discussed, elements of Z∗N2 have the form (r′, r) with r′ and
r arbitrary (in the appropriate groups), whereas Nth residues have the form
(0, r) with r ∈ Z∗N arbitrary. The DCR assumption is that it is hard to

534 Introduction to Modern Cryptography

distinguish uniform elements of the first type from uniform elements of the
second type. This suggests the following abstract way to encrypt a message
m ∈ ZN with respect to a public key N : choose a uniform Nth residue (0, r)
and set the ciphertext equal to

c↔ (m, 1) · (0, r) = (m+ 0, 1 · r) = (m, r).

Without worrying for now how this can be carried out efficiently by the sender,
or how the receiver can decrypt, let us simply convince ourselves (on an in-
tuitive level) that this is secure. Since a uniform Nth residue (0, r) cannot
be distinguished from a uniform element (r′, r), the ciphertext as constructed
above is indistinguishable (from the point of an eavesdropper who does not
know the factorization of N) from the ciphertext

c′ ↔ (m, 1) · (r′, r) = ([m+ r′ mod N], r)

for uniform r′ ∈ ZN and r ∈ Z∗N . Lemma 12.15 shows that [m+ r′ mod N]
is uniformly distributed in ZN and so, in particular, this ciphertext c′ is
independent of the message m. CPA-security follows. A formal proof that
proceeds exactly along these lines is given further below.

Before turning to the formal description and proof of security, we show how
encryption and decryption can be performed efficiently.

Encryption. We have described encryption above as though it is taking
place in ZN × Z∗N . In fact it takes place in the isomorphic group Z∗N2 . That
is, the sender generates a ciphertext c ∈ Z∗N2 by choosing a uniform1 r ∈ Z∗N
and then computing

c := [(1 +N)m · rN mod N2].

Observe that

c =
(
(1 +N)m · 1N

)
·
(
(1 +N)0 · rN

)
mod N2 ↔ (m, 1) · (0, r),

and so c↔ (m, r) as desired.

Decryption. We now describe how decryption can be performed efficiently
given the factorization of N . For c constructed as above, we claim that m is
recovered by the following steps:

� Set ĉ := [cφ(N) mod N2].

� Set m̂ := (ĉ− 1)/N . (Note that this is carried out over the integers.)

� Set m :=
[
m̂ · φ(N)−1 mod N

]
.

1We remark that it does not make any difference whether the sender chooses uniform r ∈ Z∗N
or uniform r ∈ Z∗

N2 , since in either case the distribution of [rN mod N2] is the same (as

can be verified by looking at what happens in the isomorphic group ZN × Z∗N).

Advanced Topics in Public-Key Encryption 535

To see why this works, let c↔ (m, r) for an arbitrary r ∈ Z∗N . Then

ĉ
def
= [cφ(N) mod N2]

↔ (m, r)φ(N)

=
(

[m · φ(N) mod N], [rφ(N) mod N]
)

=
(
[m · φ(N) mod N], 1

)
.

By Proposition 15.6(3), this means that ĉ = (1 + N)[m·φ(N) mod N] mod N2.
Using Proposition 15.6(2), we know that

ĉ = (1 +N)[m·φ(N) mod N] = (1 + [m · φ(N) mod N] ·N) mod N2.

Since 1+[m ·φ(N) mod N] ·N is always less that N2 we can drop the modN2

at the end and view the above as an equality over the integers. Thus, m̂
def
=

(ĉ− 1)/N = [m · φ(N) mod N] and, finally,

m = [m̂ · φ(N)−1 mod N],

as required. (Note that φ(N) is invertible modulo N since gcd(N,φ(N)) = 1.)

We give a complete description of the Paillier encryption scheme, followed
by an example of the above calculations.

CONSTRUCTION 15.11

Let GenModulus be a polynomial-time algorithm that, on input 1n, out-
puts (N, p, q) where N = pq and p and q are n-bit primes (except with
probability negligible in n). Define the following encryption scheme:

� Gen: on input 1n run GenModulus(1n) to obtain (N, p, q). The
public key is N , and the private key is 〈N,φ(N)〉.

� Enc: on input a public key N and a message m ∈ ZN , choose a
uniform r ← Z∗N and output the ciphertext

c := [(1 +N)m · rN mod N2].

� Dec: on input a private key 〈N,φ(N)〉 and a ciphertext c, compute

m :=

[
[cφ(N) mod N2]− 1

N
· φ(N)−1 mod N

]
.

The Paillier encryption scheme.

Example 15.12
Let N = 11 · 17 = 187 (and so N2 = 34969), and consider encrypting the
messagem = 175 and then decrypting the corresponding ciphertext. Choosing

536 Introduction to Modern Cryptography

r = 83 ∈ Z∗187, we compute the ciphertext

c := [(1 + 187)175 · 83187 mod 34969] = 23911

corresponding to (175, 83). To decrypt, note that φ(N) = 160. So we first
compute ĉ := [23911160 mod 34969] = 25620. Subtracting 1 and dividing
by 187 gives m̂ := (25620 − 1)/187 = 137; since 90 = [160−1 mod 187], the
message is recovered as m := [137 · 90 mod 187] = 175. ♦

THEOREM 15.13 If the decisional composite residuosity problem is hard
relative to GenModulus, then the Paillier encryption scheme is CPA-secure.

PROOF Let Π denote the Paillier encryption scheme. We prove that
Π has indistinguishable encryptions in the presence of an eavesdropper; by
Theorem 12.6 this implies that it is CPA-secure.

Let A be an arbitrary probabilistic polynomial-time adversary. Consider
the following ppt algorithm D that attempts to solve the decisional composite
residuosity problem relative to GenModulus:

Algorithm D:
The algorithm is given N, y as input.

� Set pk = N and run A(pk) to obtain two messages m0,m1.

� Choose a uniform bit b and set c := [(1 +N)mb · y mod N2].

� Give the ciphertext c to A and obtain an output bit b′. If
b′ = b, output 1; otherwise, output 0.

Let us analyze the behavior of D. There are two cases to consider:

Case 1: Say the input to D was generated by running GenModulus(1n) to
obtain (N, p, q), choosing uniform r ∈ Z∗N2 , and setting y := [rN mod N2].
(That is, y is a uniform element of Res(N2).) In this case,

c = [(1 +N)mb · rN mod N2]

for uniform r ∈ Z∗N2 . Recalling that the distribution on [rN mod N2] is the
same whether r is chosen uniformly from Z∗N or from Z∗N2 , we see that in this
case the view of A when run as a subroutine by D is distributed identically
to A’s view in experiment PubKeav

A,Π(n). Since D outputs 1 exactly when the
output b′ of A is equal to b, we have

Pr
[
D(N, [rN mod N2]) = 1

]
= Pr[PubKeav

A,Π(n) = 1],

where the first probability is taken over the experiment as in Definition 15.10.

Case 2: Say the input to D was generated by running GenModulus(1n) to
obtain (N, p, q) and choosing uniform y ∈ Z∗N2 . We claim that the view of A

Advanced Topics in Public-Key Encryption 537

in this case is independent of the bit b. This follows because y is a uniform
element of the group Z∗N2 , and so the ciphertext c is uniformly distributed in
Z∗N2 (see Lemma 12.15), independent of m. Thus, the probability that b′ = b
in this case is exactly 1

2 . That is,

Pr[D(N, r) = 1] =
1

2
,

where the probability is taken over the experiment as in Definition 15.10.
Combining the above, we see that∣∣∣Pr

[
D(N, [rN mod N2]) = 1

]
− Pr[D(N, r) = 1]

∣∣∣
=
∣∣Pr[PubKeav

A,Π(n) = 1]− 1
2

∣∣ .
By the assumption that the decisional composite residuosity problem is hard
relative to GenModulus, there is a negligible function negl such that∣∣Pr[PubKeav

A,Π(n) = 1]− 1
2

∣∣ ≤ negl(n).

Thus Pr[PubKeav
A,Π(n) = 1] ≤ 1

2 + negl(n), completing the proof.

15.2.3 Homomorphic Encryption

The Paillier encryption scheme is useful in a number of settings because it
is homomorphic. Roughly, a homomorphic encryption scheme enables (cer-
tain) computations to be performed on encrypted data, yielding a ciphertext
containing the encrypted result. In the case of Paillier encryption, the compu-
tation that can be performed is (modular) addition. Specifically, fix a public
key pk = N . Then the Paillier scheme has the property that multiplying an
encryption of m1 and an encryption of m2 (with multiplication done mod-
ulo N2) results in an encryption of [m1 +m2 mod N]; this is because(

(1 +N)m1 · rN1
)
·
(
(1 +N)m2 · rN2

)
= (1 +N)[m1+m2 mod N] · (r1r2)N mod N2.

Although the ability to add encrypted values may not seem very useful, it
suffices for several interesting applications including voting, discussed below.

We present a general definition, of which Pailler encryption is a special case.

DEFINITION 15.14 A public-key encryption scheme (Gen,Enc,Dec) is
homomorphic if for all n and all (pk, sk) output by Gen(1n), it is possible to
define groups M, C (depending on pk only) such that:

� The message space is M, and all ciphertexts output by Encpk are el-
ements of C. For notational convenience, we write M as an additive
group and C as a multiplicative group.

538 Introduction to Modern Cryptography

� For any m1,m2 ∈ M, any c1 output by Encpk(m1), and any c2 output
by Encpk(m2), it holds that

Decsk(c1 · c2) = m1 +m2.

Moreover, the distribution on ciphertexts obtained by encrypting m1,
encrypting m2, and then multiplying the results is identical to the distri-
bution on ciphertexts obtained by encrypting m1 +m2.

The last part of the definition ensures that if ciphertexts c1 ← Encpk(m1)
and c2 ← Encpk(m2) are generated and the result c3 := c1 · c2 is computed,
then the resulting ciphertext c3 contains no more information about m1 or m2

than the sum m3.
The Paillier encryption scheme with pk = N is homomorphic withM = ZN

and C = Z∗N2 . This is not the first example of a homomorphic encryption
scheme we have seen; El Gamal encryption is also homomorphic. Specifically,
for public key pk = 〈G, q, g, h〉 we can take M = G and C = G×G; then

〈gy1 , hy1 ·m1〉 · 〈gy2 , hy2 ·m2〉 = 〈gy1+y2 , hy1+y2 ·m1m2〉,

where multiplication of ciphertexts is component-wise. The Goldwasser–
Micali encryption scheme we will see later is also homomorphic (see Exer-
cise 15.11).

A nice feature of Paillier encryption is that it is homomorphic over a large
additive group (namely, ZN). To see an application of this, consider the
following distributed voting scheme, where ` voters can vote “no” or “yes”
and the goal is to tabulate the number of “yes” votes:

1. A voting authority generates a public key N for the Paillier encryption
scheme and publicizes N .

2. Let 0 stand for a “no,” and let 1 stand for a “yes.” Each voter casts their
vote by encrypting it. That is, voter i casts her vote vi by computing
ci := [(1 +N)vi · (ri)N mod N2] for a uniform ri ∈ Z∗N .

3. Each voter broadcasts their vote ci. These votes are then publicly ag-
gregated by computing

ctotal :=
[∏`

i=1 ci mod N2
]
.

4. The authority is given ctotal. (We assume the authority has not been
able to observe what goes on until now.) By decrypting it, the authority
obtains the vote total

vtotal
def
=
∑`
i=1 vi mod N.

If ` is small (so that vtotal � N), there is no wrap-around modulo N

and vtotal =
∑`
i=1 vi.

Advanced Topics in Public-Key Encryption 539

Key features of the above are that no voter learns anyone else’s vote, and
calculation of the total is publicly verifiable if the authority is trusted to
correctly compute vtotal from ctotal. Also, the authority obtains the correct
total without learning any individual votes. (Here, we assume the authority
cannot see voters’ ciphertexts. In Section 15.3.3 we show a protocol in which
votes are kept hidden from authorities even if they see all the communication.)
We assume all voters act honestly (and only try to learn others’ votes based on
information they observe); an entire research area of cryptography is dedicated
to addressing potential threats from participants who might be malicious and
not follow the protocol.

15.3 Secret Sharing and Threshold Encryption

Motivated by the discussion of distributed voting in the previous section, we
briefly consider secure (interactive) protocols. Such protocols can be signifi-
cantly more complicated than the basic cryptographic primitives (e.g., encryp-
tion and signature schemes) we have focused on until now, both because they
can involve multiple parties exchanging several rounds of messages, as well as
because they are intended to realize more-complex security requirements.

The goal of this section is mainly to give the reader a taste of this fascinating
area, and no attempt is made at being comprehensive or complete. Although
the protocols presented here can be proven secure (with respect to appropriate
definitions), we omit formal definitions, details, and proofs and instead rely
on informal discussion.

15.3.1 Secret Sharing

Consider the following problem. A dealer holds a secret s ∈ {0, 1}`—
say, a nuclear-launch code—that it wishes to share among some set of N
users P1, . . . , PN by giving each user a share. Any t users should be able to
pool their shares and reconstruct the secret, but no coalition of fewer than t
users should get any information about s from their collective shares (beyond
whatever information they had about s already). We refer to such a sharing
mechanism as a (t,N)-threshold secret-sharing scheme. Such a scheme ensures
that s is not revealed without sufficient authorization, while also guaranteeing
availability of s when needed (since any t users can reconstruct it). Beyond
their direct application, secret-sharing schemes are also a building block of
many cryptographic protocols.

There is a simple solution for the case t = N . The dealer chooses uniform

s1, . . . , sN−1 ∈ {0, 1}` and sets sN := s⊕
(⊕N−1

i=1 si

)
; the share of user Pi is si.

Since
⊕N

i=1 si = s by construction, clearly all the users together can recover s.
However, the shares of any coalition of N−1 users are (jointly) uniform and in-

540 Introduction to Modern Cryptography

dependent of s, and thus reveal no information about s. This is clear when the
coalition is P1, . . . , PN−1. In the general case, when the coalition includes ev-
eryone except for Pj (j 6= N), this is true because s1, . . . , sj−1, sj+1, . . . , sN−1

are uniform and independent of s by construction, and

sN = s⊕
(⊕

i<N,i6=j si

)
⊕ sj ;

thus, even conditioned on some fixed values for s and the shares of the other
members of the coalition, the share sN of user PN is uniform because sj is
uniform and independent of s.

We can extend this to obtain a solution for t < N . The basic idea is to
replicate the above scheme for each subset T ⊂ N of size t. That is, for
each such subset T = {Pi1 , . . . , Pit}, we choose uniform shares sT,i1 , . . . , sT,it
subject to the constraint that ⊕tj=1sT,ij = s, and give sT,ij to user Pij . It is
not hard to see that this satisfies the requirements.

Unfortunately, this extension of the original scheme is not efficient. Each
user now stores a share sT,i for every subset T of which she is a member. For

each user there are
(
N−1
t−1

)
such subsets, which is exponential in N if t ≈ N/2.

Shamir’s scheme. Fortunately, it is possible to do significantly better us-
ing a secret-sharing scheme introduced by Adi Shamir (of RSA fame). This
scheme is based on polynomials2 over a finite field F, where F is chosen so that
s ∈ F and |F| > N . (See Appendix A.5 for a brief discussion of finite fields.)
Before describing the scheme, we briefly review some background related to
polynomials over a field F.

A value x ∈ F is a root of a polynomial p if p(x) = 0. We use the well-known
fact that any nonzero, degree-t polynomial over a field has at most t roots.
This implies:

COROLLARY 15.15 Any two distinct degree-t polynomials p and q agree
on at most t points.

PROOF If not, then the nonzero, degree-t polynomial p − q would have
more than t roots.

Shamir’s scheme relies on the fact that for any t pairs of elements (x1, y1),
. . . , (xt, yt) from F (with the {xi} distinct), there is a unique polynomial p of
degree t− 1 such that p(xi) = yi for 1 ≤ i ≤ t. We can prove this quite easily.
The fact that there exists such a p uses standard polynomial interpolation.

2A degree-t polynomial p over F is given by p(X) =
∑t
i=0 aiX

i, where ai ∈ F and X is a
formal variable. (Note that we allow at = 0 and so we really mean a polynomial of degree
at most t.) Any such polynomial naturally defines a function mapping F to itself, given by
evaluating the polynomial on its input.

Advanced Topics in Public-Key Encryption 541

In detail: for i = 1, . . . , t, define the degree-(t− 1) polynomial

δi(X)
def
=

∏t
j=1,j 6=i(X − xj)∏t
j=1,j 6=i(xi − xj)

.

Note that δi(xj) = 0 for any j 6= i, and δi(xi) = 1. So p(X)
def
=
∑t
i=1 δi(X) ·yi

is a polynomial of degree (t − 1) with p(xi) = yi for 1 ≤ i ≤ t. (We remark
that this, in fact, demonstrates that the desired polynomial p can be found
efficiently.) Uniqueness follows from Corollary 15.15.

We now describe Shamir’s (t,N)-threshold secret-sharing scheme. Let F be
a finite field that contains the domain of possible secrets, and with |F| > N .
Let x1, . . . , xN ∈ F be distinct, nonzero elements that are fixed and publicly
known. (Such elements exist since |F| > N .) The scheme works as follows:

Sharing: Given a secret s ∈ F, the dealer chooses uniform a1, . . . , at−1 ∈ F
and defines the polynomial p(X)

def
= s +

∑t−1
i=1 aiX

i. This is a uniform
degree-(t − 1) polynomial with constant term s. The share of user Pi
is si := p(xi) ∈ F.

Reconstruction: Say t users Pi1 , . . . , Pit pool their shares si1 , . . . , sit . Us-
ing polynomial interpolation, they compute the unique degree-(t − 1)
polynomial p′ for which p′(xij) = sij for 1 ≤ j ≤ t. The secret is p′(0).

It is clear that reconstruction works since p′ = p and p(0) = s.
It remains to show that any t − 1 users learn nothing about the secret s

from their shares. By symmetry, it suffices to consider the shares of users
P1, . . . , Pt−1. We claim that for any secret s, the shares s1, . . . , st−1 are
(jointly) uniform. Since the dealer chooses a1, . . . , at−1 uniformly, this follows
if we show that there is a one-to-one correspondence between the polyno-
mial p chosen by the dealer and the shares s1, . . . , st−1. But this is a direct
consequence of Corollary 15.15.

15.3.2 Verifiable Secret Sharing

So far we have considered passive attacks in which t − 1 users may try
to use their shares to learn information about the secret. But we may also
be concerned about active, malicious behavior. Here there are two separate
concerns: First, a corrupted dealer may give inconsistent shares to the users,
i.e., such that different secrets are recovered depending on which t users pool
their shares. Second, in the reconstruction phase a malicious user may present
a different share from the one given to them by the dealer, and thus affect the
recovered secret. (While this could be addressed by having the dealer sign the
shares, this does not work when the dealer itself may be dishonest.) Verifiable
secret-sharing (VSS) schemes prevent both these attacks.

More formally, we allow any t − 1 users to be corrupted and to collude
with each other and, possibly, the dealer. We require: (1a) at the end of the

542 Introduction to Modern Cryptography

sharing phase, a secret s is defined such that any set of users that includes
t uncorrupted users will successfully recover s in the reconstruction phase;
moreover, (1b) if the dealer is honest, then s corresponds to the dealer’s
secret. In addition, (2) when the dealer is honest then, as before, any set
of t − 1 corrupted users learns nothing about the secret from their shares
and any public information the dealer publishes. Since we want there to be t
uncorrupted users even if t−1 users are corrupted, we require N ≥ t+(t−1) or
N > 2t; in other words, we assume a majority of the users remain uncorrupted.

We describe a VSS scheme due to Feldman that relies on an algorithm G
relative to which the discrete-logarithm problem is hard. For simplicity, we
describe it in the random-oracle model and let H denote a function to be
modeled as a random oracle. We also assume that some trusted parameters
(G, q, g), generated using G(1n), are published in advance, where q is prime
and so Zq is a field. Finally, we assume that all users have access to a broadcast
channel, such that a message broadcast by any user is heard by everyone.

The sharing phase now involves the N users running an interactive protocol
with the dealer that proceeds as follows:

1. To share a secret s, the dealer chooses uniform a0 ∈ Zq and then
shares a0 as in Shamir’s scheme. That is, the dealer chooses uniform

a1, . . . , at−1 ∈ Zq and defines the polynomial p(X)
def
=
∑t−1
j=0 ajX

j . The

dealer sends the share si := p(i) =
∑t−1
j=0 aj · ij to user Pi.

3

In addition, the dealer publicly broadcasts the values A0 := ga0 , . . . ,
At−1 := gat−1 , and the “masked secret” c := H(a0)⊕ s.

2. Each user Pi verifies that its share si satisfies

gsi
?
=
∏t−1
j=0(Aj)

ij . (15.3)

If not, Pi publicly broadcasts a complaint.

Note that if the dealer is honest, we have∏t−1
j=0(Aj)

ij =
∏t−1
j=0 (gaj)

ij
= g

∑t−1
j=0 aj ·i

j

= gp(i) = gsi ,

and so no honest user will complain. Since there are at most t − 1
corrupted users, there are at most t−1 complaints if the dealer is honest.

3. If more than t−1 users complain, the dealer is disqualified and the pro-
tocol is aborted. Otherwise, the dealer responds to a complaint from Pi
by broadcasting si. If this share does not satisfy Equation (15.3) (or if
the dealer refuses to respond to a complaint at all), the dealer is dis-
qualified and the protocol is aborted. Otherwise, Pi uses the broadcast
value (rather than the value it received in the first round) as its share.

3Note that we are now setting xi = i, which is fine since we are using the field Zq .

Advanced Topics in Public-Key Encryption 543

In the reconstruction phase, say a group of users (that includes at least
t uncorrupted users) pool their shares. A share si provided by a user Pi is
discarded if it does not satisfy Equation (15.3). Among the remaining shares,
any t of them are used to recover a0 exactly as in Shamir’s scheme. The
original secret is then computed as s := c⊕H(a0).

We now argue that this protocol meets the desired security requirements.
We first show that, assuming the dealer is not disqualified, the value recovered
in the reconstruction phase is uniquely determined by the public information;
specifically, the recovered value is c ⊕ H(logg A0). (Combined with the fact
that an honest dealer is never disqualified, this proves that conditions (1a)
and (1b) hold.) Define ai := logg Ai for 0 ≤ i ≤ t − 1; the {ai} cannot be
computed efficiently if the discrete-logarithm problem is hard, but they are

still well-defined. Define the polynomial p(X)
def
=
∑t−1
i=0 aiX

i. Any share si,
contributed by party Pi, that is not discarded during the reconstruction phase
must satisfy Equation (15.3), and hence satisfies si = p(i). It follows that,
regardless of which shares are used, the parties will reconstruct polynomial p,
compute a0 = p(0), and then recover s = c⊕H(a0).

It is also possible to show that condition (2) holds for computationally
bounded adversaries if the discrete-logarithm problem is hard for G. (In con-
trast to Shamir’s secret-sharing scheme, secrecy here is no longer uncondi-
tional. Unconditionally secure VSS schemes are possible, but are beyond the
scope of our treatment.) Intuitively, this is because the secret s is masked
by the random value H(a0), and the information given to any t − 1 users in
the sharing phase—namely, their shares and the public values {Ai}—reveals
only ga0 , from which it is hard to compute a0. This intuition can be made
rigorous, but we do not do so here.

15.3.3 Threshold Encryption and Electronic Voting

In Section 15.2.3 we introduced the notion of homomorphic encryption
schemes and gave the Paillier encryption scheme as an example. Here we show
a different homomorphic encryption scheme that is a variant of El Gamal
encryption. Specifically, given a public key pk = 〈G, q, g, h〉 as in regular
El Gamal encryption, we now encrypt a message m ∈ Zq by setting M := gm,
choosing a uniform y ∈ Zq, and sending the ciphertext c := 〈gy, hy ·M〉. To
decrypt, the receiver recovers M as in standard El Gamal decryption and
then computes m := loggM . Although this is not efficient if m comes from a
large domain, if m is from a small domain—as it will be in our application—
then the receiver can compute loggM efficiently using exhaustive search. The
advantage of this variant scheme is that it is homomorphic with respect to
addition in Zq. That is,

〈gy1 , hy1 ·gm1〉 · 〈gy2 , hy2 ·gm2〉 = 〈gy1+y2 , hy1+y2 ·gm1+m2〉.

Recall that the basic approach to electronic voting using homomorphic en-

544 Introduction to Modern Cryptography

cryption has each voter i encrypt her vote vi ∈ {0, 1} to obtain a ciphertext ci.
Once everyone has voted, the ciphertexts are multiplied to obtain an encryp-

tion of the sum vtotal
def
=
∑
i vi mod q =

∑
i vi. (The value q is, in practice,

large enough so that no wrap-around modulo q occurs.) Since 0 ≤ vtotal ≤ `,
where ` is the total number of voters, an authority with the private key can
efficiently decrypt the final ciphertext and recover vtotal.

A drawback of this approach is that the authority is trusted, both to (cor-
rectly) decrypt the final ciphertext as well as not to decrypt any of the individ-
ual voters’ ciphertexts. (In Section 15.2.3 we assumed the authority could not
see the individual voters’ ciphertexts.) We might instead prefer to distribute
trust among a set of N authorities, such that any set of t authorities is able
to jointly decrypt an agreed-upon ciphertext (this ensures availability even if
some authorities are down or unwilling to help decrypt), but no collection of
t− 1 authorities is able to decrypt any ciphertext on their own (this ensures
privacy as long as fewer than t authorities are corrupted).

At first glance, it may seem that secret sharing solves the problem. If we
share the private key among the N authorities, then no set of t−1 authorities
learns the private key and so they cannot decrypt. On the other hand, any
t authorities can pool their shares, recover the private key, and then decrypt
any desired ciphertext.

A little thought shows that this does not quite work. If the authorities
reconstruct the private key in order to decrypt some ciphertext, then as part
of this process all the authorities learn the private key ! Thus, afterward, any
authority could decrypt any ciphertext of its choice, on its own.

We need instead a modified approach in which the “secret” (namely, the
private key) is never reconstructed in the clear, yet is implicitly reconstructed
only enough to enable decryption of one, agreed-upon ciphertext. We can
achieve this for the specific case of El Gamal encryption in the following way.
Fix a public key pk = 〈G, q, g, h〉, and let x ∈ Zq be the private key, i.e.,
gx = h. Each authority is given a share xi ∈ Zq exactly as in Shamir’s secret-
sharing scheme. That is, a uniform degree-(t− 1) polynomial p with p(0) = x
is chosen, and the ith authority is given xi := p(i). (We assume a trusted
dealer who knows x and securely deletes it once it is shared. It is possible to
eliminate the dealer entirely, but this is beyond our present scope.)

Now, say some t authorities i1, . . . , it wish to jointly decrypt a ciphertext
〈c1, c2〉. To do so, authority ij first publishes the value wj := c

xij

1 . Re-
call from the previous section that there exist publicly computable polynomi-
als {δj(X)} (that depend on the identities of these t authorities) such that

p(X)
def
=
∑t
j=1 δj(X) ·xij . Setting δj

def
= δj(0), we see that there exist publicly

computable values δ1, . . . , δt ∈ Zq for which x = p(0) =
∑t
j=1 δj · xij . Any

authority can then compute

M ′ :=
c2∏t

j=1 w
δj
j

.

Advanced Topics in Public-Key Encryption 545

(They can then each compute loggM , if desired.) To see that this correctly
recovers the message, say c1 = gy and c2 = hy ·M . Then

t∏
j=1

w
δj
j =

t∏
j=1

c
xij

δj
1 = c

∑t
j=1 xij

δj
1 = c

p(0)
1 = cx1 ,

and so

M ′
def
=

c2∏t
j=1 w

δj
j

=
hy ·M
cx1

=
(gx)y ·M

(gy)x
= M.

Note that any set of t − 1 corrupted authorities learns nothing about the
private key x from their shares. Moreover, it is possible to show that they
learn nothing from the decryption process beyond the recovered value M .

Malicious (active) adversaries. Our treatment above assumes that the
authorities decrypting some ciphertext all behave correctly. (If they do not,
it would be easy for any of them to cause an incorrect result by publishing an
arbitrary value wj .) We also assume that voters behave honestly, and encrypt
a vote of either 0 or 1. (Note that a voter could unfairly sway the election by
encrypting a large value or a negative value.) Potential malicious behavior of
this sort can be prevented using techniques beyond the scope of this book.

15.4 The Goldwasser–Micali Encryption Scheme

Before we present the Goldwasser–Micali encryption scheme, we need to
develop a better understanding of quadratic residues. We first explore the
easier case of quadratic residues modulo a prime p, and then look at the
slightly more complicated case of quadratic residues modulo a composite N .

Throughout this section, p and q denote odd primes, and N = pq denotes
a product of two distinct, odd primes.

15.4.1 Quadratic Residues Modulo a Prime

In a group G, an element y ∈ G is a quadratic residue if there exists an
x ∈ G with x2 = y. In this case, we call x a square root of y. An element
that is not a quadratic residue is called a quadratic non-residue. In an abelian
group, the set of quadratic residues forms a subgroup.

In the specific case of Z∗p, we have that y is a quadratic residue if there
exists an x with x2 = y mod p. We begin with an easy observation.

PROPOSITION 15.16 Let p > 2 be prime. Every quadratic residue in
Z∗p has exactly two square roots.

546 Introduction to Modern Cryptography

PROOF This follows from Theorem 9.66, but we give a direct proof here.
Let y ∈ Z∗p be a quadratic residue. Then there exists an x ∈ Z∗p such that
x2 = y mod p. Clearly, (−x)2 = x2 = y mod p. Furthermore, −x 6= x mod p :
if −x = x mod p then 2x = 0 mod p, which implies p | 2x. Since p is prime,
this would mean that either p | 2 (which is impossible since p > 2) or p |x
(which is impossible since 0 < x < p). So, [x mod p] and [−x mod p] are
distinct elements of Z∗p, and y has at least two square roots.

Let x′ ∈ Z∗p be a square root of y. Then x2 = y = (x′)2 mod p, implying
that x2 − (x′)2 = 0 mod p. Factoring the left-hand side we obtain

(x− x′)(x+ x′) = 0 mod p ,

so that (by Proposition 9.3) either p | (x− x′) or p | (x+ x′). In the first case,
x′ = x mod p and in the second case x′ = −x mod p, showing that y indeed
has only [±x mod p] as square roots.

Let sqp : Z∗p → Z∗p be the function sqp(x)
def
= [x2 mod p]. The above shows

that sqp is a two-to-one function when p > 2 is prime. This immediately
implies that exactly half the elements of Z∗p are quadratic residues. We denote
the set of quadratic residues modulo p by QRp, and the set of quadratic
non-residues by QNRp. We have just seen that for p > 2 prime

|QRp| = |QNRp| =
∣∣Z∗p∣∣

2
=
p− 1

2
.

Define Jp(x), the Jacobi symbol of x modulo p, as follows.4 Let p > 2 be
prime, and x ∈ Z∗p. Then

Jp(x)
def
=

{
+1 if x is a quadratic residue modulo p
−1 if x is not a quadratic residue modulo p.

The notation can be extended in the natural way for any x relatively prime

to p by setting Jp(x)
def
= Jp([x mod p]).

Can we characterize the quadratic residues in Z∗p? We begin with the fact
that Z∗p is a cyclic group of order p−1 (see Theorem 9.57). Let g be a generator
of Z∗p. This means that

Z∗p = {g0, g1, g2, . . . , g
p−1
2 −1, g

p−1
2 , g

p−1
2 +1, . . . , gp−2}

(recall that p is odd, so p− 1 is even). Squaring each element in this list and
reducing modulo p− 1 in the exponent (cf. Corollary 9.15) yields a list of all
the quadratic residues in Z∗p:

QRp = {g0, g2, g4, . . . , gp−3, g0, g2, . . . , gp−3}.

4For p prime, Jp(x) is also sometimes called the Legendre symbol of x and denoted by
Lp(x); we have chosen our notation to be consistent with notation introduced later.

Advanced Topics in Public-Key Encryption 547

Each quadratic residue appears twice in this list. Therefore, the quadratic
residues in Z∗p are exactly those elements that can be written as gi with
i ∈ {0, . . . , p− 2} an even integer.

The above characterization leads to a simple way to compute the Jacobi
symbol and thus tell whether an element x ∈ Z∗p is a quadratic residue or not.

PROPOSITION 15.17 Let p > 2 be a prime. Then Jp(x) = x
p−1
2 mod p.

PROOF Let g be an arbitrary generator of Z∗p. If x is a quadratic residue

modulo p, our earlier discussion shows that x = gi for some even integer i.
Writing i = 2j with j an integer we then have

x
p−1
2 =

(
g2j
) p−1

2 = g(p−1)j =
(
gp−1

)j
= 1j = 1 mod p ,

and so x
p−1
2 = +1 = Jp(x) mod p as claimed.

On the other hand, if x is not a quadratic residue then x = gi for some odd
integer i. Writing i = 2j + 1 with j an integer, we have

x
p−1
2 =

(
g2j+1

) p−1
2 =

(
g2j
) p−1

2 · g
p−1
2 = 1 · g

p−1
2 = g

p−1
2 mod p.

Now, (
g

p−1
2

)2

= gp−1 = 1 mod p,

and so g
p−1
2 = ±1 mod p since [±1 mod p] are the two square roots of 1

(cf. Proposition 15.16). Since g is a generator, it has order p − 1 and so

g
p−1
2 6= 1 mod p. It follows that x

p−1
2 = −1 = Jp(x) mod p.

Proposition 15.17 directly gives a polynomial-time algorithm (cf. Algo-
rithm 15.18) for testing whether an element x ∈ Z∗p is a quadratic residue.

ALGORITHM 15.18
Deciding quadratic residuosity modulo a prime

Input: A prime p; an element x ∈ Z∗p
Output: Jp(x) (or, equivalently, whether x is a quadratic residue or
quadratic non-residue)

b :=
[
x

p−1
2 mod p

]
if b = 1 return “quadratic residue”
else return “quadratic non-residue”

We conclude this section by noting a nice multiplicative property of quadratic
residues and non-residues modulo p.

548 Introduction to Modern Cryptography

PROPOSITION 15.19 Let p > 2 be a prime, and x, y ∈ Z∗p. Then

Jp(xy) = Jp(x) · Jp(y).

PROOF Using the previous proposition,

Jp(xy) = (xy)
p−1
2 = x

p−1
2 · y

p−1
2 = Jp(x) · Jp(y) mod p.

Since Jp(xy),Jp(x),Jp(y) = ±1, equality holds over the integers as well.

COROLLARY 15.20 Let p > 2 be prime, and say x, x′ ∈ QRp and
y, y′ ∈ QNRp. Then:

1. [xx′ mod p] ∈ QRp.

2. [yy′ mod p] ∈ QRp.

3. [xy mod p] ∈ QNRp.

15.4.2 Quadratic Residues Modulo a Composite

We now turn our attention to quadratic residues in the group Z∗N , where
N = pq. Characterizing the quadratic residues modulo N is easy if we use
the results of the previous section in conjunction with the Chinese remainder
theorem. Recall that the Chinese remainder theorem says that Z∗N ' Z∗p×Z∗q ,
and we let y ↔ (yp, yq) denote the correspondence guaranteed by the theorem
(i.e., yp = [y mod p] and yq = [y mod q]). The key observation is:

PROPOSITION 15.21 Let N = pq with p, q distinct primes, and y ∈ Z∗N
with y ↔ (yp, yq). Then y is a quadratic residue modulo N if and only if yp
is a quadratic residue modulo p and yq is a quadratic residue modulo q.

PROOF If y is a quadratic residue modulo N then, by definition, there
exists an x ∈ Z∗N such that x2 = y mod N . Let x↔ (xp, xq). Then

(yp, yq)↔ y = x2 ↔ (xp, xq)
2 = ([x2

p mod p], [x2
q mod q]),

where (xp, xq)
2 is simply the square of the element (xp, xq) in the group Z∗p×

Z∗q . We have thus shown that:

yp = x2
p mod p and yq = x2

q mod q (15.4)

and yp, yq are quadratic residues (with respect to the appropriate moduli).

Advanced Topics in Public-Key Encryption 549

Conversely, if y ↔ (yp, yq) and yp, yq are quadratic residues modulo p and q,
respectively, then there exist xp ∈ Z∗p and xq ∈ Z∗q such that Equation (15.4)
holds. Let x ∈ Z∗N be such that x ↔ (xp, xq). Reversing the above steps
shows that x is a square root of y modulo N .

The above proposition characterizes the quadratic residues modulo N . A
careful examination of the proof yields another important observation: each
quadratic residue y ∈ Z∗N has exactly four square roots. To see this, let
y ↔ (yp, yq) be a quadratic residue modulo N and let xp, xq be square roots
of yp and yq modulo p and q, respectively. Then the four square roots of y
are given by the elements in Z∗N corresponding to:

(xp, xq), (−xp, xq), (xp, −xq), (−xp, −xq). (15.5)

Each of these is a square root of y since

(±xp, ±xq)2 =
(

[(±xp)2 mod p], [(±xq)2 mod q]
)

= ([x2
p mod p], [x2

q mod q]) = (yp, yq)↔ y

(where again the notation (·, ·)2 refers to squaring in the group Zp × Zq).
The Chinese remainder theorem guarantees that the four elements in Equa-
tion (15.5) correspond to distinct elements of Z∗N , since xp and −xp are unique
modulo p (and similarly for xq and −xq modulo q).

Example 15.22
Consider Z∗15 (the correspondence given by the Chinese remainder theorem is
tabulated in Example 9.25). Element 4 is a quadratic residue modulo 15 with
square root 2. Since 2↔ (2, 2), the other square roots of 4 are given by

�
(
2, [−2 mod 3]

)
= (2, 1)↔ 7;

�
(
[−2 mod 5], 2

)
= (3, 2)↔ 8; and

�
(
[−2 mod 5], [−2 mod 3]

)
= (3, 1)↔ 13.

One can verify that 72 = 82 = 132 = 4 mod 15. ♦

Let QRN denote the set of quadratic residues modulo N . Since squaring
modulo N is a four-to-one function, we see that exactly 1/4 of the elements
of Z∗N are quadratic residues. Alternately, we could note that since y ∈ Z∗N is
a quadratic residue if and only if yp, yq are quadratic residues, there is a one-
to-one correspondence between QRN and QRp ×QRq. Thus, the fraction of
quadratic residues modulo N is,

|QRN |
|Z∗N |

=
|QRp| · |QRq|

|Z∗N |
=

p−1
2 ·

q−1
2

(p− 1)(q − 1)
=

1

4
,

in agreement with the above.

550 Introduction to Modern Cryptography

FIGURE 15.1: The structure of Z∗p and Z∗N .

In the previous section, we defined the Jacobi symbol Jp(x) for p > 2 prime.
We extend the definition to the case of N a product of distinct, odd primes p
and q as follows. For any x relatively prime to N = pq,

JN (x)
def
= Jp(x) · Jq(x)

= Jp([x mod p]) · Jq([x mod q]).

We define J +1
N as the set of elements in Z∗N having Jacobi symbol +1, and

define J−1
N analogously.

We know from Proposition 15.21 that if x is a quadratic residue modulo N ,
then [x mod p] and [x mod q] are quadratic residues modulo p and q, respec-
tively; that is, Jp(x) = Jq(x) = +1. So JN (x) = +1 and we see that:

If x is a quadratic residue modulo N , then JN (x) = +1.

However, JN (x) = +1 can also occur when Jp(x) = Jq(x) = −1, that is,
when both [x mod p] and [x mod q] are not quadratic residues modulo p and q
(and so x is not a quadratic residue modulo N). This turns out to be useful
for the Goldwasser–Micali encryption scheme, and we therefore introduce the
notation QNR+1

N for the set of elements of this type. That is,

QNR+1
N

def
=

{
x ∈ Z∗N

∣∣∣ x is not a quadratic residue modulo N ,
but JN (x) = +1

}
.

It is now easy to prove the following (see Figure 15.1):

PROPOSITION 15.23 Let N = pq with p, q distinct, odd primes. Then:

1. Exactly half the elements of Z∗N are in J +1
N .

2. QRN is contained in J +1
N .

3. Exactly half the elements of J +1
N are in QRN (the other half are in

QNR+1
N).

Advanced Topics in Public-Key Encryption 551

PROOF We know that JN (x) = +1 if either Jp(x) = Jq(x) = +1 or
Jp(x) = Jq(x) = −1. We also know (from the previous section) that exactly
half the elements of Z∗p have Jacobi symbol +1, and half have Jacobi symbol
−1 (and similarly for Z∗q). Defining J +1

p , J−1
p , J +1

q , and J−1
q in the natural

way, we thus have∣∣J +1
N

∣∣ = |J +1
p × J +1

q |+ |J−1
p × J−1

q |
= |J +1

p | · |J +1
q |+ |J−1

p | · |J−1
q |

=
(p− 1)

2

(q − 1)

2
+

(p− 1)

2

(q − 1)

2
=
φ(N)

2
.

So
∣∣J +1
N

∣∣ = |Z∗N | /2, proving that half the elements of Z∗N are in J +1
N .

We have noted earlier that all quadratic residues modulo N have Jacobi
symbol +1, showing that QRN ⊆ J +1

N .

Since x ∈ QRN if and only if Jp(x) = Jq(x) = +1, we have:

|QRN | = |J +1
p × J +1

q | =
(p− 1)

2

(q − 1)

2
=
φ(N)

4
,

and so |QRN | =
∣∣J +1
N

∣∣ /2. Since QRN is a subset of J +1
N , this proves that

half the elements of J +1
N are in QRN .

The next two results are analogues of Proposition 15.19 and Corollary 15.20.

PROPOSITION 15.24 Let N = pq be a product of distinct, odd primes,
and x, y ∈ Z∗N . Then JN (xy) = JN (x) · JN (y).

PROOF Using the definition of JN (·) and Proposition 15.19:

JN (xy) = Jp(xy) · Jq(xy) = Jp(x) · Jp(y) · Jq(x) · Jq(y)

= Jp(x) · Jq(x) · Jp(y) · Jq(y) = JN (x) · JN (y).

COROLLARY 15.25 Let N = pq be a product of distinct, odd primes,
and say x, x′ ∈ QRN and y, y′ ∈ QNR+1

N . Then:

1. [xx′ mod N] ∈ QRN .

2. [yy′ mod N] ∈ QRN .

3. [xy mod N] ∈ QNR+1
N .

552 Introduction to Modern Cryptography

PROOF We prove the final claim; proofs of the others are similar. Since
x ∈ QRN , we have Jp(x) = Jq(x) = +1. Since y ∈ QNR+1

N , we have
Jp(y) = Jq(y) = −1. Using Proposition 15.19,

Jp(xy) = Jp(x) · Jp(y) = −1 and Jq(xy) = Jq(x) · Jq(y) = −1,

and so JN (xy) = +1. But xy is not a quadratic residue modulo N , since
Jp(xy) = −1 and so [xy mod p] is not a quadratic residue modulo p. We
conclude that xy ∈ QNR+1

N .

In contrast to Corollary 15.20, it is not true that y, y′ ∈ QNRN implies
yy′ ∈ QRN . (Instead, as indicated in the corollary, this is only guaranteed
if y, y′ ∈ QNR+1

N .) For example, we could have Jp(y) = +1, Jq(y) = −1
and Jp(y′) = −1, Jq(y′) = +1, so Jp(yy′) = Jq(yy′) = −1 and yy′ is not a
quadratic residue even though JN (yy′) = +1.

15.4.3 The Quadratic Residuosity Assumption

In Section 15.4.1, we showed an efficient algorithm for deciding whether
an input x is a quadratic residue modulo a prime p. Can we adapt the
algorithm to work modulo a composite number N? Proposition 15.21 gives
an easy solution to this problem provided the factorization of N is known. See
Algorithm 15.26.

ALGORITHM 15.26
Deciding quadratic residuosity modulo a composite
of known factorization

Input: Composite N = pq; the factors p and q; element x ∈ Z∗N
Output: A decision as to whether x ∈ QRN
compute Jp(x) and Jq(x)
if Jp(x) = Jq(x) = +1 return “quadratic residue”
else return “quadratic non-residue”

(As always, we assume the factors of N are distinct odd primes.) A simple
modification of the above algorithm allows for computing JN (x) when the
factorization of N is known.

When the factorization of N is unknown, however, there is no known
polynomial-time algorithm for deciding whether a given x is a quadratic
residue modulo N or not. Somewhat surprisingly, a polynomial-time algo-
rithm is known for computing JN (x) without the factorization of N . (Al-
though the algorithm itself is not that complicated, its proof of correctness
is beyond the scope of this book and we therefore do not present the algo-
rithm at all. The interested reader can refer to the references listed at the

Advanced Topics in Public-Key Encryption 553

end of this chapter.) This leads to a partial test of quadratic residuosity: if,
for a given input x, it holds that JN (x) = −1, then x cannot possibly be
a quadratic residue. (See Proposition 15.23.) This test says nothing when
JN (x) = +1, and there is no known polynomial-time algorithm for deciding
quadratic residuosity in that case (that does better than random guessing).

We now formalize the assumption that this problem is hard. Let GenModulus
be a polynomial-time algorithm that, on input 1n, outputs (N, p, q) where
N = pq, and p and q are n-bit primes except with probability negligible in n.

DEFINITION 15.27 We say deciding quadratic residuosity is hard relative
to GenModulus if for all probabilistic polynomial-time algorithms D there exists
a negligible function negl such that∣∣∣Pr[D(N, qr) = 1]− Pr[D(N, qnr) = 1]

∣∣∣ ≤ negl(n),

where in each case the probabilities are taken over the experiment in which
GenModulus(1n) is run to give (N, p, q), qr is chosen uniformly from QRN ,
and qnr is chosen uniformly from QNR+1

N .

It is crucial in the above that qnr is chosen from QNR+1
N rather than

QNRN ; if qnr were chosen from QNRN then with probability 2/3 it would be
the case that JN (x) = −1 and so distinguishing qnr from a uniform quadratic
residue would be easy. (Recall that JN (x) can be computed efficiently even
without the factorization of N .)

The quadratic residuosity assumption is simply the assumption that there
exists a GenModulus relative to which deciding quadratic residuosity is hard.
It is easy to see that if deciding quadratic residuosity is hard relative to
GenModulus, then factoring must be hard relative to GenModulus as well.

15.4.4 The Goldwasser–Micali Encryption Scheme

The preceding section immediately suggests a public-key encryption scheme
for single-bit messages based on the quadratic residuosity assumption:

� The public key is a modulus N , and the private key is its factorization.

� To encrypt a ‘0,’ send a uniform quadratic residue; to encrypt a ‘1,’ send
a uniform quadratic non-residue with Jacobi symbol +1.

� The receiver can decrypt a ciphertext c with its private key by using the
factorization of N to decide whether c is a quadratic residue or not.

CPA-security of this scheme follows almost trivially from the hardness of the
quadratic residuosity problem as formalized in Definition 15.27.

One thing missing from the above description is a specification of how the
sender, who does not know the factorization of N , can choose a uniform

554 Introduction to Modern Cryptography

element of QRN (to encrypt a 0) or a uniform element of QNR+1
N (to encrypt

a 1). The first of these is easy, while the second requires some ingenuity.

Choosing a uniform quadratic residue. Choosing a uniform element
y ∈ QRN is easy: simply pick a uniform x ∈ Z∗N (see Appendix B.2.5) and set
y := x2 mod N . Clearly y ∈ QRN . The fact that y is uniformly distributed
in QRN follows from the facts that squaring modulo N is a 4-to-1 function
(see Section 15.4.2) and that x is chosen uniformly from Z∗N . In more detail,
fix any ŷ ∈ QRN and let us compute the probability that y = ŷ after the
above procedure. Denote the four square roots of ŷ by ±x̂,±x̂′. Then:

Pr[y = ŷ] = Pr[x is a square root of ŷ]

= Pr [x ∈ {±x̂,±x̂′}]

=
4

|Z∗N |
=

1

|QRN |
.

Since the above holds for every ŷ ∈ QRN , we see that y is distributed uni-
formly in QRN .

Choosing a uniform element of QNR+1
N . In general, it is not known how

to choose a uniform element of QNR+1
N if the factorization of N is unknown.

What saves us in the present context is that the receiver can help by including
certain information in the public key. Specifically, we modify the scheme so
that the receiver additionally chooses a uniform z ∈ QNR+1

N and includes z
as part of its public key. (This is easy for the receiver to do since it knows
the factorization of N ; see Exercise 15.7.) The sender can choose a uniform
element y ∈ QNR+1

N by choosing a uniform x ∈ Z∗N (as above) and setting
y := [z · x2 mod N]. It follows from Corollary 15.25 that y ∈ QNR+1

N . We
leave it as an exercise to show that y is uniformly distributed in QNR+1

N ; we
do not use this fact directly in the proof of security given below.

We give a complete description of the Goldwasser–Micali encryption scheme,
implementing the above ideas, in Construction 15.28.

THEOREM 15.29 If the quadratic residuosity problem is hard relative to
GenModulus, then the Goldwasser–Micali encryption scheme is CPA-secure.

PROOF Let Π denote the Goldwasser–Micali encryption scheme. We
prove that Π has indistinguishable encryptions in the presence of an eaves-
dropper; by Theorem 12.6 this implies that it is CPA-secure.

Let A be an arbitrary probabilistic polynomial-time adversary. Consider
the following ppt adversary D that attempts to solve the quadratic residuosity
problem relative to GenModulus:

Algorithm D:
The algorithm is given N and z as input, and its goal is to deter-
mine if z ∈ QRN or z ∈ QNR+1

N .

Advanced Topics in Public-Key Encryption 555

CONSTRUCTION 15.28

Let GenModulus be as usual. Construct a public-key encryption scheme
as follows:

� Gen: on input 1n, run GenModulus(1n) to obtain (N, p, q), and
choose a uniform z ∈ QNR+1

N . The public key is pk = 〈N, z〉 and
the private key is sk = 〈p, q〉.

� Enc: on input a public key pk = 〈N, z〉 and a message m ∈ {0, 1},
choose a uniform x ∈ Z∗N and output the ciphertext

c := [zm · x2 mod N].

� Dec: on input a private key sk and a ciphertext c, determine
whether c is a quadratic residue modulo N using, e.g., Algo-
rithm 15.26. If yes, output 0; otherwise, output 1.

The Goldwasser–Micali encryption scheme.

� Set pk = 〈N, z〉 and run A(pk) to obtain two single-bit mes-
sages m0,m1.

� Choose a uniform bit b and a uniform x ∈ Z∗N , and then set
c := [zmb · x2 mod N].

� Give the ciphertext c to A, who in turn outputs a bit b′. If
b′ = b, output 1; otherwise, output 0.

Let us analyze the behavior of D. There are two cases to consider:

Case 1: Say the input to D was generated by running GenModulus(1n) to
obtain (N, p, q) and then choosing a uniform z ∈ QNR+1

N . Then D runs A on
a public key constructed exactly as in Π, and we see that in this case the view
of A when run as a subroutine by D is distributed identically to A’s view in
experiment PubKeav

A,Π(n). Since D outputs 1 exactly when the output b′ of A
is equal to b, we have

Pr[D(N, qnr) = 1] = Pr[PubKeav
A,Π(n) = 1],

where qnr represents a uniform element of QNR+1
N as in Definition 15.27.

Case 2: Say the input to D was generated by running GenModulus(1n) to
obtain (N, p, q) and then choosing a uniform z ∈ QRN . We claim that the
view of A in this case is independent of the bit b. To see this, note that the
ciphertext c given to A is a uniform quadratic residue regardless of whether
a 0 or a 1 is encrypted:

� When a 0 is encrypted, c = [x2 mod N] for a uniform x ∈ Z∗N , and so c
is a uniform quadratic residue.

� When a 1 is encrypted, c = [z · x2 mod N] for a uniform x ∈ Z∗N . Let

x̂
def
= [x2 mod N], and note that x̂ is a uniformly distributed element

556 Introduction to Modern Cryptography

of the group QRN . Since z ∈ QRN , we can apply Lemma 12.15 to
conclude that c is uniformly distributed in QRN as well.

Since A’s view is independent of b, the probability that b′ = b in this case is
exactly 1

2 . That is,

Pr[D(N, qr) = 1] =
1

2
,

where qr represents a uniform element of QRN as in Definition 15.27.
Thus,∣∣∣Pr[D(N, qr) = 1]− Pr[D(N, qnr) = 1]

∣∣∣ =
∣∣Pr[PubKeav

A,Π(n) = 1]− 1
2

∣∣ .
By the assumption that the quadratic residuosity problem is hard relative to
GenModulus, there is a negligible function negl such that∣∣ε(n)− 1

2

∣∣ ≤ negl(n);

thus, ε(n) ≤ 1
2 + negl(n). This completes the proof.

15.5 The Rabin Encryption Scheme

As mentioned at the beginning of this chapter, the Rabin encryption scheme
is attractive because its security is equivalent to the assumption that factoring
is hard. An analogous result is not known for RSA-based encryption, and the
RSA problem may potentially be easier than factoring. (The same is true
of the Goldwasser–Micali encryption scheme, and it is possible that deciding
quadratic residuosity modulo N is easier than factoring N .)

Interestingly, the Rabin encryption scheme is (superficially, at least) very
similar to the RSA encryption scheme yet has the advantage of being based
on a potentially weaker assumption. The fact that RSA is more widely used
than the former seems to be due more to historical factors than technical ones;
we discuss this further at the end of this section.

We begin with some preliminaries about computing modular square roots.
We then introduce a trapdoor permutation that can be based directly on
the assumption that factoring is hard. The Rabin encryption scheme (or, at
least, one instantiation of it) is then obtained by applying the results from
Section 15.1. Throughout this section, we continue to let p and q denote odd
primes, and let N = pq denote a product of two distinct, odd primes.

15.5.1 Computing Modular Square Roots

The Rabin encryption scheme requires the receiver to compute modular
square roots, and so in this section we explore the algorithmic complexity of

Advanced Topics in Public-Key Encryption 557

this problem. We first show an efficient algorithm for computing square roots
modulo a prime p, and then extend this algorithm to enable computation of
square roots modulo a composite N of known factorization. The reader willing
to accept the existence of these algorithms on faith can skip to the following
section, where we show that computing square roots modulo a composite N
with unknown factorization is equivalent to factoring N .

Let p be an odd prime. Computing square roots modulo p is relatively
simple when p = 3 mod 4, but much more involved when p = 1 mod 4. (The
easier case is all we need for the Rabin encryption scheme as presented in
Section 15.5.3; we include the second case for completeness.) In both cases,
we show how to compute one of the square roots of a quadratic residue a ∈ Z∗p.
Note that if x is one of the square roots of a, then [−x mod p] is the other.

We tackle the easier case first. Say p = 3 mod 4, meaning we can write
p = 4i + 3 for some integer i. Since a ∈ Z∗p is a quadratic residue, we have

Jp(a) = 1 = a
p−1
2 mod p (see Proposition 15.17). Multiplying both sides by

a we obtain:
a = a

p−1
2 +1 = a2i+2 =

(
ai+1

)2
mod p ,

and so ai+1 = a
p+1
4 mod p is a square root of a. That is, we obtain a square

root of a modulo p by simply computing x := [a
p+1
4 mod p].

It is crucial above that (p+ 1)/2 is even because this ensures that (p+ 1)/4

is an integer (this is necessary in order for a
p+1
4 mod p to be well-defined;

recall that the exponent must be an integer). This approach does not succeed
when p = 1 mod 4, in which case p+ 1 is an integer that is not divisible by 4.

When p = 1 mod 4 we proceed slightly differently. Motivated by the above
approach, we might hope to find an odd integer r for which it holds that

ar = 1 mod p . Then, as above, ar+1 = a mod p and a
r+1
2 mod p would be a

square root of a with (r+ 1)/2 an integer. Although we will not be able to do
this, we can do something just as good: we will find an odd integer r along
with an element b ∈ Z∗p and an even integer r′ such that

ar · br
′

= 1 mod p.

Then ar+1 · br′ = a mod p and a
r+1
2 · b r′

2 mod p is a square root of a (with the
exponents (r + 1)/2 and r′/2 being integers).

We now describe the general approach to finding r, b, and r′ with the stated
properties. Let p−1

2 = 2` ·m where `,m are integers with ` ≥ 1 and m odd.5

Since a is a quadratic residue, we know that

a2`m = a
p−1
2 = 1 mod p. (15.6)

This means that a2`m/2 = a2`−1m mod p is a square root of 1. The square roots

of 1 modulo p are ±1 mod p, so a2`−1m = ±1 mod p. If a2`−1m = 1 mod p, we

5The integers ` and m can be computed easily by taking out factors of 2 from (p− 1)/2.

558 Introduction to Modern Cryptography

are in the same situation as in Equation (15.6) except that the exponent of a is
now divisible by a smaller power of 2. This is progress in the right direction:
if we can get to the point where the exponent of a is not divisible by any
power of 2 (as would be the case here if ` = 1), then the exponent of a is odd
and we can compute a square root as discussed earlier. We give an example,

and discuss in a moment how to deal with the case when a2`−1m = −1 mod p.

Example 15.30
Take p = 29 and a = 7. Since 7 is a quadratic residue modulo 29, we have
714 mod 29 = 1 and we know that 77 mod 29 is a square root of 1. In fact,

77 = 1 mod 29,

and the exponent 7 is odd. So 7(7+1)/2 = 74 = 23 mod 29 is a square root of 7
modulo 29. ♦

To summarize the algorithm so far: we begin with a2`m = 1 mod p and we
pull out factors of 2 from the exponent until one of two things happen: either

am = 1 mod p, or a2`′m = −1 mod p for some `′ < `. In the first case, since m
is odd we can immediately compute a square root of a as in Example 15.30.
In the second case, we will “restore” the +1 on the right-hand side of the
equation by multiplying each side of the equation by −1 mod p. However,
as motivated at the beginning of this discussion, we want to achieve this by
multiplying the left-hand side of the equation by some element b raised to an
even power. If we have available a quadratic non-residue b ∈ Z∗p, this is easy:

since b2
`m = b

p−1
2 = −1 mod p, we have

a2`′m · b2
`m = (−1)(−1) = +1 mod p.

With this we can proceed as before, taking a square root of the left-hand side
to reduce the largest power of 2 dividing the exponent of a, and multiplying

by b2
`m (as needed) so the right-hand side is always +1. Observe that the

exponent of b is always divisible by a larger power of 2 than the exponent of a
(and so we can indeed take square roots by dividing by 2 in both exponents).
We continue performing these steps until the exponent of a is odd, and can
then compute a square root of a as described earlier. Pseudocode for this
algorithm, which gives another way of viewing what is going on, is given below
in Algorithm 15.31. It can be verified that the algorithm runs in polynomial
time given a quadratic non-residue b since the number of iterations of the
inner loop is ` = O(log p).

One point we have not yet addressed is how to find b in the first place.
In fact, no deterministic polynomial-time algorithm for finding a quadratic
non-residue modulo p is known. Fortunately, it is easy to find a quadratic
non-residue probabilistically: simply choose uniform elements of Z∗p until a

Advanced Topics in Public-Key Encryption 559

ALGORITHM 15.31
Computing square roots modulo a prime

Input: Prime p; quadratic residue a ∈ Z∗p
Output: A square root of a

case p = 3 mod 4:

return [a
p+1
4 mod p]

case p = 1 mod 4:
let b be a quadratic non-residue modulo p
compute ` ≥ 1 and odd m with 2` ·m = p−1

2

r := 2` ·m, r′ := 0
for i = ` to 1 {
// maintain the invariant ar · br

′
= 1 mod p

r := r/2, r′ := r′/2

if ar · br
′

= −1 mod p
r′ := r′ + 2` ·m

}
// now r = m, r′ is even, and ar · br

′
= 1 mod p

return
[
a

r+1
2 · b

r′
2 mod p

]

quadratic non-residue is found. This works because exactly half the elements
of Z∗p are quadratic non-residues, and because a polynomial-time algorithm
for deciding quadratic residuosity modulo a prime is known (see Section 15.4.1
for proofs of both these statements). This means that the algorithm we have
shown is actually randomized when p = 1 mod 4; a deterministic polynomial-
time algorithm for computing square roots in this case is not known.

Example 15.32
Here we consider the “worst case,” when taking a square root always gives −1.
Let a ∈ Z∗p be the element whose square root we are trying to compute; let

b ∈ Z∗p be a quadratic non-residue; and let p−1
2 = 23 ·m where m is odd.

In the first step, we have a23m = 1 mod p. Since a23m =
(
a22m

)2

and the

square roots of 1 are ±1, this means that a22m = ±1 mod p; assuming the

worst case, a22m = −1 mod p. So, we multiply by b
p−1
2 = b2

3m = −1 mod p
to obtain

a22m · b2
3m = 1 mod p.

In the second step, we observe that a2m · b22m is a square root of 1; again
assuming the worst case, we thus have a2m · b22m = −1 mod p. Multiplying
by b2

3m to “correct” this gives

a2m · b2
2m · b2

3m = 1 mod p.

In the third step, taking square roots and assuming the worst case (as

560 Introduction to Modern Cryptography

above) we obtain am · b2m · b22m = −1 mod p; multiplying by the “correction

factor” b2
3m we get

am · b2m · b2
2m · b2

3m = 1 mod p.

We are now where we want to be. To conclude the algorithm, multiply both
sides by a to obtain

am+1 · b2m+22m+23m = a mod p.

Since m is odd, (m + 1)/2 is an integer and a
m+1

2 · bm+2m+22m mod p is a
square root of a. ♦

Example 15.33
Here we work out a concrete example. Let p = 17, a = 2, and b = 3. Note
that here (p− 1)/2 = 23 and m = 1.

We begin with 223

= 1 mod 17. So 222

should be equal to ±1 mod 17; by
calculation, 222

= −1 mod 17. Multiplying by 323

gives 222 · 323

= 1 mod 17.
Continuing, we know that 22 ·322

is a square root of 1 and so must be equal
to ±1 mod 17; calculation gives 22 · 322

= 1 mod 17. So no correction term is
needed here.

Halving the exponents again we find that 2 · 32 = 1 mod 17. We are now
almost done: multiplying both sides by 2 gives 22 · 32 = 2 mod 17, and so
2 · 3 = 6 mod 17 is a square root of 2. ♦

Computing Square Roots Modulo N

It is not hard to see that the algorithm we have shown for computing square
roots modulo a prime extends easily to the case of computing square roots
modulo a composite N = pq of known factorization. Specifically, let a ∈ Z∗N
be a quadratic residue with a↔ (ap, aq) via the Chinese remainder theorem.
Computing the square roots xp, xq of ap, aq modulo p and q, respectively,
gives a square root (xp, xq) of a (see Section 15.4.2). Given xp and xq, the
representation x corresponding to (xp, xq) can be recovered as discussed in
Section 9.1.5. That is, to compute a square root of amodulo an integerN = pq
of known factorization:

� Compute ap := [a mod p] and aq := [a mod q].

� Using Algorithm 15.31, compute a square root xp of ap modulo p and a
square root xq of aq modulo q.

� Convert from the representation (xp, xq) ∈ Z∗p × Z∗q to x ∈ Z∗N with
x↔ (xp, xq). Output x, which is a square root of a modulo N .

It is easy to modify the algorithm so that it returns all four square roots of a.

Advanced Topics in Public-Key Encryption 561

15.5.2 A Trapdoor Permutation Based on Factoring

We have seen that computing square roots modulo N can be carried out
in polynomial time if the factorization of N is known. We show here that, in
contrast, computing square roots modulo a composite N of unknown factor-
ization is as hard as factoring N .

More formally, let GenModulus be a polynomial-time algorithm that, on
input 1n, outputs (N, p, q) where N = pq and p and q are n-bit primes except
with probability negligible in n. Consider the following experiment for a given
algorithm A and parameter n:

The square-root computation experiment SQRA,GenModulus(n):

1. Run GenModulus(1n) to obtain output N, p, q.

2. Choose a uniform y ∈ QRN .

3. A is given (N, y), and outputs x ∈ Z∗N .

4. The output of the experiment is defined to be 1 if x2 = y mod N ,
and 0 otherwise.

DEFINITION 15.34 We say that computing square roots is hard relative to
GenModulus if for all probabilistic polynomial-time algorithms A there exists
a negligible function negl such that

Pr[SQRA,GenModulus(n) = 1] ≤ negl(n).

It is easy to see that if computing square roots is hard relative to GenModulus
then factoring must be hard relative to GenModulus too: if moduli N output
by GenModulus could be factored easily, then it would be easy to compute
square roots modulo N by first factoring N and then applying the algorithm
discussed in the previous section. Our goal now is to show the converse: that
if factoring is hard relative to GenModulus then so is the problem of computing
square roots. We emphasize again that an analogous result is not known for
the RSA problem or the problem of deciding quadratic residuosity.

The key is the following lemma, which says that two “unrelated” square
roots of any element in Z∗N can be used to factor N .

LEMMA 15.35 Let N = pq with p, q distinct, odd primes. Given x, x̂
such that x2 = y = x̂2 mod N but x 6= ±x̂ mod N , it is possible to factor N
in time polynomial in ‖N‖.

PROOF We claim that either gcd(N, x + x̂) or gcd(N, x − x̂) is equal to
one of the prime factors of N .6 Since gcd computations can be carried out in
polynomial time (see Appendix B.1.2), this proves the lemma.

6In fact, both of these are equal to one of the prime factors of N .

562 Introduction to Modern Cryptography

If x2 = x̂2 mod N then

0 = x2 − x̂2 = (x− x̂) · (x+ x̂) mod N,

and so N | (x − x̂)(x + x̂). Then p | (x − x̂)(x + x̂) and so p divides one of
these terms. Say p | (x + x̂) (the proof proceeds similarly if p | (x − x̂)). If
q | (x+ x̂) then N | (x+ x̂), but this cannot be the case since x 6= −x̂ mod N .
So q 6 | (x+ x̂) and gcd(N, x+ x̂) = p.

An alternative way of proving the above is to look at what happens in the
Chinese remaindering representation. Say x ↔ (xp, xq). Then, because x
and x̂ are square roots of the same value y, we know that x̂ corresponds to
either (−xp, xq) or (xp, −xq). (It cannot correspond to (xp, xq) or (−xp, −xq)
since the first corresponds to x while the second corresponds to [−x mod N],
and both possibilities are ruled out by the assumption of the lemma.) Say
x̂↔ (−xp, xq). Then

[x+ x̂ mod N]↔ (xp, xq) + (−xp, xq) = (0, [2xq mod q]),

and we see that x + x̂ = 0 mod p while x + x̂ 6= 0 mod q. It follows that
gcd(N, x+ x̂) = p, a factor of N .

We can now prove the main result of this section.

THEOREM 15.36 If factoring is hard relative to GenModulus, then com-
puting square roots is hard relative to GenModulus.

PROOF Let A be a probabilistic polynomial-time algorithm computing
square roots (as in Definition 15.34). Consider the following probabilistic
polynomial-time algorithm Afact for factoring moduli output by GenModulus:

Algorithm Afact:
The algorithm is given a modulus N as input.

� Choose a uniform x ∈ Z∗N and compute y := [x2 mod N].

� Run A(N, y) to obtain output x̂.

� If x̂2 = y mod N and x̂ 6= ±x mod N , then factor N using
Lemma 15.35.

By Lemma 15.35, we know that Afact succeeds in factoring N exactly when
x̂ 6= ±x mod N and x̂2 = y mod N . That is,

Pr[FactorAfact,GenModulus(n) = 1]

= Pr
[
x̂ 6= ±x mod N ∧ x̂2 = y mod N

]
= Pr

[
x̂ 6= ±x mod N

∣∣ x̂2 = y mod N
]
· Pr

[
x̂2 = y mod N

]
, (15.7)

Advanced Topics in Public-Key Encryption 563

where the above probabilities all refer to experiment FactorAfact,GenModulus(n)
(see Section 9.2.3 for a description of this experiment). In the experiment, the
modulus N given as input to Afact is generated by GenModulus(1n), and y is
a uniform quadratic residue modulo N since x was chosen uniformly from Z∗N
(see Section 15.4.4). So the view of A when run as a subroutine by Afact is
distributed exactly as A’s view in experiment SQRA,GenModulus(n). Therefore,

Pr
[
x̂2 = y mod N

]
= Pr

[
SQRA,GenModulus(n) = 1

]
. (15.8)

Conditioned on the value of the quadratic residue y used in experiment
FactorAfact,GenModulus(n), the value x is equally likely to be any of the four
possible square roots of y. This means that from the point of view of algorithm
A (being run as a subroutine by Afact), x is equally likely to be each of the
four square roots of y. This in turn means that, conditioned on A outputting
some square root x̂ of y, the probability that x̂ = ±x mod N is exactly 1/2.
(We stress that we do not make any assumption about how x̂ is distributed
among the square roots of y, and in particular are not assuming here that A
outputs a uniform square root of y. Rather we are using the fact that x is
uniformly distributed among the square roots of y.) That is,

Pr
[
x̂ 6= ±x mod N

∣∣ x̂2 = y mod N
]

=
1

2
. (15.9)

Combining Equations (15.7)–(15.9), we see that

Pr [FactorAfact,GenModulus(n) = 1] =
1

2
· Pr

[
SQRA,GenModulus(n) = 1

]
.

Since factoring is hard relative to GenModulus, there is a negligible function
negl such that

Pr[FactorAfact,GenModulus(n) = 1] ≤ negl(n),

which implies Pr
[
SQRA,GenModulus(n) = 1

]
≤ 2·negl(n). Since A was arbitrary,

this completes the proof.

The previous theorem leads directly to a family of one-way functions (see
Definition 9.76) based on any GenModulus relative to which factoring is hard:

� Algorithm Gen, on input 1n, runs GenModulus(1n) to obtain (N, p, q)
and outputs I = N . The domain DI is Z∗N and the range RI is QRN .

� Algorithm Samp, on input N , chooses a uniform element x ∈ Z∗N .

� Algorithm f , on input N and x ∈ Z∗N , outputs [x2 mod N].

The preceding theorem shows that this family is one-way if factoring is hard
relative to GenModulus.

564 Introduction to Modern Cryptography

We can turn this into a family of one-way permutations by using moduli
N of a special form and letting DI be a subset of Z∗N . (See Exercise 15.20
for another way to make this a permutation.) Call N = pq a Blum integer
if p and q are distinct primes with p = q = 3 mod 4. The key to building a
permutation is the following proposition.

PROPOSITION 15.37 Let N be a Blum integer. Then every quadratic
residue modulo N has exactly one square root that is also a quadratic residue.

PROOF Say N = pq with p = q = 3 mod 4. Using Proposition 15.17,
we see that −1 is not a quadratic residue modulo p or q. This is because for
p = 3 mod 4 it holds that p = 4i+ 3 for some i and so

(−1)
p−1
2 = (−1)2i+1 = −1 mod p

(because 2i+1 is odd). Now let y ↔ (yp, yq) be an arbitrary quadratic residue
modulo N with the four square roots

(xp, xq), (−xp, xq), (xp, −xq), (−xp, −xq).

We claim that exactly one of these is a quadratic residue modulo N . To see
this, assume Jp(xp) = +1 and Jq(xq) = −1 (the proof proceeds similarly in
any other case). Using Proposition 15.19, we have

Jq(−xq) = Jq(−1) · Jq(xq) = +1 ,

and so (xp,−xq) corresponds to a quadratic residue modulo N (using Propo-
sition 15.21). Similarly, Jp(−xp) = −1 and so none of the other square roots
of y are quadratic residues modulo N .

Expressed differently, the above proposition says that when N is a Blum
integer, the function fN : QRN → QRN given by fN (x) = [x2 mod N] is a
permutation over QRN . Modifying the sampling algorithm Samp above to
choose a uniform x ∈ QRN (which, as we have already seen, can be done
easily by choosing uniform r ∈ Z∗N and setting x := [r2 mod N]) gives a fam-
ily of one-way permutations. Finally, because square roots modulo N can
be computed in polynomial time given the factorization of N , a straight-
forward modification yields a family of trapdoor permutations based on any
GenModulus relative to which factoring is hard. This is sometimes called the
Rabin family of trapdoor permutations. In summary:

THEOREM 15.38 Let GenModulus be an algorithm that, on input 1n,
outputs (N, p, q) where N = pq and p and q are distinct primes (except possibly
with negligible probability) with p = q = 3 mod 4. If factoring is hard relative
to GenModulus, then there exists a family of trapdoor permutations.

Advanced Topics in Public-Key Encryption 565

15.5.3 The Rabin Encryption Scheme

We can apply the results of Section 15.1.2 to the Rabin trapdoor permu-
tation to obtain a public-key encryption scheme whose security is based on
factoring. To do this, we first need to identify a hard-core predicate for this
trapdoor permutation. Although we could appeal to Theorem 15.3, which
states that a suitable hard-core predicate always exists, it turns out that the
least significant bit lsb is a hard-core predicate for the Rabin trapdoor per-
mutation just as it is for the case of RSA (see Section 12.5.3). Using this as
our hard-core predicate, we obtain the scheme of Construction 15.39.

CONSTRUCTION 15.39

Let GenModulus be a polynomial-time algorithm that, on input 1n, out-
puts (N, p, q) where N = pq and p and q are n-bit primes (except with
probability negligible in n) with p = q = 3 mod 4. Construct a public-
key encryption scheme as follows:

� Gen: on input 1n run GenModulus(1n) to obtain (N, p, q). The
public key is N , and the private key is 〈p, q〉.

� Enc: on input a public-key N and message m ∈ {0, 1}, choose
a uniform x ∈ QRN subject to the constraint that lsb(x) = m.
Output the ciphertext c := [x2 mod N].

� Dec: on input a private key 〈p, q〉 and a ciphertext c, compute the
unique x ∈ QRN such that x2 = c mod N , and output lsb(x).

The Rabin encryption scheme.

Theorems 15.5 and 15.38 imply the following result.

THEOREM 15.40 If factoring is hard relative to GenModulus, then Con-
struction 15.39 is CPA-secure.

Rabin Encryption vs. RSA Encryption

It is worthwhile to remark on the similarities and differences between the
Rabin and RSA cryptosystems. (The discussion here applies to any crypto-
graphic construction—not necessarily a public-key encryption scheme—based
on the Rabin or RSA trapdoor permutations.)

The RSA and Rabin trapdoor permutations appear quite similar, with
squaring in the case of Rabin corresponding to taking e = 2 in the case
of RSA. (Of course, 2 is not relatively prime to φ(N) and so Rabin is not
a special case of RSA.) In terms of the security offered by each construc-
tion, hardness of computing modular square roots is equivalent to hardness
of factoring, whereas hardness of solving the RSA problem is not known to

566 Introduction to Modern Cryptography

be implied by the hardness of factoring. The Rabin trapdoor permutation is
thus based on a potentially weaker assumption: it is theoretically possible that
someone might develop an efficient algorithm for solving the RSA problem,
yet computing square roots will remain hard. Or, someone may develop an al-
gorithm that solves the RSA problem faster than known factoring algorithms.
Lemma 15.35 ensures, however, that computing square roots modulo N can
never be much faster than the best available algorithm for factoring N .

In terms of their efficiency, the RSA and Rabin permutations are essentially
the same. Actually, if a large exponent e is used in the case of RSA then
computing eth powers (as in RSA) is slightly slower than squaring (as in
Rabin). On the other hand, a bit more care is required when working with
the Rabin permutation since it is only a permutation over a subset of Z∗N , in
contrast to RSA, which gives a permutation over all of Z∗N .

A “plain Rabin” encryption scheme, constructed in a manner analogous to
plain RSA encryption, is vulnerable to a chosen-ciphertext attack that enables
an adversary to learn the entire private key (see Exercise 15.18). Although
plain RSA is not CCA-secure either, known chosen-ciphertext attacks on plain
RSA are less damaging since they recover the message but not the private
key. Perhaps the existence of such an attack on “plain Rabin” influenced
cryptographers, early on, to reject the use of Rabin encryption entirely.

In summary, the RSA permutation is much more widely used in practice
than the Rabin permutation, but in light of the above this appears to be due
more to historical accident than to any compelling technical justification.

References and Additional Reading

The existence of public-key encryption based on arbitrary trapdoor permu-
tations was shown by Yao [205], and the efficiency improvement discussed at
the end of Section 15.1.2 is due to Blum and Goldwasser [40].

Childs [51] and Shoup [183] provide further coverage of the (computational)
number theory used in this chapter. A good description of the algorithm for
computing the Jacobi symbol modulo a composite of unknown factorization,
along with a proof of correctness, is given in [64].

The Paillier encryption scheme was introduced in [157]. Shoup [183, Sec-
tion 7.5] gives a characterization of Z∗Ne for arbitrary integers N, e (and not
just N = pq, e = 2 as done here).

The problem of deciding quadratic residuosity modulo a composite of un-
known factorization goes back to Gauss [78] and is related to other (conjec-
tured) hard number-theoretic problems. The Goldwasser–Micali encryption
scheme [87], introduced in 1982, was the first public-key encryption scheme
with a proof of security.

Advanced Topics in Public-Key Encryption 567

Rabin [166] showed that computing square roots modulo a composite is
equivalent to factoring. The results of Section 15.5.2 are due to Blum [39].
Hard-core predicates for the Rabin trapdoor permutation are discussed in
[8, 94, 7] and references therein.

Exercises

15.1 Construct and prove CPA-security for a KEM based on any trapdoor
permutation by suitably generalizing Construction 12.34.

15.2 Show that the isomorphism of Proposition 15.6 can be efficiently in-
verted when the factorization of N is known.

15.3 Generalize the Paillier encryption scheme so (1 +N) is replaced by any
g ∈ Z∗N2 of order N . I.e., the public key now includes g, and encryption
of m is done by computing the ciphertext c := [gm · rN mod N2].

(a) Show how decryption can be done.

(b) Prove CPA-security under the same assumption as in Theorem 15.13.

15.4 Let Ψ(N2) denote the set {(a, 1) | a ∈ ZN} ⊂ Z∗N2 . Show that it is not
hard to decide whether a given element y ∈ Z∗N2 is in Ψ(N2).

15.5 Let G be an abelian group. Show that the set of quadratic residues in
G forms a subgroup.

15.6 This question concerns the quadratic residues in the additive group ZN .
(An element y ∈ ZN is a quadratic residue if and only if there exists an
x ∈ ZN with 2x = y mod N .)

(a) Let p be an odd prime. How many elements of Zp are quadratic
residues?

(b) Let N = pq be a product of two odd primes p and q. How many
elements of ZN are quadratic residues?

(c) Let N be an even integer. How many elements of ZN are quadratic
residues?

15.7 Let N = pq with p, q distinct, odd primes. Show a ppt algorithm for
choosing a uniform element of QNR+1

N when the factorization of N is
known. (Your algorithm can have failure probability negligible in ‖N‖.)

15.8 Let N = pq with p, q distinct, odd primes. Prove that if x ∈ QRN then
[x−1 mod N] ∈ QRN , and if x ∈ QNR+1

N then [x−1 mod N] ∈ QNR+1
N .

568 Introduction to Modern Cryptography

15.9 Let N = pq with p, q distinct, odd primes, and fix z ∈ QNR+1
N . Show

that choosing uniform x ∈ QRN and setting y := [z ·x mod N] gives a y
that is uniformly distributed in QNR+1

N . That is, for any ŷ ∈ QNR+1
N

Pr[z · x = ŷ mod N] = 1/|QNR+1
N |,

where the probability is taken over uniform choice of x ∈ QRN .

Hint: Use the previous exercise.

15.10 Let N be the product of 5 distinct, odd primes. If y ∈ Z∗N is a quadratic
residue, how many solutions are there to the equation x2 = y mod N?

15.11 Show that the Goldwasser–Micali encryption scheme is homomorphic if
the message space {0, 1} is viewed as the group Z2.

15.12 Consider the following variation of the Goldwasser–Micali encryption
scheme: GenModulus(1n) is run to obtain (N, p, q) where N = pq and
p = q = 3 mod 4, (i.e., N is a Blum integer.) The public key is N
and the private key is 〈p, q〉. To encrypt m ∈ {0, 1}, the sender chooses
uniform x ∈ ZN and computes the ciphertext c := [(−1)m · x2 mod N].

(a) Prove that for N of the stated form, [−1 mod N] ∈ QNR+1
N .

(b) Prove that the scheme described has indistinguishable encryptions
under a chosen-plaintext attack if deciding quadratic residuosity is
hard relative to GenModulus.

15.13 Assume deciding quadratic residuosity is hard for GenModulus. Show
that this implies the hardness of distinguishing a uniform element of
QRN from a uniform element of J +1

N .

15.14 Show that plain RSA encryption of a message m leaks JN (m).

15.15 Consider the following variation of the Goldwasser–Micali encryption
scheme: GenModulus(1n) is run to obtain (N, p, q). The public key
is N and the private key is 〈p, q〉. To encrypt a 0, the sender chooses
n uniform elements c1, . . . , cn ∈ QRN . To encrypt a 1, the sender
chooses n uniform elements c1, . . . , cn ∈ J +1

N . In each case, the resulting
ciphertext is c∗ = 〈c1, . . . , cn〉.

(a) Show how the sender can generate a uniform element of J +1
N in

polynomial time, where failing with negligible probability.

(b) Suggest a way for the receiver to decrypt efficiently, although with
negligible error probability.

(c) Prove that if deciding quadratic residuosity is hard relative to
GenModulus, this scheme is CPA-secure.

Hint: Use the previous exercise.

Advanced Topics in Public-Key Encryption 569

15.16 Let G be a polynomial-time algorithm that, on input 1n, outputs a prime
p with ‖p‖ = n and a generator g of Z∗p. Prove that the DDH problem
is not hard relative to G.

Hint: Use the fact that quadratic residuosity can be decided efficiently

modulo a prime.

15.17 The discrete logarithm problem is believed to be hard for G as in the
previous exercise. This means that the function (family) fp,g where

fp,g(x)
def
= [gx mod p] is one-way. Let lsb(x) denote the least-significant

bit of x. Show that lsb is not a hard-core predicate for fp,g.

15.18 Consider the plain Rabin encryption scheme in which a message m ∈
QRN is encrypted relative to a public key N (where N is a Blum in-
teger) by computing the ciphertext c := [m2 mod N]. Show a chosen-
ciphertext attack on this scheme that recovers the entire private key.

15.19 The plain Rabin signature scheme is like the plain RSA signature scheme,
except using the Rabin trapdoor permutation. Show an attack on plain
Rabin signatures by which the attacker learns the signer’s private key.

15.20 Let N be a Blum integer.

(a) Define the set S
def
= {x ∈ Z∗N | x < N/2 and JN (x) = +1}. Define

the function fN : S → Z∗N by:

fN (x) =

{
[x2 mod N] if [x2 mod N] < N/2

[−x2 mod N] if [x2 mod N] > N/2

Show that fN is a permutation over S.

(b) Define a family of trapdoor permutations based on factoring using
fN as defined above.

15.21 Let N be a Blum integer. Define the function halfN : Z∗N → {0, 1} as

halfN (x) =

{
−1 if x < N/2
+1 if x > N/2

Show that the function f : Z∗N → QRN × {−1,+1}2 defined as

f(x) =
(
[x2 mod N], JN (x), halfN (x)

)
is one-to-one.

http://taylorandfrancis.com

Index of Common Notation

General notation:

� := refers to deterministic assignment

� If S is a set, then x← S denotes that x is chosen uniformly from S

� If A is a randomized algorithm, then y ← A(x) denotes running A on
input x with a uniform random tape and assigning the output to y. We
write y := A(x; r) to denote running A on input x using random tape r
and assigning the output to y

� ∧ denotes Boolean conjunction (the AND operator)

� ∨ denotes Boolean disjunction (the OR operator)

� ⊕ denotes the exclusive-or (XOR) operator; this operator can be applied
to single bits or entire strings (in the latter case, the XOR is bitwise)

� {0, 1}n is the set of all bit-strings of length n

� {0, 1}≤n is the set of all bit-strings of length at most n

� {0, 1}∗ is the set of all finite bit-strings; {0, 1}+ is the set of all non-
empty, finite bit-strings

� 0n (resp., 1n) denotes the string comprised of n zeroes (resp., n ones)

� ‖x‖ denotes the length of the binary representation of the (positive)
integer x, written with leading bit 1. Note that log x < ‖x‖ ≤ log x+ 1

� |x| denotes the length of the binary string x (which may have leading 0s),
or the absolute value of the real number x

� O(·),Θ(·),Ω(·), ω(·) are used for asymptotic running times; see Ap-
pendix A.2

� 0x denotes that digits are being represented in hexadecimal

� x‖y and (x, y) are used interchangeably to denote concatenation of the
strings x and y

� Pr[X] denotes the probability of event X

� log x denotes the base-2 logarithm of x

571

572 Introduction to Modern Cryptography

Cryptographic notation:

� n is the security parameter

� ppt stands for “probabilistic polynomial time”

� AO(·) denotes the algorithm A with oracle access to O

� k typically denotes a secret key (as in private-key encryption and MACs)

� (pk, sk) denotes a public/private key pair (for public-key encryption and
digital signatures)

� ⊥ denotes a generic error

� negl(n) denotes a negligible function; see Definition 3.4

� poly(n) denotes an arbitrary polynomial

� Funcn denotes the set of functions mapping n-bit strings to n-bit strings

� Permn denotes the set of bijections on n-bit strings

� IV denotes an initialization vector

Algorithms and procedures:

� G denotes a pseudorandom generator

� F denotes a keyed function that is typically a pseudorandom function
or permutation

� (Gen,Enc,Dec) denote the key-generation, encryption, and decryption
procedures, respectively, for both private- and public-key encryption.
For the case of private-key encryption, when Gen is unspecified then
Gen(1n) outputs a uniform k ∈ {0, 1}n

� (Gen,Mac,Vrfy) denote the key-generation, tag-generation, and verifica-
tion procedures, respectively, for a message authentication code. When
Gen is unspecified then Gen(1n) outputs a uniform k ∈ {0, 1}n

� (Gen,Sign,Vrfy) denote the key-generation, signature-generation, and
verification procedures, respectively, for a digital signature scheme

� GenPrime denotes a ppt algorithm that, on input 1n, outputs an n-bit
prime except with probability negligible in n

� GenModulus denotes a ppt algorithm that, on input 1n, outputs (N, p, q)
where N = pq and (except with negligible probability) p and q are n-bit
primes

Index of Common Notation 573

� GenRSA denotes a ppt algorithm that, on input 1n, outputs (except with
negligible probability) a modulusN , an integer e > 0 with gcd(e, φ(N)) =
1, and an integer d satisfying ed = 1 mod φ(N)

� G denotes a ppt algorithm that, on input 1n, outputs (except with neg-
ligible probability) a description of a cyclic group G, the group order q
(with ‖q‖ = n), and a generator g ∈ G.

Number theory:

� Z denotes the set of integers

� a | b means a divides b

� a6 | b means that a does not divide b

� gcd(a, b) denotes the greatest common divisor of a and b

� [a mod b] denotes the remainder of a when divided by b

� x1 = x2 = · · · = xn mod N means that x1, . . . , xn are all congruent
modulo N

Note: x = y mod N means that x and y are congruent modulo N ,
whereas x = [y mod N] means that x is equal to the remainder of y
when divided by N

� ZN denotes the additive group of integers modulo N as well as the set
{0, . . . , N − 1}. Note: in Section 14.3 only, we let ZN also refer to the
set {−b(N − 1)/2c, . . . , 0, . . . , bN/2c}

� Z∗N denotes the multiplicative group of invertible integers modulo N
(i.e., those that are relatively prime to N)

� φ(N) denotes the size of Z∗N

� G and H denote groups

� G1 ' G2 means that groups G1 and G2 are isomorphic. If this isomor-
phism is given by f and f(x1) = x2 then we write x1 ↔ x2

� g is typically a generator of a group

� logg h denotes the discrete logarithm of h to the base g

� 〈g〉 denotes the group generated by g

� p and q usually denote primes

� N typically denotes the product of two distinct primes p and q of equal
length

574 Introduction to Modern Cryptography

� QRp is the set of quadratic residues modulo p

� QNRp is the set of quadratic non-residues modulo p

� Jp(x) is the Jacobi symbol of x modulo p

� J +1
N is the set of elements with Jacobi symbol +1 modulo N

� J−1
N is the set of elements with Jacobi symbol −1 modulo N

� QNR+1
N is the set of quadratic non-residues modulo N having Jacobi

symbol +1

Appendix A

Mathematical Background

A.1 Identities and Inequalities

We list some standard identities and inequalities that are used at various
points throughout the text.

THEOREM A.1 (Binomial expansion theorem) Let x, y be real num-
bers, and let n be a positive integer. Then

(x+ y)n =

n∑
i=0

(
n

i

)
xi yn−i.

PROPOSITION A.2 For all x ≥ 1 it holds that (1− 1/x)x ≤ e−1.

PROPOSITION A.3 For all x it holds that 1− x ≤ e−x.

PROPOSITION A.4 For all x with 0 ≤ x ≤ 1 it holds that

e−x ≤ 1−
(

1− 1

e

)
· x ≤ 1− x

2
.

A.2 Asymptotic Notation

We use standard notation for expressing asymptotic behavior of functions.

DEFINITION A.5 Let f(n), g(n) be functions from non-negative integers
to non-negative reals. Then:

� f(n) = O(g(n)) means that there exist positive integers c and n′ such
that for all n > n′ it holds that f(n) ≤ c · g(n).

575

576 Introduction to Modern Cryptography

� f(n) = Ω(g(n)) means that there exist positive integers c and n′ such
that for all n > n′ it holds that f(n) ≥ c · g(n).

� f(n) = Θ(g(n)) means that there exist positive integers c1, c2, and n′

such that for all n > n′ it holds that c1 · g(n) ≤ f(n) ≤ c2 · g(n).

� f(n) = o(g(n)) means that limn→∞
f(n)
g(n) = 0.

� f(n) = ω(g(n)) means that limn→∞
f(n)
g(n) =∞.

Example A.6

Let f(n) = n4 + 3n+ 500. Then:

� f(n) = O(n4).

� f(n) = O(n5). In fact, f(n) = o(n5).

� f(n) = Ω(n3 log n). In fact, f(n) = ω(n3 log n).

� f(n) = Θ(n4).

♦

A.3 Basic Probability

We assume the reader is familiar with basic probability theory, on the level
of what is covered in a typical undergraduate course on discrete mathematics.
Here we simply remind the reader of some notation and basic facts.

If E is an event, then Ē denotes the complement of that event; i.e., Ē is the
event that E does not occur. By definition, Pr[E] = 1− Pr[Ē]. If E1 and E2

are events, then E1 ∧ E2 denotes their conjunction; i.e., E1 ∧ E2 is the event
that both E1 and E2 occur. By definition, Pr[E1 ∧ E2] ≤ Pr[E1]. Events E1

and E2 are said to be independent if Pr[E1 ∧ E2] = Pr[E1] · Pr[E2].

If E1 and E2 are events, then E1 ∨ E2 denotes the disjunction of E1 and
E2; that is, E1 ∨E2 is the event that either E1 or E2 occurs. It follows from
the definition that Pr[E1 ∨ E2] ≥ Pr[E1]. The union bound is often a very
useful upper bound of this quantity.

PROPOSITION A.7 (Union Bound)

Pr[E1 ∨ E2] ≤ Pr[E1] + Pr[E2].

Mathematical Background 577

Repeated application of the union bound for any events E1, . . . , Ek gives

Pr
[∨k

i=1Ei

]
≤

k∑
i=1

Pr[Ei].

The conditional probability of E1 given E2, denoted Pr[E1 | E2], is defined as

Pr[E1 | E2]
def
=

Pr[E1 ∧ E2]

Pr[E2]

as long as Pr[E2] 6= 0. (If Pr[E2] = 0 then Pr[E1 | E2] is undefined.) This rep-
resents the probability that event E1 occurs, given that event E2 has occurred.
It follows immediately from the definition that

Pr[E1 ∧ E2] = Pr[E1 | E2] · Pr[E2] ;

equality holds even if Pr[E2] = 0 as long as we interpret multiplication by
zero on the right-hand side in the obvious way.

We can now easily derive Bayes’ theorem.

THEOREM A.8 (Bayes’ Theorem) If Pr[E2] 6= 0 then

Pr[E1 | E2] =
Pr[E2 | E1] · Pr[E1]

Pr[E2]
.

PROOF This follows because

Pr[E1 | E2] =
Pr[E1 ∧ E2]

Pr[E2]
=

Pr[E2 ∧ E1]

Pr[E2]
=

Pr[E2 | E1] · Pr[E1]

Pr[E2]
.

Let E1, . . . , En be disjoint events, so that Pr[Ei ∧ Ej] = 0 for all i 6= j.
That is, at most one of the {Ei} occur. Assume further than Pr[Ei] > 0 for
all i. Then for any event F

Pr[F] ≤
n∑
i=1

Pr[F ∧ Ei]

=

n∑
i=1

Pr[F | Ei] · Pr[Ei],

with equality when Pr[E1 ∨ · · · ∨En] = 1. A special case is when we take E1

and Ē1 as our disjoint events. Taking F = E1 ∨ E2 for any event E2, we get
a potentially tighter version of the union bound:

Pr[E1 ∨ E2] = Pr[E1 ∨ E2 | E1] · Pr[E1] + Pr[E1 ∨ E2 | Ē1] · Pr[Ē1]

≤ Pr[E1] + Pr[E2 | Ē1].

578 Introduction to Modern Cryptography

Extending this to n events we obtain

PROPOSITION A.9

Pr [
∨n
i=1Ei] ≤ Pr[E1] +

n∑
i=2

Pr[Ei | Ē1 ∧ · · · ∧ Ēi−1].

*Useful Probability Bounds

We review some terminology and state probability bounds that are stan-
dard, but may not be encountered in a basic discrete mathematics course.
The material here is used only in Section 8.3.

A (discrete, real-valued) random variable X is a variable whose value is
assigned probabilistically from some finite set S of real numbers. X is non-
negative if it does not take negative values; it is a 0/1-random variable
if S = {0, 1}. The 0/1-random variables X1, . . . , Xk are independent if for

all b1, . . . , bk it holds that Pr[X1 = b1 ∧ · · · ∧Xk = bk] =
∏k
i=1 Pr[Xi = bi].

We let Exp[X] denote the expectation of a random variable X; if X takes

values in a set S then Exp[X]
def
=
∑
s∈S s · Pr[X = s]. One of the most

important facts is that expectation is linear ; for random variables X1, . . . , Xk

(with arbitrary dependencies) we have Exp[
∑
iXi] =

∑
i Exp[Xi]. If X1, X2

are independent, then Exp[Xi ·Xj] = Exp[Xi] · Exp[Xj].
Markov’s inequality is useful when little is known about X.

PROPOSITION A.10 (Markov’s inequality) Let X be a non-negative
random variable and v > 0. Then Pr[X ≥ v] ≤ Exp[X]/v.

PROOF Say X takes values in a set S. We have

Exp[X] =
∑
s∈S

s · Pr[X = s]

≥
∑

x∈S, x<v
Pr[X = s] · 0 +

∑
x∈S, x≥v

v · Pr[X = s]

= v · Pr[X ≥ v].

The desired result follows.

The variance of X, denoted Var[X], measures how much X deviates from

its expectation. We have Var[X]
def
= Exp[(X−Exp[X])2] = Exp[X2]−Exp[X]2,

and one can easily show that Var[aX + b] = a2Var[X]. For a 0/1-random
variable Xi, we have Var[Xi] ≤ 1/4 because in this case Exp[Xi] = Exp[X2

i]
and so Var[Xi] = Exp[Xi](1−Exp[Xi]), which is maximized when Exp[Xi] = 1

2 .

Mathematical Background 579

PROPOSITION A.11 (Chebyshev’s inequality) Let X be a random
variable and δ > 0. Then:

Pr[|X − Exp[X]| ≥ δ] ≤ Var[X]

δ2
.

PROOF Define the non-negative random variable Y
def
= (X−Exp[X])2 and

then apply Markov’s inequality. So,

Pr[|X − Exp[X]| ≥ δ] = Pr[(X − Exp[X])2 ≥ δ2]

≤ Exp[(X − Exp[X])2]

δ2
=

Var[X]

δ2
.

The 0/1-random variables X1, . . . , Xm are pairwise independent if for every
i 6= j and every bi, bj ∈ {0, 1} it holds that

Pr[Xi = bi ∧ Xj = bj] = Pr[Xi = bi] · Pr[Xj = bj].

If X1, . . . , Xm are pairwise independent then Var[
∑m
i=1 Xi] =

∑m
i=1 Var[Xi].

(This follows since Exp[Xi ·Xj] = Exp[Xi] ·Exp[Xj] when i 6= j, using pairwise
independence.) An important corollary of Chebyshev’s inequality follows.

COROLLARY A.12 Let X1, . . . , Xm be pairwise-independent random
variables with the same expectation µ and variance σ2. Then for every δ > 0,

Pr

[∣∣∣∣∑m
i=1 Xi

m
− µ

∣∣∣∣ ≥ δ] ≤ σ2

δ2m
.

PROOF By linearity of expectation, Exp[
∑m
i=1 Xi/m] = µ. Applying

Chebyshev’s inequality to the random variable
∑m
i=1Xi/m, we have

Pr

[∣∣∣∣∑m
i=1 Xi

m
− µ

∣∣∣∣ ≥ δ] ≤ Var
[

1
m ·
∑m
i=1 Xi

]
δ2

.

Using pairwise independence, it follows that

Var

[
1

m
·
m∑
i=1

Xi

]
=

1

m2

m∑
i=1

Var[Xi] =
1

m2

m∑
i=1

σ2 =
σ2

m
.

The inequality is obtained by combining the above two equations.

Say 0/1-random variables X1, . . . , Xm each provides an estimate of some
fixed (unknown) bit b. That is, Pr[Xi = b] ≥ 1/2 + ε for all i, where ε > 0.

580 Introduction to Modern Cryptography

We can estimate b by looking at the value of X1; this estimate will be correct
with probability Pr[X1 = b]. A better estimate can be obtained by looking at
the values of X1, . . . , Xm and taking the value that occurs the majority of the
time. The following allows us to analyze how well this does when X1, . . . , Xm

are pairwise independent.

PROPOSITION A.13 Fix ε > 0 and b ∈ {0, 1}, and let {Xi} be pairwise-
independent, 0/1-random variables for which Pr[Xi = b] ≥ 1

2 + ε for all i.
Consider the process in which m values X1, . . . , Xm are recorded and X is set
to the value that occurs a strict majority of the time. Then

Pr[X 6= b] ≤ 1

4 · ε2 ·m
.

PROOF By symmetry, we may assume b = 1. Then Exp[Xi] ≥ 1
2 + ε; we

assume Exp[Xi] = 1
2 + ε as that is the worst case. Let X denote the strict

majority of the {Xi}, and note that X 6= 1 if and only if
∑m
i=1Xi ≤ m/2. So

Pr[X 6= 1] = Pr

[
m∑
i=1

Xi ≤ m/2

]

= Pr

[∑m
i=1Xi

m
− 1

2
≤ 0

]
= Pr

[∑m
i=1Xi

m
−
(

1

2
+ ε

)
≤ −ε

]
≤ Pr

[∣∣∣∣∑m
i=1Xi

m
−
(

1

2
+ ε

)∣∣∣∣ ≥ ε] .
Since Var[Xi] ≤ 1/4 for all i, applying the previous corollary shows that
Pr[X 6= 1] ≤ 1

4ε2m as claimed.

A better bound is possible if the {Xi} are independent:

PROPOSITION A.14 (Chernoff bound) Fix ε > 0 and b ∈ {0, 1},
and let {Xi} be independent 0/1-random variables with Pr[Xi = b] = 1

2 + ε

for all i. The probability that their majority value is not b is at most e−ε
2m/2.

Mathematical Background 581

A.4 The “Birthday” Problem

If we choose q elements y1, . . . , yq uniformly from a set of size N , what is
the probability that there exist distinct i, j with yi = yj? We refer to the
stated event as a collision, and let coll(q,N) denote the probability of this
event. This problem is related to the so-called birthday problem, which asks
what size group of people we need such that with probability 1/2 some pair
of people in the group share a birthday. To see the relationship, let yi denote
the birthday of the ith person in the group. If there are q people in the group
then we have q values y1, . . . , yq chosen uniformly from {1, . . . , 365}, making
the simplifying assumption that birthdays are uniformly and independently
distributed among the 365 days of a non-leap year. Furthermore, matching
birthdays correspond to a collision, i.e., distinct i, j with yi = yj . So the
desired solution to the birthday problem is given by the minimal (integer)
value of q for which coll(q, 365) ≥ 1/2. (The answer may surprise you—taking
q = 23 people suffices!)

The following shows that when q ≤
√

2N , the probability of a collision is
Θ(q2/N); alternately, for q = Θ(

√
N) the probability of a collision is constant.

LEMMA A.15 Fix a positive integer N , and say q ≤
√

2N elements
y1, . . . , yq are chosen uniformly and independently from a set of size N . Then

q · (q − 1)

4N
≤ 1− e−q(q−1)/2N ≤ coll(q,N) ≤ q · (q − 1)

2N
.

PROOF The upper bound, which holds for arbitrary q, can be proven
by a simple application of the union bound (Proposition A.7). Recall that
a collision means that there exist distinct i, j with yi = yj . Let Coll denote
the event of a collision, and let Colli,j denote the event that yi = yj . It is
immediate that Pr[Colli,j] = 1/N for any distinct i, j. Furthermore, Coll =∨
i 6=j Colli,j and so repeated application of the union bound implies that

Pr [Coll] = Pr

∨
i6=j

Colli,j

≤
∑
i 6=j

Pr [Colli,j] =

(
q

2

)
· 1

N
.

For the lower bound, let NoColli be the event that there is no collision
among y1, . . . , yi; that is, yj 6= yk for all j < k ≤ i. Then NoCollq = Coll is
the event that there is no collision at all. If NoCollq occurs then NoColli must
also have occurred for all i ≤ q. Thus,

Pr[NoCollq] = Pr[NoColl1] · Pr[NoColl2 | NoColl1] · · ·Pr[NoCollq | NoCollq−1].

582 Introduction to Modern Cryptography

Now, Pr[NoColl1] = 1 since y1 cannot collide with itself. Furthermore, if event
NoColli occurs then {y1, . . . , yi} contains i distinct values; so, the probability
that yi+1 collides with one of these values is i

N and hence the probability that

yi+1 does not collide with any of these values is 1− i
N . This means

Pr[NoColli+1 | NoColli] = 1− i

N
,

and so

Pr[NoCollq] =

q−1∏
i=1

(
1− i

N

)
.

Since i/N < 1 for all i, we have 1− i
N ≤ e

−i/N (by Inequality A.3) and so

Pr[NoCollq] ≤
q−1∏
i=1

e−i/N = e−
∑q−1

i=1 (i/N) = e−q(q−1)/2N .

We conclude that

Pr[Coll] = 1− Pr[NoCollq] ≥ 1− e−q(q−1)/2N ≥ q(q − 1)

4N
,

using Inequality A.4 in the last step (note that q(q − 1)/2N < 1).

As a simple application of Lemma A.15, we show that any pseudorandom
permutation is also a pseudorandom function (cf. Proposition 3.26). Recall
that a pseudorandom permutation has `in = `out, meaning that its input and
output lengths are equal. Our proof here is adapted from [27].

PROPOSITION A.16 If F is a pseudorandom permutation and further-
more `out(n) ≥ n, then F is also a pseudorandom function.

PROOF For simplicity of notation, we assume `in = `out = n. The crux
of the proof is to show that a random permutation is indistinguishable (using
polynomially many queries) from a random function. Let D be an algorithm,
and let q = q(n) be the number of queries that D makes to its oracle. (We
assume without loss of generality that D always makes exactly q queries, and
that it never repeats a query.) We will allow D to be all-powerful (and hence
may assume it is deterministic), but will assume that the number of queries
q that it makes is polynomial. We show∣∣∣∣ Pr

f←Funcn
[Df(·)(1n) = 1]− Pr

f←Permn

[Df(·)(1n) = 1]

∣∣∣∣ < q2

2n+1
. (A.1)

The intuition for this is that the only way D can tell that its oracle f is not
a permutation is by observing a collision, i.e., two distinct inputs that map

Mathematical Background 583

to the same output. However, the probability of finding such a collision when
querying a random function q times is at most coll(q, 2n) ≤ q2/2n, which is
negligible for any polynomial q.

Formally, let Coll be the event that two queries by D to its oracle return
the same result. We claim first that

Pr
f←Funcn

[Df(·)(1n) = 1 | Coll] = Pr
f←Permn

[Df(·)(1n) = 1]. (A.2)

To see this, observe that the behavior of D is completely characterized by the
set S ⊆ ({0, 1}n)q of q-tuples such that ~a = (a1, . . . , aq) ∈ S iff D outputs 1
when it receives ai as the response to its ith oracle query for all i. Let distinct ⊂
({0, 1}n)q denote the set of q-tuples where each entry is distinct. When f is
a permutation, then each ~a ∈ distinct is equally likely and ~a 6∈ distinct cannot
occur; thus

Pr
f←Permn

[Df(·)(1n) = 1] =
|S ∩ distinct|
|distinct|

.

When f is a random function, each q-tuple in ({0, 1}n)q occurs with proba-
bility 2−nq. So, using Bayes’ theorem

Pr
f←Funcn

[Df(·)(1n) = 1 | Coll] =
Prf←Funcn [Df(·)(1n) = 1 ∧ Coll]

Prf←Funcn [Coll]

=
2−nq · |S ∩ distinct|

2−nq · |distinct|
.

Equation (A.2) follows.
As a consequence,∣∣∣∣ Pr

f←Funcn
[Df(·)(1n) = 1]− Pr

f←Permn

[Df(·)(1n) = 1]

∣∣∣∣
=

∣∣∣∣ Pr
f←Funcn

[Df(·)(1n) = 1 | Coll] · Pr[Coll]

+ Pr
f←Funcn

[Df(·)(1n) = 1 | Coll] · Pr[Coll]− Pr
f←Permn

[Df(·)(1n) = 1]

∣∣∣∣
=

∣∣∣∣ Pr
f←Funcn

[Df(·)(1n) = 1 | Coll] · Pr[Coll]− Pr
f←Permn

[Df(·)(1n) = 1] · Pr[Coll]

∣∣∣∣
≤ Pr[Coll].

With Lemma A.15, this implies Equation (A.1) and completes the proof.

While the above shows that a pseudorandom permutation (PRP) is asymp-
totically also a pseudorandom function (PRF), it does also indicate a concrete-
security gap: namely, a PRP can be distinguished from a PRF with proba-
bility O(q2/2`out(n)) using q queries. This is important to keep in mind when
using a block cipher and treating it in the analysis as a PRF.

584 Introduction to Modern Cryptography

A.5 *Finite Fields

We use finite fields only sparingly in the book, but we include a definition
and some basic facts for completeness. Further details can be found in any
textbook on abstract algebra.

DEFINITION A.17 A (finite) field is a (finite) set F along with two
binary operations +, · for which the following hold:

� F is an abelian group with respect to the operation ‘+.’ We let 0 denote
the identity element of this group.

� F \ {0} is an abelian group with respect to the operation ‘·.’ We let 1
denote the identity element of this group.

As usual, we often write ab in place of a · b.

� (Distributivity:) For all a, b, c ∈ F, we have a · (b+ c) = ab+ ac.

The additive inverse of a ∈ F, denoted by −a, is the unique element satisfy-
ing a+(−a) = 0; we write b−a in place of b+(−a). The multiplicative inverse
of a ∈ F \ {0}, denoted by a−1, is the unique element satisfying aa−1 = 1; we
often write b/a in place of ba−1.

Example A.18
It follows from the results of Section 9.1.4 that for any prime p the set
{0, . . . , p− 1} is a finite field with respect to addition and multiplication mod-
ulo p. We denote this field by Fp. ♦

Finite fields have a rich theory. For our purposes, we need only a few basic
facts. The order of F is the number of elements in F (assuming it is finite).
Recall also that q is a prime power if q = pr for some prime p and integer r ≥ 1.

THEOREM A.19 If F is a finite field, then the order of F is a prime
power. Conversely, for every prime power q there is a finite field of order q,
which is moreover the unique such field (up to relabeling of the elements).

For q = pr with p prime, we let Fq denote the (unique) field of order q. We
call p the characteristic of Fq.

As in the case of groups, if n is a positive integer and a ∈ F then

n · a def
= a+ · · ·+ a︸ ︷︷ ︸

n times

and an
def
= a · · · a︸ ︷︷ ︸
n times

.

Mathematical Background 585

The notation is extended for n ≤ 0 in the natural way.

THEOREM A.20 Let Fq be a finite field of characteristic p. Then for all
a ∈ Fq we have p · a = 0.

Let q = pr with p prime. For r = 1, we have seen in Example A.18 that Fq =
Fp can be taken to be the set {0, . . . , p−1} under addition and multiplication
modulo p. We caution, however, that for r > 1 the set {0, . . . , q − 1} is not
a field under addition and multiplication modulo q. For example, if we take
q = 32 = 9 then the element 3 does not have a multiplicative inverse modulo 9.

Finite fields of characteristic p can be represented using polynomials over Fp.
We give an example to demonstrate the flavor of the construction, without
discussing why the construction works or describing the general case. We con-
struct the field F4 by working with polynomials over F2. Fix the polynomial
r(x) = x2+x+1, and note that r(x) has no roots over F2 since r(0) = r(1) = 1
(recall that we are working in F2, which means that all operations are carried
out modulo 2). In the same way that we can introduce the imaginary num-
ber i to be a root of x2 + 1 over the reals, we can introduce a value ω to be a
root of r(x) over F2; that is, ω2 = −ω− 1. We then define F4 to be the set of
all degree-1 polynomials in ω over F2; that is, F4 = {0, 1, ω, ω + 1}. Addition
in F4 will just be regular polynomial addition, remembering that operations
on the coefficients are done in F2 (that is, modulo 2). Multiplication in F4

will be polynomial multiplication (again, with operations on the coefficients
carried out modulo 2) followed by the substitution ω2 = −ω − 1; this also
ensures that the result lies in F4. So, for example,

ω + (ω + 1) = 2ω + 1 = 1

and
(ω + 1) · (ω + 1) = ω2 + 2ω + 1 = (−ω − 1) + 1 = −ω = ω.

Although not obvious, one can check that this is a field; the only difficult
condition to verify is that every nonzero element has a multiplicative inverse.

We need only one other result.

THEOREM A.21 Let Fq be a finite field of order q. Then the abelian
group Fq \ {0} with respect to ‘·’ is a cyclic group of order q − 1.

http://taylorandfrancis.com

Appendix B

Basic Algorithmic Number Theory

For the cryptographic constructions given in this book to be efficient (i.e.,
to run in time polynomial in the lengths of their inputs), it is necessary for
these constructions to utilize efficient (that is, polynomial-time) algorithms for
performing basic number-theoretic operations. Although in some cases there
exist “trivial” algorithms that would work, it is still worthwhile to carefully
consider their efficiency since for cryptographic applications it is not uncom-
mon to use integers that are thousands of bits long. In other cases obtaining
any polynomial-time algorithm requires a bit of cleverness, and an analysis of
their performance may rely on non-trivial group-theoretic results.

In Appendix B.1 we describe basic algorithms for integer arithmetic. Here
we cover the familiar algorithms for addition, subtraction, etc., as well as the
Euclidean algorithm for computing greatest common divisors. We also discuss
the extended Euclidean algorithm, assuming there that the reader has covered
the material in Section 9.1.1.

In Appendix B.2 we show various algorithms for modular arithmetic. In
addition to a brief discussion of basic modular operations (i.e., modular reduc-
tion, addition, multiplication, and inversion), we also describe Montgomery
multiplication, which can greatly simplify (and speed up) implementations of
modular arithmetic. We then discuss algorithms for problems that are less
common outside the field of cryptography: exponentiation modulo N (as well
as in arbitrary groups) and choosing a uniform element of ZN or Z∗N (or in
an arbitrary group). This section assumes familiarity with the basic group
theory covered in Section 9.1.

The material above is used implicitly throughout the second half of the
book, although it is not absolutely necessary to read this material in order
to follow the book. (In particular, the reader willing to accept the results of
this Appendix without proof can simply read the summary of those results
in the theorems below.) Appendix B.3, which discusses finding generators
in cyclic groups (when the factorization of the group order is known) and
assumes the results of Section 9.3.1, contains material that is hardly used at
all; it is included for completeness and reference.

Since our goal is only to establish that certain problems can be solved in
polynomial time, we have opted for simplicity rather than efficiency in our
selection of algorithms and their descriptions (as long as the algorithms run
in polynomial time). For this reason, we generally will not be interested in

587

588 Introduction to Modern Cryptography

the exact running times of the algorithms we present beyond establishing that
they indeed run in polynomial time. The reader who is seriously interested
in implementing these algorithms is forewarned to look at other sources for
more efficient alternatives as well as various techniques for speeding up the
necessary computations.

The results in this Appendix are summarized by the theorems that follow.
Throughout, we assume that any integer a provided as input is written using
exactly ‖a‖ bits; i.e., the high-order bit is 1. In Appendix B.1 we show:

THEOREM B.1 (Integer operations) Given integers a and b, it is
possible to perform the following operations in time polynomial in ‖a‖ and ‖b‖:

1. Computing the sum a+ b and the difference a− b;

2. Computing the product ab;

3. Computing positive integers q and r < b such that a = qb + r (i.e.,
computing division with remainder);

4. Computing the greatest common divisor of a and b, gcd(a, b);

5. Computing integers X,Y with Xa+ Y b = gcd(a, b).

The following results are proved in Appendix B.2:

THEOREM B.2 (Modular operations) Given integers N > 1, a,
and b, it is possible to perform the following operations in time polynomial
in ‖a‖, ‖b‖, and ‖N‖:

1. Computing the modular reduction [a mod N];

2. Computing the sum [(a+b) mod N], the difference [(a−b) mod N], and
the product [ab mod N];

3. Determining whether a is invertible modulo N and, if so, computing the
multiplicative inverse [a−1 mod N];

4. Computing the exponentiation [ab mod N].

The following generalizes Theorem B.2(5) to arbitrary groups:

THEOREM B.3 (Group exponentiation) Let G be a group, written
multiplicatively. Let g be an element of the group and let b be a non-negative
integer. Then gb can be computed using poly(‖b‖) group operations.

Basic Algorithmic Number Theory 589

THEOREM B.4 (Choosing uniform elements) There exists a ran-
domized algorithm with the following properties: on input N ,

� The algorithm runs in time polynomial in ‖N‖;

� The algorithm outputs fail with probability negligible in ‖N‖; and

� Conditioned on not outputting fail, the algorithm outputs a uniformly
distributed element of ZN .

An algorithm with analogous properties exists for Z∗N as well.

Since the probability that either algorithm referenced in the above theorem
outputs fail is negligible, we ignore this possibility (and instead leave it im-
plicit). In Appendix B.2 we also discuss generalizations of the above to the
case of selecting a uniform element from any finite group (subject to certain
requirements on the representation of group elements).

A proof of the following is in Appendix B.3:

THEOREM B.5 (Testing and finding generators) Let G be a cyclic
group of order q, and assume that the group operation and selection of a
uniform group element can be carried out in unit time.

1. There is an algorithm that on input q, the prime factorization of q, and
an element g ∈ G, runs in poly(‖q‖) time and decides whether g is a
generator of G.

2. There is a randomized algorithm that on input q and the prime factor-
ization of q, runs in poly(‖q‖) time and outputs a generator of G except
with probability negligible in ‖q‖. Conditioned on the output being a
generator, it is uniformly distributed among the generators of G.

B.1 Integer Arithmetic

B.1.1 Basic Operations

We begin our exploration of algorithmic number theory with a discussion
of integer addition/subtraction, multiplication, and division with remainder.
A little thought shows that all these operations can be carried out in time
polynomial in the input length using the standard “grade-school” algorithms
for these problems. For example, addition of two positive integers a and b
with a > b can be done in time linear in ‖a‖ by stepping one-by-one through
the bits of a and b, starting with the low-order bits, and computing the cor-
responding output bit and a “carry bit” at each step. (Details are omitted.)
Multiplication of two n-bit integers a and b, to take another example, can

590 Introduction to Modern Cryptography

be done by first generating a list of n integers of length at most 2n (each of
which is equal to a · 2i−1 · bi, where bi is the ith bit of b) and then adding
these n integers together to obtain the final result. (Division with remainder
is trickier to implement efficiently, but can also be done.)

Although these grade-school algorithms suffice to demonstrate that the
aforementioned problems can be solved in polynomial time, it is interesting
to note that these algorithms are in some cases not the best ones available.
As an example, the simple algorithm for multiplication given above multiplies
two n-bit numbers in time O(n2), but there exists a better algorithm running
in time O(nlog2 3) (and even that is not the best possible). While the differ-
ence is insignificant for numbers of the size we encounter daily, it becomes
noticeable when the numbers are large. In cryptographic applications it is
not uncommon to use integers that are thousands of bits long (i.e., n > 1000),
and a judicious choice of which algorithms to use then becomes critical.

B.1.2 The Euclidean and Extended Euclidean Algorithms

Recall from Section 9.1 that gcd(a, b), the greatest common divisor of two
integers a and b, is the largest integer d that divides both a and b. We state
an easy proposition regarding the greatest common divisor, and then show
how this leads to an efficient algorithm for computing gcd’s.

PROPOSITION B.6 Let a, b > 1 with b6 | a. Then

gcd(a, b) = gcd(b, [a mod b]).

PROOF If b > a the claim is immediate; so, assume a > b. Write a = qb+r
for q, r positive integers and r < b (cf. Proposition 9.1); note r > 0 because
b6 | a. Since r = [a mod b], it remains to show that gcd(a, b) = gcd(b, r).

The claim follows since for any positive integer d we have

d | a and d | b⇐⇒ d | (a− qb) and d | b,

and r = a− qb.

The above suggests the recursive Euclidean algorithm (Algorithm B.7) for
computing the greatest common divisor gcd(a, b) of two integers a and b.
Correctness of the algorithm follows readily from Proposition B.6. As for its
running time, we show below that on input (a, b) the algorithm makes fewer
than 2 · ‖b‖ recursive calls. Since checking whether b divides a and computing
[a mod b] can both be done in time polynomial in ‖a‖ and ‖b‖, this implies
that the entire algorithm runs in polynomial time.

PROPOSITION B.8 Consider an execution of GCD(a0, b0) where it holds

Basic Algorithmic Number Theory 591

ALGORITHM B.7
The Euclidean algorithm GCD

Input: Integers a, b with a ≥ b > 0
Output: The greatest common divisor of a and b

if b divides a
return b

else return GCD(b, [a mod b])

that a0 ≥ b0 > 0, and let ai, bi (for i = 1, . . . , `) denote the arguments to the
ith recursive call of GCD. Then bi+2 ≤ bi/2 for 0 ≤ i ≤ `− 2.

PROOF First note that for any a > b we have [a mod b] < a/2. To see
this, consider the two cases: If b ≤ a/2 then [a mod b] < b ≤ a/2 is immediate.
On the other hand, if b > a/2 then [a mod b] = a− b < a/2.

Now fix arbitrary i with 0 ≤ i ≤ ` − 2. Then bi+2 = [ai+1 mod bi+1] <
ai+1/2 = bi/2.

COROLLARY B.9 In an execution of algorithm GCD(a, b), there are at
most 2 ‖b‖ − 2 recursive calls to GCD.

PROOF Let ai, bi (for i = 1, . . . , `) denote the arguments to the ith recur-
sive call of GCD. The {bi} are always greater than zero, and the algorithm
makes no further recursive calls if it ever happens that bi = 1 (since then
bi | ai). The previous proposition indicates that the {bi} decrease by a mul-
tiplicative factor of (at least) 2 in every two iterations. It follows that the
number of recursive calls to GCD is at most 2 · (‖b‖ − 1).

By Proposition 9.2, we know that for positive integers a, b there exist inte-
gers X,Y with Xa+ Y b = gcd(a, b). A simple modification of the Euclidean
algorithm, called the extended Euclidean algorithm, can be used to find X,Y
in addition to computing gcd(a, b); see Algorithm B.10. You are asked to
show correctness of the extended Euclidean algorithm in Exercise B.1, and to
prove that the algorithm runs in polynomial time in Exercise B.2.

B.2 Modular Arithmetic

We now turn our attention to basic arithmetic operations modulo N > 1.
We will use ZN to refer both to the set {0, . . . , N − 1} as well as to the group

592 Introduction to Modern Cryptography

ALGORITHM B.10
The extended Euclidean algorithm eGCD

Input: Integers a, b with a ≥ b > 0
Output: (d,X, Y) with d = gcd(a, b) and Xa+ Y b = d

if b divides a
return (b, 0, 1)

else
Compute integers q, r with a = qb+ r and 0 < r < b
(d,X, Y) := eGCD(b, r) // note that Xb+ Y r = d
return (d, Y,X − Y q)

that results by considering addition modulo N among the elements of this set.

B.2.1 Basic Operations

Efficient algorithms for the basic arithmetic operations over the integers
immediately imply efficient algorithms for the corresponding arithmetic oper-
ations modulo N . For example, computing the modular reduction [a mod N]
can be done in time polynomial in ‖a‖ and ‖N‖ by computing division-with-
remainder over the integers. Next consider modular operations on two ele-
ments a, b ∈ ZN where ‖N‖ = n. (Note that a, b have length at most n. Ac-
tually, it is convenient to simply assume that all elements of ZN have length
exactly n, padding to the left with 0s if necessary.) Addition of a and b mod-
ulo N can be done by first computing a+b, an integer of length at most n+1,
and then reducing this intermediate result modulo N . Similarly, multiplica-
tion modulo N can be performed by first computing the integer ab of length
at most 2n and then reducing the result modulo N . Since addition, multipli-
cation, and division-with-remainder can all be done in polynomial time, these
give polynomial-time algorithms for addition and multiplication modulo N .

B.2.2 Computing Modular Inverses

Our discussion thus far has shown how to add, subtract, and multiply mod-
ulo N . One operation we are missing is “division” or, equivalently, computing
multiplicative inverses modulo N . Recall from Section 9.1.2 that the multi-
plicative inverse (modulo N) of an element a ∈ ZN is an element a−1 ∈ ZN
such that a · a−1 = 1 mod N . Proposition 9.7 shows that a has an inverse
if and only if gcd(a,N) = 1, i.e., if and only if a ∈ Z∗N . Thus, using the
Euclidean algorithm we can easily determine whether a given element a has
a multiplicative inverse modulo N .

Given N and a ∈ ZN with gcd(a,N) = 1, Proposition 9.2 tells us that there
exist integers X,Y with Xa + Y N = 1. This means that [X mod N] is the
multiplicative inverse of a. Integers X and Y satisfying Xa + Y N = 1 can
be found efficiently using the extended Euclidean algorithm eGCD shown in

Basic Algorithmic Number Theory 593

ALGORITHM B.11
Computing modular inverses

Input: Modulus N ; element a
Output: [a−1 mod N] (if it exists)

(d,X, Y) := eGCD(a,N) // note that Xa+ Y N = gcd(a,N)
if d 6= 1 return “a is not invertible modulo N”
else return [X mod N]

Section B.1.2. This leads to a polynomial-time algorithm (Algorithm B.11)
for computing multiplicative inverses.

B.2.3 Modular Exponentiation

A more challenging task is that of exponentiation modulo N , that is, com-
puting [ab mod N] for base a ∈ ZN and integer exponent b > 0. (When b = 0
the problem is easy. When b < 0 and a ∈ Z∗N then ab = (a−1)−b mod N
and the problem is reduced to the case of exponentiation with a positive
exponent given that we can compute inverses, as discussed in the previous
section.) Notice that the basic approach used in the case of addition and
multiplication (i.e., computing the integer ab and then reducing this inter-
mediate result modulo N) does not work here: the integer ab has length∥∥ab∥∥ = Θ(log ab) = Θ(b · ‖a‖), and so even storing the intermediate result ab

would require time exponential in ‖b‖ = Θ(log b).

We can address this problem by reducing modulo N at all intermediate
steps of the computation, rather than only reducing modulo N at the end.
This has the effect of keeping the intermediate results “small” throughout
the computation. Even with this important initial observation, it is still non-
trivial to design a polynomial-time algorithm for modular exponentiation.
Consider the näıve approach of Algorithm B.12, which simply performs b
multiplications by a. This still runs in time that is exponential in ‖b‖.

ALGORITHM B.12
A näıve algorithm for modular exponentiation

Input: Modulus N ; base a ∈ ZN ; integer exponent b > 0
Output: [ab mod N]

x := 1
for i = 1 to b:
x := [x · a mod N]

return x

594 Introduction to Modern Cryptography

This näıve algorithm can be viewed as relying on the following recurrence:

[ab mod N] = [a · ab−1 mod N] = [a · a · ab−2 mod N] = · · ·

Any algorithm based on this relationship will require Θ(b) time. We can do
better by relying on the following recurrence:

[ab mod N] =

[(
a

b
2

)2

mod N

]
when b is even[

a ·
(
a

b−1
2

)2

mod N

]
when b is odd.

Doing so leads to an algorithm—called, for obvious reasons, “square-and-
multiply” (or “repeated squaring”)—that requires only O(log b) = O(‖b‖)
modular squarings/multiplications; see Algorithm B.13. In this algorithm,
the length of b decreases by 1 in each iteration; it follows that the number
of iterations is ‖b‖, and so the overall algorithm runs in time polynomial
in ‖a‖, ‖b‖, and ‖N‖. More precisely, the number of modular squarings is
exactly ‖b‖, and the number of additional modular multiplications is exactly
the Hamming weight of b (i.e., the number of 1s in the binary representation
of b). This explains the preference, discussed in Section 9.2.4, for choosing
the public RSA exponent e to have small length/Hamming weight.

ALGORITHM B.13
Algorithm ModExp for efficient modular exponentiation

Input: Modulus N ; base a ∈ ZN ; integer exponent b > 0
Output: [ab mod N]

x := a
t := 1
// maintain the invariant that the answer is [t · xb mod N]
while b > 0 do:

if b is odd
t := [t · x mod N], b := b− 1

x := [x2 mod N], b := b/2
return t

Fix a and N and consider the modular exponentiation function given by
fa,N (b) = [ab mod N]. We have just seen that computing fa,N is easy. In
contrast, computing the inverse of this function—that is, computing b given
a, N , and [ab mod N]—is believed to be hard for appropriate choice of a
and N . Inverting this function requires solving the discrete-logarithm problem,
something we discuss in detail in Section 9.3.2.

Using precomputation. If the base a is known in advance, and there is
a bound on the length of the exponent b, then one can use precomputation

Basic Algorithmic Number Theory 595

and a small amount of memory to speed up computation of [ab mod N]. Say
‖b‖ ≤ n. Then we precompute and store the n values

x0 := a, x1 := [a2 mod N], . . . , xn−1 := [a2n−1

mod N].

Given exponent b with binary representation bn−1 · · · b0 (written from most
to least significant bit), we then have

ab = a
∑n−1

i=0 2i·bi =
n−1∏
i=0

xbii mod N.

Since bi ∈ {0, 1}, the number of multiplications needed to compute the result
is exactly one less than the Hamming weight of b.

Exponentiation in Arbitrary Groups

The efficient modular exponentiation algorithm given above carries over in
a straightforward way to enable efficient exponentiation in any group, as long
as the underlying group operation can be performed efficiently. Specifically,
if G is a group and g is an element of G, then gb can be computed using at
most 2 · ‖b‖ applications of the underlying group operation. Precomputation
could also be used, exactly as described above.

If the order q of G is known, then ab = a[b mod q] (cf. Proposition 9.53) and
this can be used to speed up the computation by reducing b modulo q first.

Considering the (additive) group ZN , the group exponentiation algorithm
just described gives a method for computing the “exponentiation”

[b · g mod N]
def
= [g + · · ·+ g︸ ︷︷ ︸

b times

modN]

that differs from the method discussed earlier that relies on standard integer
multiplication followed by a modular reduction. In comparing the two ap-
proaches to solving the same problem, note that the original algorithm uses
specific information about ZN ; in particular, it (essentially) treats the “ex-
ponent” b as an element of ZN (possibly by reducing b modulo N first). In
contrast, the “square-and-multiply” algorithm just presented treats ZN only
as an abstract group. (Of course, the group operation of addition modulo N
relies on the specifics of ZN .) The point of this discussion is merely to illus-
trate that some group algorithms are generic (i.e., they apply equally well to
all groups) while some group algorithms rely on specific properties of a par-
ticular group or class of groups. We saw some examples of this phenomenon
in Chapter 10.

B.2.4 *Montgomery Multiplication

Although division over the integers (and hence modular reduction) can be
done in polynomial time, algorithms for integer division are slow in compari-

596 Introduction to Modern Cryptography

son to, say, algorithms for integer multiplication. Montgomery multiplication
provides a way to perform modular multiplication without carrying out any
expensive modular reductions. Since pre- and postprocessing is required, the
method is advantageous only when several modular multiplications will be
done in sequence as, e.g., when computing a modular exponentiation.

Fix an odd modulus N with respect to which modular operations are to be
done. Let R > N be a power of two, say R = 2w, and note that gcd(R,N) = 1.
The key property we will exploit is that division by R is fast: the quotient of
x upon division by R is obtained by simply shifting x to the right w positions,
and [x mod R] is just the w least-significant bits of x.

Define the Montgomery representation of x ∈ Z∗N by x̄
def
= [xR mod N].

Montgomery multiplication of x̄, ȳ ∈ Z∗N is defined as

Mont(x̄, ȳ)
def
= [x̄ȳR−1 mod N].

(We show below how this can be computed without any expensive modular
reductions.) Note that

Mont(x̄, ȳ) = x̄ȳR−1 = (xR)(yR)R−1 = (xy)R = xy mod N.

This means we can multiply several values in ZN by (1) converting to the
Montgomery representation, (2) carrying out all multiplications using Mont-
gomery multiplication to obtain the final result, and then (3) converting the
result from Montgomery representation back to the standard representation.

Let α
def
= [−N−1 mod R], a value which can be precomputed. (Computation

of α, and conversion to/from Montgomery representation, can also be done
without any expensive modular reductions; details are beyond our scope.) To

compute c
def
= Mont(x, y) without any expensive modular reductions do:

1. Let z := x · y (over the integers).

2. Set c′ := (z + [zα mod R] ·N) /R.

3. If c′ < N then set c := c′; else set c := c′ −N .

To see that this works, we first need to verify that step 2 is well-defined,
namely, that the numerator is divisible by R. This follows because

z + [zα mod R] ·N = z + zαN = z − zN−1N = 0 mod R.

Next, note that c′ = z/R mod N after step 2; moreover, since z < N2 < RN
we have 0 < c′ < (z + RN)/R < 2RN/R = 2N . But then [c′ mod N] = c′ if
c′ < N , and [c′ mod N] = c′ −N if c′ > N . We conclude that

c = [c′ mod N] = [z/R mod N] = [xyR−1 mod N],

as desired.

Basic Algorithmic Number Theory 597

B.2.5 Choosing a Uniform Group Element

For cryptographic applications, it is often necessary to choose a uniform
element of a group G. We first treat the problem in an abstract setting, and
then focus specifically on the cases of ZN and Z∗N .

Note that if G is a cyclic group of order q, and a generator g ∈ G is known,
then choosing a uniform element h ∈ G reduces to choosing a uniform integer
x ∈ Zq and setting h := gx. In what follows we make no assumptions on G.

Elements of a group G must be specified using some representation of these
elements as bit-strings, where we assume without any real loss of generality
that all elements are represented using strings of the same length. (It is also
crucial that there is a unique string representing each group element.) For
example, if ‖N‖ = n then elements of ZN can all be represented as strings of
length n, where the integer a ∈ ZN is padded to the left with 0s if ‖a‖ < n.

We do not focus much on the issue of representation, since for all the groups
considered in this text the representation can simply be taken to be the “nat-
ural” one (as in the case of ZN , above). Note, however, that different repre-
sentations of the same group can affect the complexity of performing various
computations, and so choosing the “right” representation for a given group is
often important in practice. Since our goal is only to show polynomial-time
algorithms for each of the operations we need (and not to show the most ef-
ficient algorithms known), the exact representation used is less important for
our purposes. Moreover, most of the “higher-level” algorithms we present use
the group operation in a “black-box” manner, so that as long as the group
operation can be performed in polynomial time (in some parameter), the re-
sulting algorithm will run in polynomial time as well.

Given a group G where elements are represented by strings of length `,
a uniform group element can be selected by choosing uniform `-bit strings
until the first string that corresponds to a group element is found. (Note this
assumes that testing group membership can be done efficiently.) To obtain an
algorithm with bounded running time, we introduce a parameter t bounding
the maximum number of times this process is repeated; if all t iterations fail
to find an element of G, then the algorithm outputs fail. (An alternative is to
output an arbitrary element of G.) That is:

ALGORITHM B.14
Choosing a uniform group element

Input: A (description of a) group G; length-parameter `;
parameter t

Output: A uniform element of G
for i = 1 to t:

Choose uniform x ∈ {0, 1}`
if x ∈ G return x

return “fail”

598 Introduction to Modern Cryptography

It is clear that whenever the above algorithm does not output fail, it outputs
a uniformly distributed element of G. This is simply because each element of
G is equally likely to be chosen in any iteration. Formally, if we let Fail be
the event that the algorithm outputs fail, then for any element g ∈ G we have

Pr
[
output of the algorithm equals g | Fail

]
=

1

|G|
.

What is the probability that the algorithm outputs fail? In any iteration
the probability that x ∈ G is exactly |G|/2`, and so the probability that x
does not lie in G in any of the t iterations is(

1− |G|
2`

)t
. (B.1)

There is a trade-off between the running time of Algorithm B.14 and the prob-
ability that the algorithm outputs fail: increasing t decreases the probability
of failure but increases the worst-case running time. For cryptographic appli-
cations we need an algorithm where the worst-case running time is polynomial
in the security parameter n, while the failure probability is negligible in n.

Let K
def
= 2`/|G|. If we set t := K · n then the probability that the algorithm

outputs fail is:(
1− 1

K

)K·n
=

((
1− 1

K

)K)n
≤
(
e−1
)n

= e−n ,

using Proposition A.2. Thus, ifK = poly(n) (we assume some group-generation
algorithm that depends on the security parameter n, and so both |G| and `
are functions of n), we obtain an algorithm with the desired properties.

The case of ZN . Consider the group ZN , with n = ‖N‖. Checking whether
an n-bit string x (interpreted as a positive integer of length at most n) is an
element of ZN simply requires checking whether x < N . Furthermore,

2n

|ZN |
=

2n

N
≤ 2n

2n−1
= 2 ,

and so we can sample a uniform element of ZN in poly(n) time and with failure
probability negligible in n.

The case of Z∗
N . Consider next the group Z∗N , with n = ‖N‖ as before.

Determining whether an n-bit string x is an element of Z∗N is also easy (see
the exercises). Moreover,

2n

|Z∗N |
=

2n

φ(N)
=

2n

N
· N

φ(N)
≤ 2 · N

φ(N)
.

A poly(n) upper-bound is a consequence of the following theorem.

Basic Algorithmic Number Theory 599

THEOREM B.15 For N ≥ 3 of length n, we have N
φ(N) < 2n.

(Stronger bounds are known, but the above suffices for our purpose.) The
theorem can be proved using Bertrand’s Postulate (Theorem 9.32), but we
content ourselves with a proof in two special cases: when N is prime and
when N is a product of two equal-length (distinct) primes.

The analysis is easy when N is an odd prime. Here φ(N) = N − 1 and so

N

φ(N)
≤ 2n

φ(N)
=

2n

N − 1
≤ 2n

2n−1
= 2

(using the fact that N is odd for the second inequality). Consider next the
case of N = pq for p and q distinct, odd primes. Then

N

φ(N)
=

pq

(p− 1)(q − 1)
=

p

p− 1
· q

q − 1
<

(
3

2

)
·
(

5

4

)
< 2.

We conclude that when N is prime or the product of two distinct, odd primes,
there is an algorithm for generating a uniform element of Z∗N that runs in time
polynomial in n = ‖N‖ and outputs fail with probability negligible in n.

Throughout this book, when we speak of sampling a uniform element of
ZN or Z∗N we simply ignore the negligible probability of outputting fail with
the understanding that this has no significant effect on the analysis.

B.3 *Finding a Generator of a Cyclic Group

In this section we address the problem of finding a generator of an arbitrary
cyclic group G of order q. Here, q does not necessarily denote a prime number;
indeed, finding a generator when q is prime is trivial by Corollary 9.56.

We actually show how to sample a uniform generator, proceeding in a
manner very similar to that of Section B.2.5. Here, we repeatedly sample
uniform elements of G until we find an element that is a generator. As in
Section B.2.5, an analysis of this method requires understanding two things:

� How to efficiently test whether a given element is a generator; and

� the fraction of group elements that are generators.

In order to understand these issues, we first develop a bit of additional group-
theoretic background.

B.3.1 Group-Theoretic Background

We tackle the second issue first. Recall that the order of an element h is
the smallest positive integer i for which hi = 1. Let g be a generator of a

600 Introduction to Modern Cryptography

group G of order q > 1; this means the order of g is q. Consider an element
h ∈ G that is not the identity (the identity cannot be a generator of G), and
let us ask whether h might also be a generator of G. Since g generates G, we
can write h = gx for some x ∈ {1, . . . , q − 1} (note x 6= 0 since h is not the
identity). Consider two cases:

Case 1: gcd(x, q) = r > 1. Write x = α · r and q = β · r with α, β non-zero
integers less than q. Then:

hβ = (gx)
β

= gαrβ = (gq)
α

= 1.

So the order of h is at most β < q, and h cannot be a generator of G.

Case 2: gcd(x, q) = 1. Let i ≤ q be the order of h. Then

g0 = 1 = hi = (gx)
i

= gxi,

implying xi = 0 mod q by Proposition 9.54. This means that q |xi. Since
gcd(x, q) = 1, however, Proposition 9.3 shows that q | i and so i = q. We
conclude that h is a generator of G.

Summarizing the above, we see that for x ∈ {1, . . . , q − 1} the element
h = gx is a generator of G exactly when gcd(x, q) = 1. We have thus proved
the following:

THEOREM B.16 Let G be a cyclic group of order q > 1 with generator g.
There are φ(q) generators of G, and these are exactly given by {gx | x ∈ Z∗q}.

In particular, if G is a group of prime order q, then it has φ(q) = q − 1
generators—exactly in agreement with Corollary 9.56.

We turn next to the first issue, that of deciding whether a given element
h is a generator of G. Of course, one way to check whether h generates G
is to enumerate {h0, h1, . . . , hq−1} and see whether this list includes every
element of G. This requires time linear in q (i.e., exponential in ‖q‖) and
is therefore unacceptable for our purposes. Another approach, if we already
know a generator g, is to compute the discrete logarithm x = logg h and then
apply the previous theorem; in general, however, we may not have such a g,
and anyway computing the discrete logarithm may itself be a hard problem.

If we know the factorization of q, we can do better.

PROPOSITION B.17 Let G be a group of order q, and let q =
∏k
i=1 p

ei
i

be the prime factorization of q, where the {pi} are distinct primes and ei ≥ 1.
Set qi = q/pi. Then h ∈ G is a generator of G if and only if

hqi 6= 1 for i = 1, . . . , k.

Basic Algorithmic Number Theory 601

PROOF One direction is easy. Say hqi = 1 for some i. Then the order of
h is at most qi < q, and so h cannot be a generator.

Conversely, say h is not a generator but instead has order q′ < q. By
Proposition 9.55, we know q′ | q. This implies that q′ can be written as q′ =∏k
i=1 p

e′i
i , where e′i ≥ 0 and for at least one index j we have e′j < ej . But

then q′ divides qj = p
ej−1
j ·

∏
i6=j p

ei
i , and so (using Proposition 9.54) hqj =

h[qj mod q′] = h0 = 1.

The proposition does not require G to be cyclic; if G is not cyclic then every
element h ∈ G will satisfy hqi = 1 for some i and there are no generators.

B.3.2 Efficient Algorithms

Armed with the results of the previous section, we show how to efficiently
test whether a given element is a generator, as well as how to efficiently find
a generator in an arbitrary group.

Testing if an element is a generator. Proposition B.17 immediately
suggests an efficient algorithm for deciding whether a given element h is a
generator or not.

ALGORITHM B.18
Testing whether an element is a generator

Input: Group order q; prime factors {pi}ki=1 of q; element h ∈ G
Output: A decision as to whether h is a generator of G
for i = 1 to k:

if hq/pi = 1 return “h is not a generator”
return “h is a generator”

Correctness of the algorithm is evident from Proposition B.17. We now
show that the algorithm terminates in time polynomial in ‖q‖. Since, in each
iteration, hq/pi can be computed in polynomial time, we need only show that
the number of iterations k is polynomial. This is the case since an integer q
can have no more than log2 q = O(‖q‖) prime factors; this is because

q =

k∏
i=1

peii ≥
k∏
i=1

pi ≥
k∏
i=1

2 = 2k

and so k ≤ log2 q.
Algorithm B.18 requires the prime factors of the group order q to be pro-

vided as input. Interestingly, there is no known efficient algorithm for testing
whether an element of an arbitrary group is a generator when the factors of
the group order are not known.

602 Introduction to Modern Cryptography

The fraction of elements that are generators. As shown in Theo-
rem B.16, the fraction of elements of a group G of order q that are generators
is φ(q)/q. Theorem B.15 says that φ(q)/q = Ω(1/‖q‖). The fraction of ele-
ments that are generators is thus sufficiently high to ensure that sampling a
polynomial number of elements from the group will yield a generator with all
but negligible probability. (The analysis is the same as in Section B.2.5.)

Concrete examples in Z∗
p. Putting everything together, we see there is

an efficient probabilistic algorithm for finding a generator of a group G as
long as the factorization of the group order is known. When selecting a group
for cryptographic applications, it is therefore important that the group is
chosen in such a way that this holds. This explains again the preference,
discussed extensively in Section 9.3.2, for working in an appropriate prime-
order subgroup of Z∗p. Another possibility is to use G = Z∗p for p a strong
prime (i.e., p = 2q+1 with q also prime), in which case the prime factorization
of the group order p− 1 is known. One final possibility is to generate a prime
p in such a way that the factorization of p − 1 is known. Further details are
beyond the scope of this book.

References and Additional Reading

The book by Shoup [183] is highly recommended for those seeking to explore
the topics of this chapter in further detail. In particular, bounds on φ(N)/N
(and an asymptotic version of Theorem B.15) can be found in [183, Chapter 5].
Hankerson et al. [91] also provide extensive detail on the implementation of
number-theoretic algorithms for cryptography.

Exercises

B.1 Prove correctness of the extended Euclidean algorithm.

B.2 Prove that the extended Euclidean algorithm runs in time polynomial
in the lengths of its inputs.

Hint: First prove a proposition analogous to Proposition B.8.

B.3 Prove that, on input integers a ≥ b > 0, the extended Euclidean algo-
rithm outputs (d,X, Y) with |X| ≤ b and |Y | ≤ a.

Hint: Use induction on the recursive call.

B.4 Show how to determine that an n-bit string is in Z∗N in polynomial time.

References

[1] M. Abdalla, J.H. An, M. Bellare, and C. Namprempre. From iden-
tification to signatures via the Fiat-Shamir transform: Necessary and
sufficient conditions for security and forward-security. IEEE Trans. In-
formation Theory, 54(8):3631–3646, 2008.

[2] M. Abdalla, M. Bellare, and P. Rogaway. The oracle Diffie-Hellman
assumptions and an analysis of DHIES. In Cryptographers’ Track—
RSA 2001, volume 2020 of LNCS, pages 143–158. Springer, 2001. See
http://cseweb.ucsd.edu/∼mihir/papers/dhies.html.

[3] C. Adams and S. Lloyd. Understanding PKI: Concepts, Standards, and
Deployment Considerations. Addison Wesley, 2nd edition, 2002.

[4] L.M. Adleman. A subexponential algorithm for the discrete logarithm
problem with applications to cryptography. In 20th Annual Symposium
on Foundations of Computer Science, pages 55–60. IEEE, 1979.

[5] M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P. Annals of
Mathematics, 160(2):781–793, 2004.

[6] W. Aiello, M. Bellare, G. Di Crescenzo, and R. Venkatesan. Security
amplification by composition: The case of doubly-iterated, ideal ciphers.
In Advances in Cryptology—Crypto ’98, volume 1462 of LNCS, pages
390–407. Springer, 1998.

[7] A. Akavia, S. Goldwasser, and S. Safra. Proving hard-core predicates
using list decoding. In Proc. 44th Annual Symposium on Foundations
of Computer Science, pages 146–157. IEEE, 2003.

[8] W. Alexi, B. Chor, O. Goldreich, and C.P. Schnorr. RSA and Rabin
functions: Certain parts are as hard as the whole. SIAM Journal on
Computing, 17(2):194–209, 1988.

[9] N.J. AlFardan, D.J. Bernstein, K.G. Paterson, B. Poettering, and
J.C.N. Schuldt. On the security of RC4 in TLS and WPA. In USENIX
Security Symposium, 2013.

[10] J.H. An, Y. Dodis, and T. Rabin. On the security of joint signature and
encryption. In Advances in Cryptology—Eurocrypt 2002, volume 2332
of LNCS, pages 83–107. Springer, 2002.

603

http://cseweb.ucsd.edu

604 Introduction to Modern Cryptography

[11] ANSI X9.9. American national standard for financial institution message
authentication (wholesale), 1981.

[12] R. Barbulescu, P. Gaudry, A. Joux, and E. Thomé. A heuristic quasi-
polynomial algorithm for discrete logarithm in finite fields of small char-
acteristic. In Advances in Cryptology—Eurocrypt 2014, volume 8441 of
LNCS, pages 1–16. Springer, 2014.

[13] R. Bardou, R. Focardi, Y. Kawamoto, L. Simionato, G. Steel, and J.-
K. Tsay. Efficient padding oracle attacks on cryptographic hardware.
In Advances in Cryptology—Crypto 2012, volume 7417 of LNCS, pages
608–625. Springer, 2012.

[14] E. Barker. Recommendation for key management—general, January
2016. NIST Special Publication 800-57, Part 1, Revision 4.

[15] E. Barker, L. Chen, A. Roginsky, A. Vassilev, and R. Davis. Recom-
mendations for pair-wise key-establishment schemes using discrete loga-
rithm cryptography, April 2018. NIST Special Publication 800-56A, Re-
vision 3; available at https://doi.org/10.6028/NIST.SP.800-56Ar3.

[16] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for
message authentication. In Advances in Cryptology—Crypto ’96, volume
1109 of LNCS, pages 1–15. Springer, 1996.

[17] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security
treatment of symmetric encryption. In Proc. 38th Annual Symposium
on Foundations of Computer Science, pages 394–403. IEEE, 1997.

[18] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among
notions of security for public-key encryption schemes. In Advances in
Cryptology—Crypto ’98, volume 1462 of LNCS, pages 26–45. Springer,
1998.

[19] M. Bellare, O. Goldreich, and A. Mityagin. The power of verification
queries in message authentication and authenticated encryption. Avail-
able at https://eprint.iacr.org/2004/309.

[20] M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block
chaining message authentication code. Journal of Computer and System
Sciences, 61(3):362–399, 2000.

[21] M. Bellare and C. Namprempre. Authenticated encryption: Relations
among notions and analysis of the generic composition paradigm. In
Advances in Cryptology—Asiacrypt 2000, volume 1976 of LNCS, pages
531–545. Springer, 2000.

https://eprint.iacr.org
https://doi.org

References 605

[22] M. Bellare and G. Neven. Multi-signatures in the plain public-key model
and a general forking lemma. In 13th ACM Conf. on Computer and
Communications Security, pages 390–399. ACM Press, 2006.

[23] M. Bellare, K. Pietrzak, and P. Rogaway. Improved security analyses
for CBC MACs. In Advances in Cryptology—Crypto 2005, volume 3621
of LNCS, pages 527–545. Springer, 2005.

[24] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In 1st ACM Conf. on Computer and
Communications Security, pages 62–73. ACM, 1993.

[25] M. Bellare and P. Rogaway. Optimal asymmetric encryption. In Ad-
vances in Cryptology—Eurocrypt ’94, volume 950 of LNCS, pages 92–
111. Springer, 1994.

[26] M. Bellare and P. Rogaway. The exact security of digital signatures:
How to sign with RSA and Rabin. In Advances in Cryptology—
Eurocrypt ’96, volume 1070 of LNCS, pages 399–416. Springer, 1996.

[27] M. Bellare and P. Rogaway. The security of triple encryption and
a framework for code-based game-playing proofs. In Advances in
Cryptology—Eurocrypt 2006, volume 4004 of LNCS, pages 409–426.
Springer, 2006. Available at https://eprint.iacr.org/2004/331.

[28] S.M. Bellovin. Frank Miller: Inventor of the one-time pad. Cryptologia,
35(3):203–222, 2011.

[29] D. Bernstein. ChaCha, a variant of Salsa20, 2008. Available at
http://cr.yp.to/chacha/chacha-20080128.pdf.

[30] D.J. Bernstein. A short proof of the unpredictability of cipher block
chaining. Available at http://cr.yp.to/papers.html#easycbc.

[31] D.J. Bernstein. The Poly1305-AES message-authentication code. In
Fast Software Encryption—FSE 2005, volume 3557 of LNCS, pages 32–
49. Springer, 2005.

[32] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. On the indif-
ferentiability of the sponge construction. In Advances in Cryptology—
Eurocrypt 2008, volume 4965 of LNCS, pages 181–197. Springer, 2008.

[33] K. Bhargavan and G. Leurent. On the practical (in-)security of 64-bit
block ciphers: Collision attacks on HTTP over TLS and OpenVPN.
In Proc. 2016 ACM Conf. on Computer and Communications Security,
pages 456–467. ACM, 2016.

[34] E. Biham and A. Shamir. Differential cryptanalysis of DES-like cryp-
tosystems. Journal of Cryptology, 4(1):3–72, 1991.

http://cr.yp.to
http://cr.yp.to
https://eprint.iacr.org

606 Introduction to Modern Cryptography

[35] E. Biham and A. Shamir. Differential Cryptanalysis of the Data En-
cryption Standard. Springer, 1993.

[36] J. Black and P. Rogaway. CBC MACs for arbitrary-length messages:
The three-key constructions. Journal of Cryptology, 18(2):111–131,
2005.

[37] J. Black, P. Rogaway, T. Shrimpton, and M. Stam. An analysis of the
blockcipher-based hash functions from PGV. J. Cryptology, 23(4):519–
545, 2010.

[38] D. Bleichenbacher. Chosen ciphertext attacks against protocols based
on the RSA encryption standard PKCS#1. In Advances in Cryptology—
Crypto ’98, volume 1462 of Lecture Notes in Computer Science, pages
1–12. Springer, 1998.

[39] M. Blum. Coin flipping by telephone. In Proc. IEEE COMPCOM, pages
133–137, 1982.

[40] M. Blum and S. Goldwasser. An efficient probabilistic public-key en-
cryption scheme which hides all partial information. In Advances in
Cryptology—Crypto ’84, volume 196 of Lecture Notes in Computer Sci-
ence, pages 289–302. Springer, 1985.

[41] M. Blum and S. Micali. How to generate cryptographically strong
sequences of pseudo-random bits. SIAM Journal on Computing,
13(4):850–864, 1984.

[42] D. Boneh. Twenty years of attacks on the RSA cryptosystem. Notices
of the American Mathematical Society, 46(2):203–213, 1999.

[43] D. Boneh. Simplified OAEP for the RSA and Rabin functions. In
Advances in Cryptology—Crypto 2001, volume 2139 of LNCS, pages
275–291. Springer, 2001.

[44] D. Boneh, A. Joux, and P.Q. Nguyen. Why textbook ElGamal and RSA
encryption are insecure. In Advances in Cryptology—Asiacrypt 2000,
volume 1976 of LNCS, pages 30–43. Springer, 2000.

[45] F. Boudot, P. Gaudry, A. Guillevic, N. Heninger, E. Thomé, and
P. Zimmermann. Comparing the difficulty of factorization and
discrete logarithm: A 240-digit experiment, 2020. Available at
https://eprint.iacr.org/2020/697.

[46] G. Brassard, P. Høyer, and A. Tapp. Quantum al-
gorithm for the collision problem, 1997. Available at
https://arxiv.org/abs/quant-ph/9705002.

https://arxiv.org
https://eprint.iacr.org

References 607

[47] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodol-
ogy, revisited. Journal of the ACM, 51(4):557–594, 2004.

[48] J.L. Carter and M.N. Wegman. Universal classes of hash functions. J.
Computer and System Sciences, 18(2):143–154, 1979.

[49] D. Chaum, E. van Heijst, and B. Pfitzmann. Cryptographically strong
undeniable signatures, unconditionally secure for the signer. In Ad-
vances in Cryptology—Crypto ’91, volume 576 of LNCS, pages 470–484.
Springer, 1992.

[50] L. Chen, D. Moody, A. Regenscheid, and K. Randall. Recommenda-
tions for discrete logarithm-based cryptography: Elliptic curve domain
parameters, October 2019. Draft NIST Special Publication 800-186;
available at https://doi.org/10.6028/NIST.SP.800-186-draft.

[51] L.N. Childs. A Concrete Introduction to Higher Algebra. Undergraduate
Texts in Mathematics. Springer, 2nd edition, 2000.

[52] B. Cogliati, Y. Dodis, J. Katz, J. Lee, J. Steinberger, A. Thiruven-
gadam, and Z. Zhang. Provable security of (tweakable) block ci-
phers based on substitution-permutation networks. In Advances in
Cryptology—Crypto 2018, Part I, volume 10991 of LNCS, pages 722–
753. Springer, 2018.

[53] D. Coppersmith. The Data Encryption Standard (DES) and its strength
against attacks. IBM Journal of Research and Development, 38(3):243–
250, 1994.

[54] D. Coppersmith. Small solutions to polynomial equations, and low ex-
ponent RSA vulnerabilities. Journal of Cryptology, 10(4):233–260, 1997.

[55] D. Coppersmith, M.K. Franklin, J. Patarin, and M.K. Reiter. Low-
exponent RSA with related messages. In Advances in Cryptology—
Eurocrypt ’96, volume 1070 of LNCS, pages 1–9. Springer, 1996.

[56] J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle–Damg̊ard re-
visited: How to construct a hash function. In Advances in Cryptology—
Crypto 2005, volume 3621 of LNCS, pages 430–448. Springer, 2005.

[57] J.-S. Coron, M. Joye, D. Naccache, and P. Paillier. New attacks on
PKCS #1 v1.5 encryption. In Advances in Cryptology—Eurocrypt 2000,
volume 1807 of LNCS, pages 369–381. Springer, 2000.

[58] R. Cramer and V. Shoup. Design and analysis of practical public-key
encryption schemes secure against adaptive chosen ciphertext attack.
SIAM Journal on Computing, 33(1):167–226, 2003.

https://doi.org

608 Introduction to Modern Cryptography

[59] R. Crandall and C. Pomerance. Prime Numbers: A Computational
Perspective. Springer, 2nd edition, 2005.

[60] I. Damg̊ard. Collision free hash functions and public key signature
schemes. In Advances in Cryptology—Eurocrypt ’87, volume 304 of
LNCS, pages 203–216. Springer, 1988.

[61] I. Damg̊ard. A design principle for hash functions. In Advances in
Cryptology—Crypto ’89, volume 435 of LNCS, pages 416–427. Springer,
1990.

[62] J. DeLaurentis. A further weakness in the common modulus protocol
for the RSA cryptoalgorithm. Cryptologia, 8:253–259, 1984.

[63] G. Di Crescenzo, J. Katz, R. Ostrovsky, and A. Smith. Efficient and non-
interactive non-malleable commitment. In Advances in Cryptology—
Eurocrypt 2001, volume 2045 of LNCS, pages 40–59. Springer, 2001.

[64] M. Dietzfelbinger. Primality Testing in Polynomial Time. Springer,
2004.

[65] W. Diffie and M. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, 1976.

[66] W. Diffie and M. Hellman. Exhaustive cryptanalysis of the NBS data
encryption standard. Computer, pages 74–84, June 1977.

[67] J.D. Dixon. Asymptotically fast factorization of integers. Mathematics
of Computation, 36:255–260, 1981.

[68] D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. SIAM
J. Computing, 30(2):391–437, 2000. Preliminary version in STOC ’91.

[69] C. Ellison and B. Schneier. Ten risks of PKI: What you’re not being told
about public key infrastructure. Computer Security Journal, 16(1):1–7,
2000.

[70] S. Even and Y. Mansour. A construction of a cipher from a single
pseudorandom permutation. J. Cryptology, 10(3):151–162, 1997.

[71] H. Feistel. Cryptography and computer privacy. Scientific American,
228(5):15–23, 1973.

[72] A. Fiat and A. Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Advances in Cryptology—
Crypto ’86, volume 263 of LNCS, pages 186–194. Springer, 1987.

[73] R. Fischlin and C.-P. Schnorr. Stronger security proofs for RSA and
Rabin bits. Journal of Cryptology, 13(2):221–244, 2000.

References 609

[74] J.B. Fraleigh. A First Course in Abstract Algebra. Addison Wesley, 7th
edition, 2002.

[75] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP is
secure under the RSA assumption. Journal of Cryptology, 17(2):81–104,
2004.

[76] S.D. Galbraith. The Mathematics of Public Key Cryptography. Cam-
bridge University Press, 2012.

[77] T. El Gamal. A public-key cryptosystem and a signature scheme based
on discrete logarithms. IEEE Trans. Info. Theory, 31(4):469–472, 1985.

[78] C.F. Gauss. Disquisitiones Arithmeticae. Springer, 1986. (English edi-
tion).

[79] R. Gennaro, Y. Gertner, and J. Katz. Lower bounds on the efficiency of
encryption and digital signature schemes. In 35th Annual ACM Sym-
posium on Theory of Computing, pages 417–425. ACM Press, 2003.

[80] E.N. Gilbert, F.J. MacWilliams, and N.J.A. Sloane. Codes which detect
deception. Bell Systems Technical Journal, 53(3):405–424, 1974.

[81] O. Goldreich. Two remarks concerning the Goldwasser-Micali-Rivest
signature scheme. In Advances in Cryptology—Crypto ’86, volume 263
of LNCS, pages 104–110. Springer, 1987.

[82] O. Goldreich. Foundations of Cryptography, vol. 1: Basic Tools. Cam-
bridge University Press, 2001.

[83] O. Goldreich. Foundations of Cryptography, vol. 2: Basic Applications.
Cambridge University Press, 2004.

[84] O. Goldreich, S. Goldwasser, and S. Micali. On the cryptographic ap-
plications of random functions. In Advances in Cryptology—Crypto ’84,
volume 196 of LNCS, pages 276–288. Springer, 1985.

[85] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random
functions. Journal of the ACM, 33(4):792–807, 1986.

[86] O. Goldreich and L.A. Levin. A hard-core predicate for all one-way
functions. In 21st Annual ACM Symposium on Theory of Computing,
pages 25–32. ACM Press, 1989.

[87] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Com-
puter and System Sciences, 28(2):270–299, 1984.

[88] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM J. Computing,
17(2):281–308, 1988.

610 Introduction to Modern Cryptography

[89] S. Goldwasser, S. Micali, and A.C.-C. Yao. Strong signature schemes.
In Proc. 15th Annual ACM Symposium on Theory of Computing, pages
431–439. ACM, 1983.

[90] L.K. Grover. A fast quantum mechanical algorithm for
database search. In 28th Annual ACM Symposium on Theory
of Computing, pages 212–219. ACM Press, 1996. Available at
https://arxiv.org/abs/quant-ph/9605043.

[91] D. Hankerson, A.J. Menezes, and S.A. Vanstone. Guide to Elliptic Curve
Cryptography. Springer, 2004.

[92] J. H̊astad. Solving simultaneous modular equations of low degree. SIAM
Journal on Computing, 17(2):336–341, 1988.

[93] J. H̊astad, R. Impagliazzo, L. Levin, and M. Luby. A pseudorandom
generator from any one-way function. SIAM Journal on Computing,
28(4):1364–1396, 1999.

[94] J. H̊astad and M. Näslund. The security of all RSA and discrete log
bits. Journal of the ACM, 51(2):187–230, 2004.

[95] M. Hellman. A cryptanalytic time-memory trade-off. IEEE Trans. In-
formation Theory, 26(4):401–406, 1980.

[96] N. Heninger, Z. Durumeric, E. Wustrow, and J.A. Halderman. Mining
your Ps and Qs: Detection of widespread weak keys in network devices.
In Proc. 21st USENIX Security Symposium, 2012.

[97] I.N. Herstein. Abstract Algebra. Wiley, 3rd edition, 1996.

[98] H.M. Heys. The Design of Substitution-Permutation Network Ciphers
Resistant to Cryptanalysis. PhD thesis, Queen’s University, 1994.

[99] H.M. Heys. A tutorial on linear and differential cryptanal-
ysis. Cryptologia, 26(3):189–221, 2002. Also available at
http://www.engr.mun.ca/∼howard/Research/Papers/.

[100] D. Hofheinz and E. Kiltz. Practical chosen ciphertext secure encryption
from factoring. In Advances in Cryptology—Eurocrypt 2009, volume
5479 of LNCS, pages 313–332. Springer, 2009.

[101] R. Impagliazzo and M. Luby. One-way functions are essential for
complexity-based cryptography. In 30th Annual Symposium on Foun-
dations of Computer Science, pages 230–235. IEEE, 1989.

[102] ISO/IEC 9797. Data cryptographic techniques—data integrity mech-
anism using a cryptographic check function employing a block cipher
algorithm, 1989.

https://arxiv.org
http://www.engr.mun.ca

References 611

[103] T. Iwata and K. Kurosawa. OMAC: One-key CBC MAC. In Fast
Software Encryption—FSE 2003, volume 2887 of LNCS, pages 129–153.
Springer, 2003.

[104] J. Jonsson. On the security of CTR + CBC-MAC. In 9th Annual
International Workshop on Selected Areas in Cryptography—SAC 2002,
volume 2595 of LNCS, pages 76–93. Springer, 2003.

[105] A. Joux. Algorithmic Cryptanalysis. Chapman & Hall/CRC Press, 2009.

[106] D. Kahn. The Codebreakers: The Comprehensive History of Secret Com-
munication from Ancient Times to the Internet. Scribner, 1996.

[107] B. Kaliski. PKCS #1: RSA encryption, version 1.5, 1998. RFC 2313,
available at https://tools.ietf.org/html/rfc2313.

[108] B. Kaliski and J. Staddon. PKCS #1: RSA cryptogra-
phy specifications, version 2.0, 1998. RFC 2437, available at
https://tools.ietf.org/html/rfc2437.

[109] J. Katz. Digital Signatures. Springer, 2010.

[110] J. Katz and C.-Y. Koo. On constructing universal one-way hash func-
tions from arbitrary one-way functions. J. Cryptology, to appear. Avail-
able at https://eprint.iacr.org/2005/328.

[111] J. Katz and M. Yung. Unforgeable encryption and chosen ciphertext
secure modes of operation. In Fast Software Encryption—FSE 2000,
volume 1978 of LNCS, pages 284–299. Springer, 2000.

[112] J. Katz and M. Yung. Characterization of security notions for probabilis-
tic private-key encryption. Journal of Cryptology, 19(1):67–96, 2006.

[113] C. Kaufman, R. Perlman, and M. Speciner. Network Security: Private
Communication in a Public World. Prentice Hall, 2nd edition, 2002.

[114] A. Kerckhoffs. La cryptographie militaire. Journal des Sciences Mil-
itaires, IX:5–38, January 1883. A copy of the paper is available at
http://www.petitcolas.net/fabien/kerckhoffs.

[115] A. Kerckhoffs. La cryptographie militaire. Journal des Sciences Mili-
taires, IX:161–191, February 1883. A copy of the paper is available at
http://www.petitcolas.net/fabien/kerckhoffs.

[116] T. Kleinjung and B. Wesolowski. Discrete logarithms in quasi-
polynomial time in finite fields of fixed characteristic, 2019. Available
at https://eprint.iacr.org/2019/751.

[117] L. Knudsen and M.J.B. Robshaw. The Block Cipher Companion.
Springer, 2011.

https://eprint.iacr.org
https://tools.ietf.org
https://tools.ietf.org
https://eprint.iacr.org
http://www.petitcolas.net
http://www.petitcolas.net

612 Introduction to Modern Cryptography

[118] L.M. Kohnfelder. Towards a practical public-key cryptosystem, 1978.
Undergraduate thesis, MIT.

[119] T. Kohno, J. Viega, and D. Whiting. CWC: A high-performance conven-
tional authenticated encryption mode. In Fast Software Encryption—
FSE 2004, volume 3017 of LNCS, pages 408–426. Springer, 2004.

[120] H. Krawczyk. LFSR-based hashing and authentication. In Advances in
Cryptology—Crypto ’94, volume 839 of LNCS, pages 129–139. Springer,
1994.

[121] H. Krawczyk. New hash functions for message authentication. In Ad-
vances in Cryptology—Eurocrypt ’95, volume 921 of LNCS, pages 301–
310. Springer, 1995.

[122] H. Krawczyk. The order of encryption and authentication for protecting
communications (or: How secure is SSL?). In Advances in Cryptology—
Crypto 2001, volume 2139 of LNCS, pages 310–331. Springer, 2001.

[123] H. Krawczyk. Cryptographic extraction and key derivation: The HKDF
scheme. In Advances in Cryptology—Crypto 2010, volume 6223 of
LNCS, pages 631–648. Springer, 2010.

[124] L. Lamport. Constructing digital signatures from a one-way function.
Technical Report CSL-98, SRI International, 1978.

[125] A.K. Lenstra, J.P. Hughes, M. Augier, J.W. Bos, T. Kleinjung, and
C. Wachter. Public keys. In Advances in Cryptology—Crypto 2012,
volume 7417 of LNCS, pages 626–642. Springer, 2012.

[126] A.K. Lenstra and E.R. Verheul. Selecting cryptographic key sizes. Jour-
nal of Cryptology, 14(4):255–293, 2001.

[127] G. Leurent and T. Peyrin. From collisions to chosen-prefix collisions—
application to full SHA-1. In Advances in Cryptology—Eurocrypt 2019,
Part III, volume 11478 of LNCS, pages 527–555. Springer, 2019. Avail-
able at https://eprint.iacr.org/2019/459.

[128] G. Leurent and T. Peyrin. SHA-1 is a shambles: First chosen-prefix colli-
sion on SHA-1 and application to the PGP web of trust, 2020. Available
at https://eprint.iacr.org/2020/014.

[129] S. Levy. Crypto: How the Code Rebels Beat the Government—Saving
Privacy in the Digital Age. Viking, 2001.

[130] R. Lidl and H. Niederreiter. Introduction to Finite Fields and Their
Applications. Cambridge University Press, 2nd edition, 1994.

[131] M. Luby. Pseudorandomness and Cryptographic Applications. Princeton
University Press, 1996.

https://eprint.iacr.org
https://eprint.iacr.org

References 613

[132] M. Luby and C. Rackoff. How to construct pseudorandom permuta-
tions from pseudorandom functions. SIAM J. Computing, 17(2):373–
386, 1988.

[133] J. Manger. A chosen ciphertext attack on RSA optimal asymmetric
encryption padding (OAEP) as standardized in PKCS #1 v2.0. In
Advances in Cryptology—Crypto 2001, volume 2139 of LNCS, pages
230–238. Springer, 2001.

[134] M. Matsui. Linear cryptoanalysis method for DES cipher. In Advances
in Cryptology—Eurocrypt ’93, volume 765 of LNCS, pages 386–397.
Springer, 1993.

[135] A. May. New RSA Vulnerabilities Using Lattice Reduction Methods.
PhD thesis, University of Paderborn, 2003.

[136] D.A. McGrew and J. Viega. The security and performance of the Ga-
lois/counter mode (GCM) of operation. In Progress in Cryptology—
Indocrypt 2004, volume 3348 of LNCS, pages 343–355. Springer, 2004.

[137] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of
Applied Cryptography. CRS Press, 1997.

[138] R.C. Merkle. A digital signature based on a conventional encryption
function. In Advances in Cryptology—Crypto ’87, volume 293 of LNCS,
pages 369–378. Springer, 1988.

[139] R.C. Merkle. A certified digital signature. In Advances in Cryptology—
Crypto ’89, volume 435 of LNCS, pages 218–238. Springer, 1990.

[140] R.C. Merkle. One way hash functions and DES. In Advances in
Cryptology—Crypto ’89, volume 435 of LNCS, pages 428–446. Springer,
1990.

[141] R.C. Merkle and M. Hellman. On the security of multiple encryption.
Communications of the ACM, 24(7):465–467, 1981.

[142] S. Micali, C. Rackoff, and B. Sloan. The notion of security for proba-
bilistic cryptosystems. SIAM J. Computing, 17(2):412–426, 1988.

[143] G.L. Miller. Riemann’s hypothesis and tests for primality. Journal of
Computer and System Sciences, 13(3):300–317, 1976.

[144] C.J. Mitchell. On the security of 2-key triple DES, 2016. Available at
https://arxiv.org/pdf/1602.06229v2.pdf.

[145] K. Moriarty, B. Kaliski, J. Jonsson, and A. Rusch. PKCS #1: RSA
cryptography specifications, version 2.2, 2016. RFC 8017, available at
https://tools.ietf.org/html/rfc8017.

https://tools.ietf.org
https://arxiv.org

614 Introduction to Modern Cryptography

[146] M. Naor and M. Yung. Universal one-way hash functions and their
cryptographic applications. In Proc. 21st Annual ACM Symposium on
Theory of Computing, pages 33–43. ACM, 1989.

[147] M. Naor and M. Yung. Public-key cryptosystems provably secure
against chosen ciphertext attacks. In 22nd Annual ACM Symposium
on Theory of Computing, pages 427–437. ACM Press, 1990.

[148] National Bureau of Standards. Federal information processing standard
publication 81: DES modes of operation, 1980.

[149] National Institute of Standards and Technology. Federal information
processing standard publication 198-1: The keyed-hash message authen-
tication code (HMAC), July 2008.

[150] National Institute of Standards and Technology. Federal informa-
tion processing standards publication 186-4: Digital signature standard
(DSS), July 2013.

[151] National Institute of Standards and Technology. Federal in-
formation processing standards publication 186-5 (draft): Dig-
ital signature standard (DSS), October 2019. Available at
https://doi.org/10.6028/NIST.FIPS.186-5-draft.

[152] V.I. Nechaev. Complexity of a determinate algorithm for the discrete
logarithm. Mathematical Notes, 55(2):165–172, 1994.

[153] M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum
Information: 10th Anniversary Edition. Cambridge University Press,
2011.

[154] Y. Nir and A. Langley. ChaCha20 and Poly1305
for IETF protocols, 2018. RFC 8439, available at
https://tools.ietf.org/html/rfc8439.

[155] P. Oechslin. Making a faster cryptanalytic time-memory trade-off. In
Advances in Cryptology—Crypto 2003, volume 2729 of LNCS, pages
617–630. Springer, 2003.

[156] C. Paar and J. Pelzl. Understanding Cryptography. Springer, 2010.

[157] P. Paillier. Public-key cryptosystems based on composite degree resid-
uosity classes. In Advances in Cryptology—Eurocrypt ’99, volume 1592
of LNCS, pages 223–238. Springer, 1999.

[158] E. Petrank and C. Rackoff. CBC MAC for real-time data sources. Jour-
nal of Cryptology, 13(3):315–338, 2000.

https://tools.ietf.org
https://doi.org

References 615

[159] S. Pohlig and M. Hellman. An improved algorithm for computing log-
arithms over GF(p) and its cryptographic significance. IEEE Trans.
Information Theory, 24(1):106–110, 1978.

[160] J.M. Pollard. Theorems of factorization and primality testing. Proc.
Cambridge Philosophical Society, 76:521–528, 1974.

[161] J.M. Pollard. A Monte Carlo method for factorization. BIT Numerical
Mathematics, 15(3):331–334, 1975.

[162] J.M. Pollard. Monte Carlo methods for index computation (mod p).
Mathematics of Computation, 32(143):918–924, 1978.

[163] C. Pomerance. The quadratic sieve factoring algorithm. In Advances
in Cryptology—Eurocrypt ’84, volume 209 of LNCS, pages 169–182.
Springer, 1985.

[164] B. Preneel, R. Govaerts, and J. Vandewalle. Hash functions based
on block ciphers: A synthetic approach. In Advances in Cryptology—
Crypto ’93, volume 773 of LNCS, pages 368–378. Springer, 1994.

[165] M.O. Rabin. Digitalized signatures. In R.A. DeMillo, D.P. Dobkin, A.K.
Jones, and R.J. Lipton, editors, Foundations of Secure Computation,
pages 155–168. Academic Press, 1978.

[166] M.O. Rabin. Digitalized signatures as intractable as factorization. Tech-
nical Report TR-212, MIT/LCS, 1979.

[167] M.O. Rabin. Probabilistic algorithm for testing primality. Journal of
Number Theory, 12(1):128–138, 1980.

[168] C. Rackoff and D.R. Simon. Non-interactive zero-knowledge proof of
knowledge and chosen ciphertext attack. In Advances in Cryptology—
Crypto ’91, volume 576 of LNCS, pages 433–444. Springer, 1992.

[169] O. Regev. On lattices, learning with errors, random linear codes, and
cryptography. J. ACM, 56(6):34:1–34:40, 2009.

[170] E. Rescorla. The transport layer security (TLS) pro-
tocol version 1.3, 2018. RFC 8446, available at
https://tools.ietf.org/html/rfc8446.

[171] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM,
21(2):120–126, 1978.

[172] P. Rogaway. Nonce-based symmetric encryption. In Fast Software
Encryption—FSE 2004, volume 3017 of LNCS, pages 348–359. Springer,
2004.

https://tools.ietf.org

616 Introduction to Modern Cryptography

[173] P. Rogaway and T. Shrimpton. Cryptographic hash-function ba-
sics: Definitions, implications, and separations for preimage resistance,
second-preimage resistance, and collision resistance. In Fast Software
Encryption—FSE 2004, volume 3017 of LNCS, pages 371–388. Springer,
2004.

[174] J. Rompel. One-way functions are necessary and sufficient for secure
signatures. In Proc. 22nd Annual ACM Symposium on Theory of Com-
puting, pages 387–394. ACM, 1990.

[175] C.-P. Schnorr. Efficient identification and signatures for smart cards.
In Advances in Cryptology—Crypto ’89, volume 435 of LNCS, pages
239–252. Springer, 1990.

[176] D. Shanks. Class number, a theory of factorization, and genera. In Proc.
Symposia in Pure Mathematics 20, pages 415–440. American Mathemat-
ical Society, 1971.

[177] C.E. Shannon. Communication theory of secrecy systems. Bell Systems
Technical Journal, 28(4):656–715, 1949.

[178] P.W. Shor. Polynomial-time algorithms for prime factoriza-
tion and discrete logarithms on a quantum computer. SIAM
Journal on Computing, 26(5):1484–1509, 1997. Available at
https://arxiv.org/abs/quant-ph/9508027.

[179] V. Shoup. Lower bounds for discrete logarithms and related problems.
In Advances in Cryptology—Eurocrypt ’97, volume 1233 of LNCS, pages
256–266. Springer, 1997.

[180] V. Shoup. Why chosen ciphertext security matters. Techni-
cal Report RZ 3076, IBM Zurich, November 1998. Available at
http://shoup.net/papers/expo.pdf.

[181] V. Shoup. A proposal for an ISO standard for public key encryption,
2001. Available at https://eprint.iacr.org/201/112.

[182] V. Shoup. OAEP reconsidered. Journal of Cryptology, 15(4):223–249,
2002.

[183] V. Shoup. A Computational Introduction to Number Theory and Alge-
bra. Cambridge University Press, 2nd edition, 2009. Also available at
http://www.shoup.net/ntb.

[184] T. Shrimpton. A characterization of authenticated encryption
as a form of chosen-ciphertext security, 2004. Available at
eprint.iacr.org/2004/272.

https://arxiv.org
http://www.shoup.net
http://eprint.iacr.org
http://eprint.iacr.org
http://www.shoup.net

References 617

[185] J.H. Silverman and J. Tate. Rational Points on Elliptic Curves. Under-
graduate Texts in Mathematics. Springer, 1994.

[186] G. Simmons. A “weak” privacy protocol using the RSA crypto algo-
rithm. Cryptologia, 7:180–182, 1983.

[187] G. Simmons. A survey of information authentication. In G. Simmons,
editor, Contemporary Cryptology: The Science of Information Integrity,
pages 379–419. IEEE Press, 1992.

[188] S. Singh. The Code Book: The Science of Secrecy from Ancient Egypt
to Quantum Cryptography. Anchor Books, 2000.

[189] A. Smith and Y. Zhang. On the regularity of lossy RSA: Improved
bounds and applications to padding-based encryption. In 12th Theory
of Cryptography Conference — TCC 2015, volume 9014 of LNCS, pages
609–628. Springer, 2015.

[190] R. Solovay and V. Strassen. A fast Monte-Carlo test for primality. SIAM
Journal on Computing, 6(1):84–85, 1977.

[191] J. Song, R. Poovendran, J. Lee, and T. Iwata. The
AES-CMAC algorithm, 2006. RFC 4493, available at
https://tools.ietf.org/html/rfc4493.

[192] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, and Y. Markov.
The first collision for full SHA-1. In Advances in Cryptology—
Crypto 2017, Part I, volume 10401 of LNCS, pages 570–596. Springer,
2017.

[193] D.R. Stinson. Universal hashing and authentication codes. Designs,
Codes, and Cryptography, 4(4):369–380, 1994.

[194] D.R. Stinson. Cryptography: Theory and Practice. Chapman & Hall/
CRC Press, 1st edition, 1995.

[195] D.R. Stinson. Cryptography: Theory and Practice. Chapman & Hall/
CRC Press, 3rd edition, 2005.

[196] W. Trappe and L. Washington. Introduction to Cryptography with Cod-
ing Theory. Prentice Hall, 2nd edition, 2005.

[197] P.C. van Oorschot and M.J. Wiener. A known plaintext attack on two-
key triple encryption. In Advances in Cryptology—Eurocrypt ’90, vol-
ume 473 of LNCS, pages 318–325. Springer, 1990.

[198] P.C. van Oorschot and M.J. Wiener. Parallel collision search with crypt-
analytic applications. Journal of Cryptology, 12(1):1–28, 1999.

https://tools.ietf.org

618 Introduction to Modern Cryptography

[199] S. Vaudenay. Security flaws induced by CBC padding—applications to
SSL, IPSEC, WTLS, In Advances in Cryptology—Eurocrypt 2002,
volume 2332 of LNCS, pages 534–546. Springer, 2002.

[200] G.S. Vernam. Cipher printing telegraph systems for secret wire and
radio telegraphic communications. Journal of the American Institute
for Electrical Engineers, 55:109–115, 1926.

[201] S.S. Wagstaff, Jr. Cryptanalysis of Number Theoretic Ciphers. Chapman
& Hall/CRC Press, 2003.

[202] L. Washington. Elliptic Curves: Number Theory and Cryptography.
Chapman & Hall/CRC Press, 2003.

[203] M.N. Wegman and J.L. Carter. New hash functions and their use in
authentication and set equality. J. Computer and System Sciences,
22(3):265–279, 1981.

[204] D. Whiting, R. Housley, and N. Ferguson. Counter
with CBC-MAC (CCM), 2003. RFC 3610, available at
https://tools.ietf.org/html/rfc3610.

[205] A.C.-C. Yao. Theory and applications of trapdoor functions. In 23rd
Annual Symposium on Foundations of Computer Science, pages 80–91.
IEEE, 1982.

[206] G. Yuval. How to swindle Rabin. Cryptologia, 3:187–189, 1979.

https://tools.ietf.org

Index

3DES, see triple-DES

AES (Advanced Encryption Standard)
competition, 238
cryptanalysis, 240
design, 238–240

Assumptions, reliance on, 18–20, 64
Asymmetric encryption, see public-key

encryption
Asymptotic security, 45–51
Authenticated encryption, see private-

key encryption, 493
generic constructions, 154

Authenticated encryption scheme
CCM, 162
ChaCha20-Poly1305, 162
GCM, 161

Authentication, message, see message
authentication

Avalanche effect, 222–224, 226, 231

Birthday attack, 178–181, 369, 377, 501
small-space, 179–181, 369, 377

Birthday problem, 94, 119, 130, 178–
181, 184, 192, 235, 253, 369,
377, 457, 580–582

Bleichenbacher’s attack, 448
Block cipher, see pseudorandom permu-

tation, see strong pseudoran-
dom permutation, 88

AES, see AES
as strong pseudorandom permuta-

tion, 217–218
block length and security, 95, 235
constructing stream cipher from, 87
cryptanalysis, 224–228, 231–234, 236–

237, 240–246
DES, see DES
design principles, 217–224, 226–227
meet-in-the-middle attack on, 236,

237

modes of operation, 89–98, 107
security against quantum algorithms,

500
taxonomy of attacks, 218–219

Blum integer, 564

Caesar’s cipher, 6
CBC mode, see modes of operation
CBC-MAC, 120–128
CCM (Counter with CBC-MAC), 162
Certificate, 485–491

expiration, 490
revocation, 490

Certificate authority, 486
ChaCha20, 162, 216–217
ChaCha20-Poly1305, 162
Challenge ciphertext, 29, 54
Chebyshev’s inequality, 578
Chernoff bound, 580
Chinese remainder theorem, 317, 317–

321, 329, 335, 366–368, 374,
440, 455, 548, 560, 562

Chosen-ciphertext attack, see private-
key encryption, CCA-security,
see public-key encryption, CCA-
security, 18, 146–149, 149–151,
413–414, 424, 442, 447–448,
450, 566

on block cipher, 219
Chosen-plaintext attack, see private-key

encryption, CPA-security, see
public-key encryption, CPA-
security, 18, 72–75, 187, 240,
406

on block cipher, 218, 246
Cipher-block chaining, see CBC-MAC,

see modes of operation, CBC
mode

Ciphertext-only attack, see private-key
encryption, EAV-security, 17,
27, 52

619

620 Introduction to Modern Cryptography

Collision-resistant hash function

birthday attack on, 178–181

construction, 357–359, 363

Davies–Meyer construction, 246–249

definition of collision resistance, 169

design principles, 246–249

fingerprinting using, 195

Keccak, 250–253

MD5, 249

Merkle trees based on, 196–197

Merkle–Damg̊ard transform, 170–
172

message authentication using, 172–
177

random oracle as, 191

security against quantum algorithms,
501

SHA family, 249–250

SHA-1, 249–250

SHA-2, 250

SHA-3, 250–253

signature scheme based on, 513–
522

syntax, 168

Commitment scheme, 200–202

Compression function, 168, 170, 175

Davies–Meyer construction, 246–249

Computational Diffie–Hellman assump-
tion, 340, 393, 432

KEM based on, 434

Computational indistinguishability, 296–
298, 341, 420

Computational security, 43–51

Computing discrete logarithms, algorithms
for, 372–380

baby-step/giant-step, 373, 375–377

index calculus, 378–380

number field sieve, 374

Pohlig–Hellman, 341, 373–375

Pollard’s rho, 373, 377

quantum algorithm, 503

Shanks’ algorithm, 373

Concrete security, 44–45, 69, 84, 95,
179, 217, 235, 266, 365, 380

Confusion-diffusion paradigm, 219

Coppersmith’s theorem, 439

Counter mode, see modes of operation,
CTR mode, see CTR mode

CPA-security, see chosen-plaintext at-
tack

Cryptographic hash function, see ran-
dom oracle, see collision-resistant
hash function

application to password hashing, 198–
199

collision resistance, 169
commitment scheme from, 200–202
Fiat–Shamir transform using, 477
key derivation using, 199–200
preimage resistance, 170, 182
second-preimage resistance, 170, 198
security notions, 170

CTR mode, see modes of operation, 92–
95

Data Encryption Standard, see DES
Data integrity, see message authentica-

tion
Data-encapsulation mechanism (DEM),

see KEM/DEM paradigm, 417
Davies–Meyer construction, 246–249
Decisional Diffie–Hellman assumption,

341, 342, 394, 431
KEM based on, 430
key exchange based on, 394
public-key encryption based on, 428

Definitions, importance of, 15–16
DES (Data Encryption Standard)

cryptanalysis, 231–234, 240–246
design, 228–231
mangler function, 229
security, 234–235
triple-DES, see triple-DES

DHIES, 434
Difference-universal function, 128–132,

137–138
Differential cryptanalysis, 240–245
Diffie–Hellman key exchange, 389–396,

426
insecurity against man-in-the-middle

attacks, 395
Digital Signature Standard (DSS), see

DSA, see ECDSA
Discrete-logarithm assumption, 339, 341,

393, 594
collision resistance from, 359
signatures from, 475–485

Index 621

Discrete-logarithm problem, see comput-
ing discrete logarithms, algo-
rithms for, 340

elliptic-curve groups and, 374, 380
one-way permutation from, 266
preference for prime-order groups,

341, 343, 357, 373, 602
Division with remainder, 307
Domain extension

collision-resistant hash function, 170,
196

message authentication code, 116
private-key encryption, 75
public-key encryption, 408
signature scheme, 467–468

Double encryption, 236
DSA, 483–485

EAV-security, 55, 52–55, 65–69, 419
ECB mode, see modes of operation
ECDSA, 483–485
ECIES, 436
(Twisted) Edwards representation, 350
El Gamal encryption, 426–430, 538
Elliptic curves, 345–354, 380

affine vs. projective coordinates, 352
Curve25519, 354
ECDSA signature scheme, 483
ECIES encryption scheme, 435
(Twisted) Edwards representation,

350
Montgomery representation, 350
P-256, 354
point compression, 352
secp256k1, 354
Weierstrass representation, 346

Encryption, see private-key encryption,
see public-key encryption, see
private-key encryption

definitions of security for, 16–18
Euclidean algorithm, 308, 321, 457, 590–

591, 592
extended, 591

Euler phi function, 316
Existential unforgeability, 467, 510
Existential unforgeability under adap-

tive chosen-message attack, 110
Exponentiation, group, 313–315

algorithm for, 593–595

Extractor, strong, 431

Factoring, algorithms for, 366–372
general number field sieve, 366, 374
Pollard’s p− 1, 367–368
Pollard’s rho, 368–369
quadratic sieve, 369–372
quantum algorithm, 503
trial division, 322, 366

Factoring, hardness of, 322, 331
one-way function from, 265, 356
one-way permutation from, 561
relation between RSA and, 334–336,

556, 565
trapdoor permutation from, 561

Family, one-way function, 265
Family, one-way permutation, 265, 356
Feistel network, 226–229, 289, 448

cryptanalysis, 227–228, 231–234
round function in, 226

Fiat–Shamir transform, 477–480
Forward secrecy, 493
Frequency analysis, 9, 10, 12, 33
Full domain hash (FDH), 470–475

Gap-CDH assumption, 434
GCM (Galois/counter mode), 161
GMAC, 132
Goldreich–Levin theorem, 269
Goldwasser–Micali encryption, 553–556
Group, 311

Z∗N2 , 530
ZN , 312, 315, 591, 598
Z∗N , 315, 591, 598
cyclic, 336
elliptic-curve, 345–354

Grover’s algorithm, 500–502

Hard-core predicate, 266–277
definition, 267
for Rabin, 565
for RSA, 443
from one-way function, 274
Goldreich–Levin, 269
used for pseudorandom number gen-

eration, 277–279, 284
used for public-key encryption, 444–

447, 527–529, 565

622 Introduction to Modern Cryptography

Hash function, see collision-resistant hash
function, see cryptographic hash
function, see random oracle

Hash-and-sign, 467–468
Historical ciphers, 6–14

Caesar’s cipher, 6
shift cipher, 7, 10, 26
substitution cipher, 8
Vigenère cipher, 11, 30

HMAC, 174–177
Homomorphic encryption, 537–538, 543,

568
Hybrid argument, 282, 284, 285, 287,

288, 298, 411
Hybrid encryption, 415–425

Ideal-cipher model, 247, 250
Identification scheme, 476–482

Schnorr, 480–482
Index of coincidence, 13
Indistinguishability of encryptions, 53–

55, 57, 58, 405
perfect, 29

Indistinguishability, computational, see
computational indistinguisha-
bility

Information-theoretic encryption, see per-
fect secrecy

Information-theoretic message authen-
tication, 133–139

Integrity (of data), see message authen-
tication

Isomorphism, group, 317, 319, 339, 373,
530

Jacobi symbol, 546–552
computation of, 552

Kasiski’s method, 12
Keccak, see SHA-3, 250
KEM/DEM paradigm, 415–425, 435
Kerckhoffs’ principle, 5
Key derivation, 199–200, 395, 431, 492
Key distribution center (KDC), 386–389

Kerberos, 388
Needham–Schroeder protocol, 388

Key lengths, recommended, 380
Key-encapsulation mechanism (KEM),

see KEM/DEM paradigm, 415–
425

CCA-security, 424–425
CDH-based, 431–434
CPA-security, 419–424
DDH-based, 430–431
RSA-based, 445–447, 451–455

Key-exchange protocol, 87, see Diffie–
Hellman key exchange, 389–
396

definition of security for, 391
Diffie–Hellman, 389
forward secrecy, 493
TLS, 491–493

Known-plaintext attack, 17, 72, 187
on block cipher, 218, 232, 246

Lamport signature scheme, 510–513
Learning with Errors (LWE) assump-

tion, 504–509
Legendre symbol, 546
Linear cryptanalysis, 245
Linear-feedback shift register (LFSR),

208–211
Logarithm, discrete, see discrete-logarithm

problem

Malleability, see non-malleability, 150,
414, 434, 447

Manger’s attack, 450
Markov’s inequality, 578
MD5, 249
Meet-in-the-middle attack, 236, 237
Merkle tree, 196–197, 515
Merkle–Damg̊ard transform, 170–172,

195, 246
Message authentication, see message au-

thentication code, 105–106
combined with encryption, 151–162
information-theoretic, 133–139
unsuitability of encryption for, 96
vs. digital signature, 464
vs. private-key encryption, 106–108

Message authentication code
canonical verification, 109, 112, 113
CBC-MAC, 120–128
definition of security for, 110, 112,

134
fixed-length vs. arbitrary-length mes-

sages, 116–120, 122
GMAC, 132

Index 623

HMAC, 174–177
Poly1305, 132
replay attack, 111–112, 162–164
strong security for, 112
syntax, 109
timing attack on, 113

Message integrity, see message authen-
tication

Miller–Rabin algorithm, 324, 325–331
Modern cryptography, principles of, 14–

20
Modes of operation, see private-key en-

cryption
Block-cipher based, 89–98
CBC mode, 89–91, 95, 107, 121,

146–148
CTR mode, 92–95, 95, 107, 235
ECB mode, 89, 107
OFB mode, 92, 95, 107
Stream-cipher based, 87

Montgomery multiplication, 595
Montgomery representation, 350

Negligible probability, 46, 48–49
Non-malleability, 150, 414
Non-repudiation, 397
Nonce-based private-key encryption

syntax, 97

OAEP, 447–451
OFB mode, see modes of operation
One-time MAC, see message authenti-

cation, information-theoretic
One-time pad, 31–33, 65, 67, 107
One-time signature, 510–513

construction of, 510
definition of security for, 510

One-way function, 262–266, 305, 354–
356

candidates, 265
definition, 263
family, 265
necessary for cryptography, 296
signature scheme based on, 510, 522
sufficient for private-key cryptog-

raphy, 293
One-way permutation, 264, 356–357

based on discrete-logarithm assump-
tion, 266

based on factoring, 563
family, 265, 356
pseudorandom generator from, 268

Padding-oracle attack, 146–149, 413,
447

Paillier encryption, 532–539
Perfect indistinguishability, 29
Perfect secrecy

comparison to computational secu-
rity, 43, 53, 64

definitions of, 27–30
impossibility for public-key encryp-

tion, 406
limitations of, 33, 43
one-time pad, 31
Shannon’s theorem, 34
Vernam’s cipher, 31

PGP, 488, 489
φ(N), see Euler phi function
PKCS #1 v1.5, 442, 447
PKCS #1 v2.0, 448
PKCS #1 v2.1, 470–475
Pohlig–Hellman algorithm, see comput-

ing discrete logarithms, algo-
rithms for

Pollard’s p−1, see factoring, algorithms
for

Pollard’s rho, see computing discrete log-
arithms, algorithms for, see fac-
toring, algorithms for

Poly1305, 132
Polynomial-time computation, 46, 47,

50
Primes

distribution of, 323
generation of, 324, 322–325
strong, 325, 368, 602
testing of, see Miller–Rabin algo-

rithm
Private-key cryptography

setting, 2
Private-key encryption

arbitrary-length messages, see modes
of operation, 56, 75

authenticated encryption, 151–162
CCA-security, 145–151
combined with message authenti-

cation, 151–162

624 Introduction to Modern Cryptography

CPA-security, 72–75, 80–84

definition of security for, 55, 59, 70,
74, 98, 149, 151, 153

EAV-security, 55

from one-way function, 293

hiding message length in, 55

indistinguishability in the presence
of an eavesdropper, 419

limitations of, 385–386

modes of operation, 84–98

multiple-message security, 70–72, 74–
75, 150

semantic security, 53, 56–60

setting, 2, 402

stateful, 91

stateless vs. stateful, 52

syntax, 4, 24, 52

threat models, 17

vs. message authentication, 96, 106–
108

vs. public-key encryption, 402

Probabilistic algorithms, 47–48

Probabilistic encryption, 71, 406

Proofs by reduction, 57, 64–65, 69

Proofs, importance of, 20

Pseudorandom function, 76–79, 79, 269,
284–289, 521

construction from pseudorandom gen-
erator, 285

construction in the random-oracle
model, 192

CPA-secure encryption from, 80

definition, 77

message authentication from, 114–
116

proofs of security based on, 81

pseudorandom generator from, 78

Pseudorandom generator, see stream ci-
pher, 60–64, 277–284, 297

construction from one-way permu-
tation, 268, 278

definition, 62

EAV-secure encryption from, 66

from one-way permutation, 284

from pseudorandom function, 78

increasing expansion factor, 268, 279

random oracle as, 191

variable-output-length, 85

Pseudorandom permutation, see block
cipher, 79–80, 269

block cipher as, 217–218
construction from pseudorandom func-

tion, 289
definition, 80
vs. strong pseudorandom permuta-

tion, 80
Public keys, secure distribution of, 403,

485
Public-key encryption

arbitrary-length messages and, 408
CCA-security, 412–415, 434, 451
CPA-security, 405–447
deterministic encryption and, 406
DHIES, 434–436
El Gamal, 426–430, 538, 543
from trapdoor permutations, 527
Goldwasser–Micali, 553–556
homomorphic, 537, 543
hybrid encryption, see hybrid en-

cryption
in the random-oracle model, 448
LWE-based, 503–509
multiple message security, 407
OAEP, 447–451
padded RSA, 440–442
Paillier, 532–539
PKCS #1 v1.5, 442
PKCS #1 v2.0, 448
plain RSA, 436–440, 565
post-quantum, 503–509
Rabin, 564–566
setting, 396, 401, 402
signcryption, 493–495
syntax, 404
threshold, 543
vs. private-key encryption, 402

Public-key infrastructure (PKI), 485–491

Quadratic residue
modulo a composite, 370, 548–552
modulo a prime, 346, 545–548

Quadratic residuosity assumption, 552–
553

Quantum computing, 499

Rabin encryption, 564–566
Rainbow table, 183, 198

Index 625

Random function, 189
Random oracle

as collision-resistant hash function,
191

as pseudorandom generator, 191
extractability, 190, 455
programmability of, 191, 455, 472
used to construct a KEM, 431
used to construct pseudorandom func-

tion, 192
used to construct public-key encryp-

tion, 448
used to construct signature scheme,

471, 477
Random-number generation, 23–24
Random-oracle model, see random ora-

cle, 217, 247, 250
overview, 187–195

Random-permutation model, 217, 247,
250

RC4, 213–216
cryptanalysis, 215

Replay attack, 111–112, 162–164, 466
Rijndael, see AES
RSA assumption, 331–336, 357

collision resistance from, 363
public-key encryption from, 436–

457
relation between factoring and, 334–

336, 556, 565
signatures from, 468–475

S-box, 220, 222–224, 229
Secret-key encryption, see private-key

encryption
Secret-sharing scheme, 539–543

Shamir’s, 540
verifiable, 541

Security parameter, 45–47, 52, 54
Semantic security, 56–60
SHA family, 249–250
SHA-3, 250

competition, 250
Shanks’ algorithm, see computing dis-

crete logarithms, algorithms for
Shannon’s theorem, 34–36
Shift cipher, 7, 26
Shor’s algorithm, 502–503
Signature scheme

based on hash function, 509
based on one-way function, 509
certificate, see certificate
chain-based, 513
definition of security for, 467, 510
DSA, 483–485
ECDSA, 483–485
EdDSA, 483
Lamport, 510–513
one-time signature, 510–513
overview of, 463
PKCS #1 v2.1, 470–475
plain RSA, 468
properties of, 464
RSA-FDH, 470–475
Schnorr, 475–483
signcryption, 493–495
stateful, 513
strong security for, 495
syntax, 466
tree-based, 516–522
vs. message authentication, 464

Signcryption, 493–495
Sponge construction, 250
Square root

modulo a composite, 334, 370, 560–
563

modulo a prime, 328, 556–560
SSL, see (LS)1
Stream cipher, see pseudorandom gen-

erator, 85–87, 284
ChaCha20, 216–217
from block cipher, 87
linear-feedback shift register, 208–

211
modes of operation, 87–107
RC4, 213–216
Trivium, 212–213

Strong primes, see primes
Strong pseudorandom permutation, see

block cipher, 79–80
construction from pseudorandom func-

tion, 292
definition, 80
vs. pseudorandom permutation, 80

Strongly secure message authentication
code, 112, 129, 157, 436, 495

Strongly secure signature scheme, 495
Strongly universal function, 134–136

626 Introduction to Modern Cryptography

Substitution cipher, 8
Substitution-permutation network, 219–

226, 239
cryptanalysis, 224–226

Sufficient key-space principle, 8
Symmetric-key encryption, see private-

key encryption

Threshold encryption, 543
Time/space tradeoff, 181–187, 234
Timing attack, 113, 157
TLS, 146, 157, 491–493
Trapdoor permutation, 525–527, 561–

564
based on factoring, 564
based on RSA assumption, 526
public-key encryption from, 527

Triple encryption, 237
Triple-DES, 228, 237, 238
Trivium, 212–213

Unforgeable encryption
definition of, 151

Union bound, 576

Verifiable secret sharing (VSS), 541
Vernam’s cipher, see one-time pad
Vigenère cipher, 11, 30
Voting, electronic, 538, 543

Weierstrass representation, 346

ZN , 312, 315, 591, 598
Z∗N , 315–321, 331, 591, 598
Z∗N2 , 530–532

	Cover
	Half Title
	Series Page
	Title Page
	Copyright Page
	Dedication
	Table of Contents
	Preface
	I: Introduction and Classical Cryptography
	1: Introduction
	1.1 Cryptography and Modern Cryptography
	1.2 The Setting of Private-Key Encryption
	1.3 Historical Ciphers and Their Cryptanalysis
	1.4 Principles of Modern Cryptography
	1.4.1 Principle 1 { Formal De�nitions
	1.4.2 Principle 2 { Precise Assumptions
	1.4.3 Principle 3 { Proofs of Security
	1.4.4 Provable Security and Real-World Security

	References and Additional Reading
	Exercises

	2: Perfectly Secret Encryption
	2.1 Defnitions
	2.2 The One-Time Pad
	2.3 Limitations of Perfect Secrecy
	2.4 *Shannon's Theorem
	References and Additional Reading
	Exercises

	II: Private-Key (Symmetric) Cryptography
	3: Private-Key Encryption
	3.1 Computational Security
	3.1.1 The Concrete Approach
	3.1.2 The Asymptotic Approach

	3.2 Defining Computationally Secure Encryption
	3.2.1 The Basic Definition of Security (EAV-Security)
	3.2.2 *Semantic Security

	3.3 Constructing an EAV-Secure Encryption Scheme
	3.3.1 Pseudorandom Generators
	3.3.2 Proofs by Reduction
	3.3.3 EAV-Security from a Pseudorandom Generator

	3.4 Stronger Security Notions
	3.4.1 Security for Multiple Encryptions
	3.4.2 Chosen-Plaintext Attacks and CPA-Security
	3.4.3 CPA-Security for Multiple Encryptions

	3.5 Constructing a CPA-Secure Encryption Scheme
	3.5.1 Pseudorandom Functions and Permutations
	3.5.2 CPA-Security from a Pseudorandom Function

	3.6 Modes of Operation and Encryption in Practice
	3.6.1 Stream Ciphers
	3.6.2 Stream-Cipher Modes of Operation
	3.6.3 Block Ciphers and Block-Cipher Modes of Operation
	3.6.4 *Nonce-Based Encryption

	References and Additional Reading
	Exercises

	4: Message Authentication Codes
	4.1 Message Integrity
	4.1.1 Secrecy vs. Integrity
	4.1.2 Encryption vs. Message Authentication

	4.2 Message Authentication Codes (MACs) - Definitions
	4.3 Constructing Secure Message Authentication Codes
	4.3.1 A Fixed-Length MAC
	4.3.2 Domain Extension for MACs

	4.4 CBC-MAC
	4.4.1 The Basic Construction
	4.4.2 *Proof of Security

	4.5 GMAC and Poly1305
	4.5.1 MACs from Difference-Universal Functions
	4.5.2 Instantiations

	4.6 *Information-Theoretic MACs
	4.6.1 One-Time MACs from Strongly Universal Functions
	4.6.2 One-Time MACs from Difference-Universal Functions
	4.6.3 Limitations on Information-Theoretic MACs

	References and Additional Reading
	Exercises

	5: CCA-Security and Authenticated Encryption
	5.1 Chosen-Ciphertext Attacks and CCA-Security
	5.1.1 Padding-Oracle Attacks
	5.1.2 Defining CCA-Security

	5.2 Authenticated Encryption
	5.2.1 Defining Authenticated Encryption
	5.2.2 CCA Security vs. Authenticated Encryption

	5.3 Authenticated Encryption Schemes
	5.3.1 Generic Constructions
	5.3.2 Standardized Schemes

	5.4 Secure Communication Sessions
	References and Additional Reading
	Exercises

	6: Hash Functions and Applications
	6.1 Definitions
	6.1.1 Collision Resistance
	6.1.2 Weaker Notions of Security

	6.2 Domain Extension: The Merkle-Damgård Transform
	6.3 Message Authentication Using Hash Functions
	6.3.1 Hash-and-MAC
	6.3.2 HMAC

	6.4 Generic Attacks on Hash Functions
	6.4.1 Birthday Attacks for Finding Collisions
	6.4.2 Small-Space Birthday Attacks
	6.4.3 *Time/Space Tradeoffs for Inverting Hash Functions

	6.5 The Random-Oracle Model
	6.5.1 The Random-Oracle Model in Detail
	6.5.2 Is the Random-Oracle Methodology Sound?

	6.6 Additional Applications of Hash Functions
	6.6.1 Fingerprinting and Deduplication
	6.6.2 Merkle Trees
	6.6.3 Password Hashing
	6.6.4 Key Derivation
	6.6.5 Commitment Schemes

	References and Additional Reading
	Exercises

	7: Practical Constructions of Symmetric-Key Primitives
	7.1 Stream Ciphers
	7.1.1 Linear-Feedback Shift Registers
	7.1.2 Adding Nonlinearity
	7.1.3 Trivium
	7.1.4 RC4
	7.1.5 ChaCha20

	7.2 Block Ciphers
	7.2.1 Substitution-Permutation Networks
	7.2.2 Feistel Networks
	7.2.3 DES - The Data Encryption Standard
	7.2.4 3DES: Increasing the Key Length of a Block Cipher
	7.2.5 AES - The Advanced Encryption Standard
	7.2.6 *Differential and Linear Cryptanalysis

	7.3 Compression Functions and Hash Functions
	7.3.1 Compression Functions from Block Ciphers
	7.3.2 MD5, SHA-1, and SHA-2
	7.3.3 The Sponge Construction and SHA-3 (Keccak)

	References and Additional Reading
	Exercises

	8: *Theoretical Constructions of Symmetric-Key Primitives
	8.1 One-Way Functions
	8.1.1 Definitions
	8.1.2 Candidate One-Way Functions
	8.1.3 Hard-Core Predicates

	8.2 From One-Way Functions to Pseudorandomness
	8.3 Hard-Core Predicates from One-Way Functions
	8.3.1 A Simple Case
	8.3.2 A More Involved Case
	8.3.3 The Full Proof

	8.4 Constructing Pseudorandom Generators
	8.4.1 Pseudorandom Generators with Minimal Expansion
	8.4.2 Increasing the Expansion Factor

	8.5 Constructing Pseudorandom Functions
	8.6 Constructing (Strong) Pseudorandom Permutations
	8.7 Assumptions for Private-Key Cryptography
	8.8 Computational Indistinguishability
	References and Additional Reading
	Exercises

	III: Public-Key (Asymmetric) Cryptography
	9: Number Theory and Cryptographic Hardness Assumptions
	9.1 Preliminaries and Basic Group Theory
	9.1.1 Primes and Divisibility
	9.1.2 Modular Arithmetic
	9.1.3 Groups
	9.1.4 The Group ℤ*N
	9.1.5 *Isomorphisms and the Chinese Remainder Theorem

	9.2 Primes, Factoring, and RSA
	9.2.1 Generating Random Primes
	9.2.2 *Primality Testing
	9.2.3 The Factoring Assumption
	9.2.4 The RSA Assumption
	9.2.5 *Relating the Factoring and RSA Assumptions

	9.3 Cryptographic Assumptions in Cyclic Groups
	9.3.1 Cyclic Groups and Generators
	9.3.2 The Discrete-Logarithm/Diffie-Hellman Assumptions
	9.3.3 Working in (Subgroups of) ℤ*p
	9.3.4 Elliptic Curves

	9.4 *Cryptographic Applications
	9.4.1 One-Way Functions and Permutations
	9.4.2 Collision-Resistant Hash Functions

	References and Additional Reading
	Exercises

	10: *Algorithms for Factoring and Computing Discrete Logarithms
	10.1 Algorithms for Factoring
	10.1.1 Pollard's p - 1 Algorithm
	10.1.2 Pollard's Rho Algorithm
	10.1.3 The Quadratic Sieve Algorithm

	10.2 Generic Algorithms for Computing Discrete Logarithms
	10.2.1 The Pohlig-Hellman Algorithm
	10.2.2 The Baby-Step/Giant-Step Algorithm
	10.2.3 Discrete Logarithms from Collisions

	10.3 Index Calculus: Computing Discrete Logarithms in ℤ*p
	10.4 Recommended Key Lengths
	References and Additional Reading
	Exercises

	11: Key Management and the Public-Key Revolution
	11.1 Key Distribution and Key Management
	11.2 A Partial Solution: Key-Distribution Centers
	11.3 Key Exchange and the Diffie-Hellman Protocol
	11.4 The Public-Key Revolution
	References and Additional Reading
	Exercises

	12: Public-Key Encryption
	12.1 Public-Key Encryption - An Overview
	12.2 Definitions
	12.2.1 Security against Chosen-Plaintext Attacks
	12.2.2 Multiple Encryptions
	12.2.3 Security against Chosen-Ciphertext Attacks

	12.3 Hybrid Encryption and the KEM/DEM Paradigm
	12.3.1 CPA-Security
	12.3.2 CCA-Security

	12.4 CDH/DDH-Based Encryption
	12.4.1 El Gamal Encryption
	12.4.2 DDH-Based Key Encapsulation
	12.4.3 *A CDH-Based KEM in the Random-Oracle Model
	12.4.4 *Chosen-Ciphertext Security and DHIES/ECIES

	12.5 RSA-Based Encryption
	12.5.1 Plain RSA Encryption
	12.5.2 Padded RSA and PKCS #1 v1.5
	12.5.3 *CPA-Secure Encryption without Random Oracles
	12.5.4 OAEP and PKCS #1 v2
	12.5.5 *A CCA-Secure KEM in the Random-Oracle Model
	12.5.6 RSA Implementation Issues and Pitfalls

	References and Additional Reading
	Exercises

	13: Digital Signature Schemes
	13.1 Digital Signatures - An Overview
	13.2 Definitions
	13.3 The Hash-and-Sign Paradigm
	13.4 RSA-Based Signatures
	13.4.1 Plain RSA Signatures
	13.4.2 RSA-FDH and PKCS #1 Standards

	13.5 Signatures from the Discrete-Logarithm Problem
	13.5.1 Identification Schemes and Signatures
	13.5.2 The Schnorr Identification/Signature Schemes
	13.5.3 DSA and ECDSA

	13.6 Certificates and Public-Key Infrastructures
	13.7 Putting It All Together - TLS
	13.8 *Signcryption
	References and Additional Reading
	Exercises

	14: *Post-Quantum Cryptography
	14.1 Post-Quantum Symmetric-Key Cryptography
	14.1.1 Grover's Algorithm and Symmetric-Key Lengths
	14.1.2 Collision-Finding Algorithms and Hash Functions

	14.2 Shor's Algorithm and its Impact on Cryptography
	14.3 Post-Quantum Public-Key Encryption
	14.4 Post-Quantum Signatures
	14.4.1 Lamport's Signature Scheme
	14.4.2 Chain-Based Signatures
	14.4.3 Tree-Based Signatures

	References and Additional Reading
	Exercises

	15 *Advanced Topics in Public-Key Encryption
	15.1 Public-Key Encryption from Trapdoor Permutations
	15.1.1 Trapdoor Permutations
	15.1.2 Public-Key Encryption from Trapdoor Permutations

	15.2 The Paillier Encryption Scheme
	15.2.1 The Structure of ℤ*N2
	15.2.2 The Paillier Encryption Scheme
	15.2.3 Homomorphic Encryption

	15.3 Secret Sharing and Threshold Encryption
	15.3.1 Secret Sharing
	15.3.2 Verifiable Secret Sharing
	15.3.3 Threshold Encryption and Electronic Voting

	15.4 The Goldwasser-Micali Encryption Scheme
	15.4.1 Quadratic Residues Modulo a Prime
	15.4.2 Quadratic Residues Modulo a Composite
	15.4.3 The Quadratic Residuosity Assumption
	15.4.4 The Goldwasser-Micali Encryption Scheme

	15.5 The Rabin Encryption Scheme
	15.5.1 Computing Modular Square Roots
	15.5.2 A Trapdoor Permutation Based on Factoring
	15.5.3 The Rabin Encryption Scheme

	References and Additional Reading
	Exercises

	Index of Common Notation
	Appendix A: Mathematical Background
	A.1 Identities and Inequalities
	A.2 Asymptotic Notation
	A.3 Basic Probability
	A.4 The "Birthday" Problem
	A.5 *Finite Fields

	Appendix B: Basic Algorithmic Number Theory
	B.1 Integer Arithmetic
	B.1.1 Basic Operations
	B.1.2 The Euclidean and Extended Euclidean Algorithms

	B.2 Modular Arithmetic
	B.2.1 Basic Operations
	B.2.2 Computing Modular Inverses
	B.2.3 Modular Exponentiation
	B.2.4 *Montgomery Multiplication
	B.2.5 Choosing a Uniform Group Element

	B.3 *Finding a Generator of a Cyclic Group
	B.3.1 Group-Theoretic Background
	B.3.2 Efficient Algorithms

	References and Additional Reading
	Exercises

	References
	Index

